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Abstract

Large-scale chip multiprocessors will likely be heterogeneous. It has been suggested by
several groups that it may be worthwhile to implement some cores that are specially tuned
to execute common code patterns. One such common application that will execute on all
future processors is of course the operating system. Many future workloads will spend a
large fraction of their execution time within privileged mode, either executing system calls
or pure operating system functionality. Vast transistor budgets and relatively low on-chip
communication latencies make it feasible to off-load the execution of privileged instruction
sequences on to such a custom core. In this paper, we first examine this off-load approach
and attempt to understand its benefits. We then try to architect a solution that captures
the benefits of off-loading and eliminates its disadvantages. In essence, the benefits of off-
loading can be attributed to reduced cache interference, while its disadvantages are the high
latency costs for off-load and cache coherence. Our proposed solution employs a special
OS cache per core and improves performance by up to 18% for OS-intensive workloads
without any significant addition of transistors. We consider several design choices for this
OS cache and argue that it is a better use of transistor and power budget than the off-loading
approach when both adding to the transistor budget or leaving it unchanged.



1 Introduction

In the era of plentiful transistor budgets, it is expected that processors will accommodate
tens to hundreds of processing cores. With processing cores no longer being a luxury, we
can consider dedicating some on-chip cores for common applications. The customization
of these cores can allow such applications to execute faster and more power-efficiently.
There are already several hints that industry is headed towards such heterogeneous chip
multiprocessor (HCMP) platforms [5, 8, 9, 11, 16, 18]. One common application that may
benefit from customization is the operating system: it executes on every processor and is
frequently invoked either by applications or simply to perform system-level book-keeping.
The operating system is an especially important target because several studies [1, 6, 14, 18]
have shown that the past decade of microarchitectural innovations have done little to boost
the performance of OS execution. This is attributed to many factors: OS calls are short,
have hard-to-predict branches, have little instruction-level parallelism (ILP), and suffer
from cache interference effects. It can also be argued that current high-performance cores
are over-provisioned for OS execution (for example, floating-point units, large reorder
buffer, large issue width) and are hence highly inefficient in terms of power consumption.
Studies [5, 18, 21] have shown that operating system code constitutes a dominant portion
of many important workloads such as webservers, databases, and middleware systems.
Hence, optimization of OS execution (perhaps with a customized core, henceforth referred
to as theOS core) has the potential to dramatically impact overall system performance and
power.

Some research groups [5, 16, 18] believe in the potential of core customization within multi-
cores to improve OS efficiency. In this paper, we put that hypothesis to the test. We first
characterize OS behavior and attempt to design a highly optimized off-load mechanism.
Based on our observation of cache behavior during the off-load process, we conclude that
performance can be optimized with a selective off-load mechanism. We design a predictor
to dynamically determine if OS execution should be off-loaded to its own separate core.
Thus, our mechanism is a significant advancement of the state-of-the-art. However, there
remains room for improvement. Our analysis shows that many cycles are wasted because of
costly cache coherence operations between the user core and the OS core. We also observe
that modern off-load latencies of 1000+ cycles are an impediment to performance.

To overcome these disadvantages, we explore an alternative path to efficient OS execution.
A large fraction of off-loading benefit can be attributed to reduced interference within the
caches of the OS and user cores. Off-loading is inefficient because to get this benefit, it
forces code migration to a distant core, while also shipping non-trivial amounts of data
between these cores. Instead, we propose to bring this extra cache space to the user core
itself. We consider several design options while incorporating this extra storage into a
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core’s cache hierarchy, referred to as thein-core approach. We develop dynamic block
placement and block look-up policies to control how cache space is allocated between user
and OS working sets. We observe that thein-coreapproach out-performs theoff-loading
approach.

While the use of an OS cache per core is a significant departure from the off-loading ap-
proach, we believe that it is a better use of a processor’s transistor and power budget. We
show that a separate OS core cannot simultaneously handle requests from several threads,
hence it is wishful to assume that all OS activity in a multi-core can be relegated to a single
small core. All known strategies to improve the power-efficiency of a separate OS core
can also be employed dynamically within a user core. We therefore conclude that if an
argument must be made for off-loading, it must be accompanied by the development of
core customization techniques that cannot be dynamically employed within regular user
cores. The paper thus sheds new light on the debate over these contrasting approaches,
while enhancing the state-of-the-art for both approaches.

The paper is organized as follows. Section 2 summarizes a variety of existing proposals
with connections to this work. We describe our experimental methodology in Section 3 and
characterize benchmark behavior. Section 4 evaluates the potential of a new mechanism
for OS off-loading. We examine how the benefits of a multi-core design can be integrated
into a uni-core solution in Section 5. We provide a summary of these two competing
approaches in Section 6 and conclude in Section 7.

2 Related Work

In addition to the related work discussed in later sections, we summarize the most related
work in three areas: OS interference and impact on user code, improving CMP efficiency,
and hardware support for OS execution.

2.1 Operating System Impact on System Throughput

There have been many studies throughout the years on how operating system overhead af-
fects the throughput of user applications (the eventual metric of interest). Chen et al. [7],
Thomas et al. [2], and Agarwal et al. [1] have shown that operating system execution gen-
erates memory references that negatively impact the performance of traditional memory
hierarchies. Redstone et al. [21] and Nellans et al. [18] have shown that there are important
classes of applications, namely webservers, databases, and display intensive applications
for which the OS can contribute more than half the total instructions executed. Nellans et
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al. [18] and Li et al. [14] show OS codes underperform user applications by 3-5x on modern
processors and suggest that OS code can be run on less aggressively designed processors
to improve energy efficiency.

2.2 Improving CMP Efficiency

Symmetric chip multiprocessors have become commonplace and most application software
has not been able to keep pace by developing threaded applications that gracefully scale to
multiple cores. To counteract this under-utilization there are a variety of proposals to ei-
ther scale back the power consumption of underutilized hardware or improve performance
by better matching threads to processing cores. Chakraborty et al. [5] propose migrating
computation fragments, arbitrary portions of a dynamic instruction stream, on to dedicated
cores within a symmetric CMP. They specifically target system calls by migrating system
calls from multiple cores onto a single core. Performance increases are seen due to the sym-
biotic execution of similar instruction streams on a single core. Kumar et al. [11] as well
as others [8, 24] propose integrating heterogeneous processing cores instead of symmetric
processors in a CMP arrangement. Threads can then be scheduled onto cores which closely
match their computation requirements, improving energy efficiency. Mogul et al. [16] ex-
tend this idea to the operating system by pairing aggressive cores with energy efficient cores
and migrating system call execution onto the energy efficient core. Long duration migra-
tions allow them to power down the the aggressive core, resulting in a net improvement in
system efficiency.

2.3 Hardware Support for OS Execution

Li et al. [12–14] have proposed dynamically tuned hardware to reduce energy consumption
while the operating system is executing. Their focus on energy efficiency does not over-
lap with the performance oriented approaches presented in this paper, but many of their
optimizations are applicable to our proposed design. This applicability is discussed in a
later section. Brown and Tullsen [4] propose a hardware based mechanism for speeding up
thread migration across processors in a CMP system. While they do not specifically tar-
get the operating system, any reduction in thread migration overhead has a positive effect
on operating system offloading in a multi-core solution. Qureshi et al. [19, 20], Jaleel et
al. [10], and Suh et al. [23] provide insight into mechanisms by which shared caches can be
dynamically tuned via way-partitioning or insertion policies to improve hit rates. Thein-
corecache allocation mechanisms proposed in Section 5 re-discover many of the insights
of these works but in a different context. Our mechanism differs from these proposals in
that it operates on a non-shared cache within a single thread of execution, rather than on a
shared last level cache with multi-programmed workloads.
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3 Methodology and Workload Characterization

Simulator and Benchmarks: Except where noted, all experiments in this paper are mod-
eled using Simics 3.0.x simulating a Sunfire 6500 machine and UltraSPARC III series pro-
cessors. In this paper we examine a broad range of applications including benchmarks from
SPECcpu2006, SPECjbb2005, BioBench, Parsec, and an Apache based webserving bench-
mark serving 500 concurrent requests. When evaluating a core-migration implementation,
it is important to evaluate traditional compute-bound applications as well to ensure that the
proposed policy, while beneficial on OS-intensive applications, does not substantially re-
duce performance on other classes of workloads. We used an unmodified Linux operating
system, except for the SPECjbb2005 benchmark which was modeled under Solaris 10. For
our benchmarks, all measurements were taken over a window of 5 billion instructions. We
believe this is at the lower limit of the sampling period necessary to capture representative
operating system behavior beyond system calls. We were able to see as much as 20.2%
difference in IPC performance for some benchmarks when reducing the sample size to 100
million instructions but increasing our sampling window to 10 billion instructions resulted
in a maximum IPC variation of only 1.2%. Before the sampling period, all benchmarks
are fast forwarded to a defined region of interest in functional mode, then warmed up for a
minimum of 25 million instructions with our microarchitectural structures enabled.

Because of the extended simulation duration, using a cycle accurate simulation environ-
ment like GEMS [15], with Opal and Ruby, is not feasible. For this work we use the
default in-order processor model provided by Simics with a locally developed memory
system based on g-cache that accurately supports cache-to-cache transfers, parallel and se-
quential look-up policies, and configurable routing between cache levels. Our cache timing
models are based on the results from CACTI 6.0 [17] using a target frequency of 3GHz.
We implement a main memory latency of 500 cycles in all experiments.

For this work, the only candidates for off-loading are sequences of instructions that execute
in privileged mode.Privileged mode executioncaptures both pure operating system func-
tions such as scheduling and kernel threads, as well as system calls executed on behalf of
the user code. We make no distinction between these two types of execution, providing us
a clear delineation between operating system and user code that is also OS implementation
agnostic. We use the term privileged mode execution and operating system execution inter-
changeably. To determine the OS/user delineation, we examine the PSTATE register in the
SPARC architecture that indicates the privilege mode of the processor. We examined our
benchmarks under both Solaris and Linux and found that the number of operating system
instructions executed in either OS differed by less than +/-10%. Given the low variance
between the two operating systems, we do not attempt to quantify the effects of different
operating systems in this study.
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Figure 1: Percentage of Workload Execution Occuring Within Operating System Code
(Privileged Mode)

OS Contributions to Execution Time: For separation of operating system and user ex-
ecution to be beneficial, a significant portion of execution time must occur within the OS.
For the sampling provided in Figure 3, all benchmarks are run on a uniprocessor with no
other active threads. The total number of privileged instructions varies dramatically, from
nearly zero in the compute-intensive benchmarks to as much as 26% in SPECjbb2005 and
67.4% in Apache, our OS-intensive benchmarks. Note that mummer from the Biobench
suite seems to be in the same category with 30.4% privileged instructions, however this is
an artifact of the SPARC register system which enters privileged mode to rotate the SPARC
register windows very frequently. This very short routine accounts for virtually all of the
mummer privileged mode instructions. By contrast, register rotate traps make up less than
5% of the total privileged instructions in SPECjbb2005 and Apache (see Figure 2 for a dis-
tribution of the length of the privileged instruction runs in terms of number of instructions).

Privileged Instruction Run Lengths: The processor enters privileged mode often for
a variety of reasons. As a result, the frequency and duration of these executions can be
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Figure 2: Length of OS system calls and other OS execution during benchmark execution.

wildly different depending on many factors, such as system call use by applications, kernel
housekeeping, and device interrupts. Figure 2 shows the duration of privileged instruction
runs during a 5 billion instruction window. Both SPECcpu2006 and Parsec have very few
significant privilege mode sequences of long duration, which is not surprising given that
they are designed to measure CPU throughput and not interact with I/O devices or saturate
memory bandwidth. Most benchmarks show by far the largest number of privileged mode
invocations last less than 25 instructions. Again, this appears to be unique to the SPARC
architecture due to its rotating register file mechanism. Aside from those executions, most
remaining privileged instruction sequences are less than 1000 instructions in length, with
only SPECjbb2005 and Apache having a non-trivial number of executions over 1,000 in-
structions long. SPECjbb2005 has one of the largest memory footprints and performs a
significant number of system calls through the execution of the JVM for both I/O, thread
scheduling, and garbage collection. For the sake of brevity we will provide average results
for the nine compute bound benchmarks in the remainder of this paper.

Cache Evictions Caused by OS Execution: The operating system interferes in all levels
of the cache hierarchy by causing evictions because of the blocks it brings in. Conversely,
those evicted lines of user data can cause a secondary eviction of the OS data if they must
be brought back on chip during user execution. Figure 3 shows the causes of OS induced
eviction at the L1 and L2 levels. Apache and SPECjbb2005 attribute between 25-30%
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Figure 3: Percentage of total evictions caused by the operating system, broken down by OS
execution length.

of total evictions at the L1 level to operating system interference and 35-42% at the L2
level. While the misses caused by the OS in compute-intensive applications is high as a
percentage of the total, the absolute number of misses is relatively low because most of
these applications are cache-resident.

The above workload characteristics play a strong role in our design decisions for theOS
coreandOS cacheoptimizations. The length of the OS invocation is a key factor in deter-
mining whether off-load should happen or not. The removal of cache interference is clearly
the crux of both optimizations and the above results show that significant cache interference
exists and is related to OS syscall length.

4 Reduced Cache Interference Through Multi-core Offload-
ing

The results in the previous section show that cache interference from the OS is a ma-
jor problem for OS-intensive workloads. A few groups have argued that off-loading OS
syscalls to a customizedOS corecan yield performance and power efficiency [5, 16, 18].
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We therefore attempt to design a dynamic off-load policy that is cognizant of syscall length
and cache interference effects. We first articulate the overheads for execution migration.
Given the likely high cost for such migration, we employ off-loading only if the syscall
length exceeds a certain value (referred to as theoff-load trigger). We then show that off-
loading behavior is highly sensitive to the choice of trigger for each program: aggressive
off-loading is required to avoid cache interference in some programs, but it also then entails
a high off-loading and cache coherence penalty. To design a robust off-load mechanism,
we need an estimation of that program’s optimal switch trigger and a hardware predictor
that estimates the length of an OS system call. We therefore build upon the state-of-the-art
in several ways. Unlike the policies of Mogul et al. [16] and Chakraborty et al. [5] that use
static off-loading with OS instrumentation, our off-load policies are dynamic and dictated
by a hardware predictor. We also pay closer attention to the trade-offs introduced by switch
trigger, cache coherence, and migration delays, all of which feed into the design of an op-
timal policy. Further, note that the goals of the policies of Mogul et al. [16] are focused
on power optimizations and are hence subject to different constraints (their results show a
reduction in overall performance because of off-loading).

4.1 Overheads of Migration

Thread migration minimally requires interrupting program control flow and writing archi-
tected register state to memory on the user processor. The OS core must then be interrupted
if it is executing something else, it reads this architected state from memory, and resumes
execution. If there is data in cache on the user processor that must be accessed by the OS
core, it must be transferred to the OS core, resulting in coherence traffic. Typically, cache
values are not aggressively prefetched into the OS core to avoid pollution and wastage –
they are fetched on a demand basis, leading to longer latencies per access. On modern
hardware, the minimal process migration cost is approximately 5,000-10,000 cycles [16].
Some recent work [4] suggests that hardware support can lower the basic execution migra-
tion cost, but there is little that can be done to hide the delays of cache coherence traffic.
Since we later show that off-loading is inferior to the in-core approach, our study makes
several optimistic assumptions for the off-loading approach to strengthen the confidence in
our conclusions. Hence, we also show results where the migration cost is optimistically
much lower.

Migration overheads are also impacted by the specific implementation that determines
whether to off-load or not. Previous proposals have involved a VMM to trap OS execution
and follow a static policy based on off-line profiling [5], or have instrumented the operating
system at various entry points to predict the duration it will be exercised [13, 16]. These
static software-based mechanisms may require hundreds of cycles, whereas our predictor-
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Figure 4: Binary Prediction Hit Rate for Core-Migration Trigger Thresholds

based mechanisms rely on hardware support that can accomplish the decision-making in a
single cycle. While this difference may be dwarfed by the long duration of some off-loads,
it is a major overhead when considering offloading the most common OS invocations which
Figure 2 shows us is very short.

4.2 Hardware Prediction of Privileged Instruction Sequence Length

In order to hide its high opportunity cost, operating system off-load must happen only
when executing syscalls that are sufficiently long. Even a single syscall can have dynamic
behavior based on its inputs, for example, syscalls performing I/O may have to read a single
byte or millions of bytes. Hence, the design of an optimal dynamic off-load mechanism is
contingent on our ability to accurately predict the length of a syscall.

We contribute a new hardware predictor of syscall length that simply XOR hashes the
values of various architected registers. The following registers were chosen for the SPARC
architecture: PSTATE (contains information about privilege state, masked exceptions, FP
enable, etc.), g0 and g1 (global registers), and i0 and i1 (input argument registers). The
XOR of these registers yields a 64-bit value (referred to asAState) that we believe captures
information about the type of syscall, input values, and the surrounding environment. The
AState value is used to index into a predictor table that keeps track of the syscall length
the last time such an AState index was observed. Each entry in the table also maintains
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a prediction confidence value, a 2-bit saturating counter per entry that is incremented on
a prediction within 5% of the actual, and decremented otherwise. If the confidence value
is 0, we found that it is more reliable to make a “global” prediction,i.e., we simply take
the average run length of the last three observed syscalls (regardless of their AStates).
We observed that this works well because relatively short and similar syscalls tend to be
clustered and a global prediction can be better than a low-confidence “local” prediction. For
our simulations, we observed that a fully-associative predictor table with 200 entries yields
close to optimal performance. We observed that a direct-mapped RAM structure with 1K
entries also provides the same accuracy. The storage requirement for our implemented
predictor is only 2 KB.

Averaged across all benchmarks, this simple predictor is able to precisely predict the run
length of 71.2% of all privileged instruction runs, and predict within±5% the actual run
length an additional 21.1% of the time. Large prediction errors most often occur when
the processor is executing in privileged mode, but interrupts have not been disabled. In
this case, it is possible that the privileged mode operation is interrupted by one or more
additional routines before the original routine is completed. Our predictor does not capture
these events well because they are typically caused by external device interrupts which are
not part of the processor state at prediction time.

While the hardware predictor provides a discrete prediction of privileged mode instruction
run length, the switch trigger must distill this into a binary prediction indicating if the run
length exceedsN and core migration should occur. Figure 4 shows the accuracy of bi-
nary predictions for various values ofN . For example, if core migration should occur only
on syscall run lengths greater than 500 instructions, then our predictor makes the correct
switching decision 94.8%, 93.4%, and 99.6% of the time for Apache, SPECjbb2005, and
the average of all compute benchmarks, respectively. Figure 4 shows us that a switch policy
based on our hardware predictor is extremely accurate, indicating that series of privileged
mode instructions do indeed have good predictability. While more space-efficient predic-
tion algorithms likely exist, we observe little room for improvement in terms of predictor
accuracy. Most mispredictions are caused by unexpected interrupts that would be difficult
to provision for. The high-quality predictor developed here serves as an important piece
when developing an optimal off-load policy.

4.3 Performance Evaluation of Multi-core Offloading

We next evaluate a predictor-directed off-load mechanism. On every transition to privileged
mode, the run-length predictor is looked up and off-loading happens if the run-length is
predicted to exceedN (we show results for various values ofN ). For this experiment, the
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Figure 5: Performance relative to uni-processor baseline when varying the core-switch
penalty and the switch trigger policy that performs off-loading only when the syscall length
exceeds the given threshold.

Core Migration Threshold N
Benchmark 0 100 1000 5000 10,000+

SPECjbb2005 38.84% 34.48% 33.15% 21.28% 14.79%
Apache 64.7% 45.75% 37.96% 17.83% 17.68%

Table 1: Percentage of Total Execution Time Spent on OS Processor When Using Selective
Migration Based on ThresholdN

following cache hierarchy was assumed. Cores are symmetric and each core has 1-cycle
32 KB L1 (instruction and data) caches. A miss in the L1 looks up a private L2. This L2
has a capacity of 1 MB and a 5-cycle access time. A miss in the L2 causes a look-up of a
directory to detect if the request can be serviced by the L2 of a different core (a coherence
miss). If this happens, we assume 5 cycles to look up the remote L2 and an additional 5
cycles for directory look-up and inter-core messaging. The latter 5-cycle penalty is rather
optimistic since the directory is typically large and multiple on-chip network messages are
required.

Figure 5 shows the IPC performance through off-loading, relative to a baseline that exe-
cutes the program on a single core. A different graph is shown for Apache, SPECjbb, and
compute-intensive programs. Each graph shows the switch trigger threshold on the X-axis
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and a different curve for various execution migration delays. For most low migration costs,
off-loading is beneficial for a switch trigger as low asN = 100 for Apache and SPECjbb.
For a high migration cost of at least 5,000 cycles, the optimal switch trigger moves to
N = 1000 for Apache and SPECjbb. Compute-intensive programs yield almost no benefit
with off-loading and are optimized with largeN . These programs invoke a number of short
syscalls and the overheads of migration do not overcome the benefits of reduced cache in-
terference. Table 1 shows the amount of off-load for the two OS-intensive programs for
various values ofN . For a migration overhead of 5,000 cycles (achievable on modern sys-
tems [16]), off-loading yields an optimal speedup of 1.20 for Apache and 1.08 for SPECjbb.
In Apache and SPECjbb, about 4-27% of L2 cache misses are serviced by cache-to-cache
transfers. Assuming that remote caches have the same access latency as local caches,i.e.,
if there is a low-cost coherence mechanism, performance could be improved at most by
3-8%.

4.4 Dynamic Migration Policy Based on Feedback Mechanisms

The second component of our migration mechanism is the estimation ofN that yields opti-
mal behavior in terms of say, performance or energy-delay product (EDP ). This portion of
the mechanism occurs within the operating system at the software level so that it can utilize
a variety of feedback information gleaned from hardware performance counters. For this
estimation ofN , we rely on algorithms developed in prior work to select an optimal hard-
ware configuration [3]. If the hardware system must select one of a few possible hardware
configurations at run-time, it is easiest to sample behavior with each of these configura-
tions at the start of every program phase and employ the optimal configuration until the
next program phase change is detected.

These algorithms measure various statistics over every time interval (referred to as epochs).
Typically, branch mispredict rate, IPC, and cache miss rates are tracked across epochs via
performance counters and a significant change in one of these parameters usually signals a
phase change. Once a phase change is detected, we execute the application withN = 100
for an epoch, then withN = 500 for the next epoch, and so on, until all reasonable values
of N have been sampled. The value ofN with the highest IPC or lowestEDP is then
employed until the next phase change is detected. Such a mechanism works poorly if
phase changes are frequent. If this is the case, the epoch length can be gradually increased
until stable behavior is observed over many epochs. For most of our benchmark programs
when looking at epochs larger than 100 million instructions, there were few phase changes
and it was fairly straightforward to predict the optimal value ofN based on some initial
sampling.
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5 Reduced Cache Interference Through Intelligent In-Core
Caching

Off-loading privileged mode instruction sequences to a separate core yields better perfor-
mance because of the reduction in cache interference effects. However, we believe that
from a performance viewpoint, it is likely more advantageous to employ a single core and
augment its cache design than incur the off-load penalty to leverage a remote cache. In this
section, we explorein-coresolutions that add innovations to the cache hierarchy within a
core to reduce OS/user cache interference.

The basic idea is simple. Just as the use of separate instruction and data caches is common-
place today, we believe that a separate OS cache per core may be worthwhile. We explored
several organizations that adopt an L1 OS cache, but found negligible performance im-
provements. The small size of L1 caches can not be sub-partitioned without incurring a
substantial performance penalty due to increased capacity misses. For the experiments in
this section, our uni-processor design implements traditional split L1 instruction and data
caches that are shared by both OS and User code.

Our experiments yield different results for the L2 cache. We architect a solution that em-
ploys a conventional unified L2 cache for user instructions and data and augment that so-
lution with a special operating system cache. The addition of a last level cache increases
power consumption by as little as 0.75 W per MB of cache, whereas the addition of sepa-
rate core logic, even a simple Alpha EV7-like core, increases power consumption by 7 W
[16, 22]. Hence, this is also the more efficient option power-wise, assuming that a single
OS core cannot be shared by several user cores in a scalable manner (more on this shortly).

The first design choice we make is to implement mutual exclusion between the contents of
the user-L2 cache and the OS-L2 cache. We also considered a solution that allows blocks to
be replicated in both caches, but the benefits were nearly non-existent and cache coherence
overheads would have to be incurred. It is worth noting that a cache block of instructions
is typically accessed in only one of the two modes (privilege or not), while data blocks are
often accessed in both modes due to privilege-restricted I/O operations.

Parallel look-up: When an L1 miss is encountered, one of the two L2 cache banks may
contain the data. In parallel look-up mode, both cache banks are simultaneously accessed.
This increases the access time of each look-up and the power per access. On an L2 miss,
the newly fetched block is placed in the OS-L2 or user-L2 based on ourblock placement
policy (to be described shortly).
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Serial look-up: Alternatively, on an L1 miss, we can predict which bank is likely to con-
tain the data and look it up first. Individual bank look-ups take less time than a parallel bank
access. If data is not found in the first L2 bank, the second L2 bank must be sequentially
looked up (so as to preserve the mutual exclusion property). Blocks are never swapped be-
tween banks. On an L2 miss, the block is initially placed in the bank dictated by ourblock
placement policywhere the block remains until it is evicted via standard LRU within that
bank. Assuming we can accurately predict the bank that contains data for an L2 request,
this mode should consume less time and power than the parallel look-up mode.

We model three differentblock placement policies. The first places all data blocks that are
fetched by privileged instructions into the OS-L2 bank and everything else into the user-L2
bank (designated as “Route Data Only” in Table 2). The second places all instruction blocks
that are fetched by privileged instructions into the OS-L2 bank and everything else in the
user-L2 bank (designated as “Route Instructions Only”). The third places all instruction
and data blocks fetched by privileged instructions into the OS-L2 bank and everything else
in the user-L2 bank (designated as “Route Instructions and Data”). We will subsequently
discuss a few more extensions to these policies that dynamically control the capacity al-
located to user and OS. We also considered policies based on OS run-length estimation
(just as we did for the off-loading experiments), but these did not out-perform the policies
above.

For bank prediction, we employ a predictor that mirrors the block placement policy. For
example, if the instruction is privileged and our block placement policy is “Route Data
Only”, we first look for this data in the OS cache assuming that the data must have been
fetched by a privileged instruction. Such a bank predictor has perfect prediction for in-
structions block look-ups. It only incurs mis-predictions when the OS or user attempts to
access data that was first brought into the cache by the opposite privilege mode. There are
ways to improve upon such bank predictors, for example, by using the instruction PC to
index into a table that predicts where this instruction last found its data [25]. Our simple
predictor provides an average accuracy of 81% with zero storage overhead, so we did not
consider more sophisticated bank predictors in this study.

5.1 Improvements with a Larger Transistor Budget

We consider two sets of experiments. As usual, we assume a baseline core that employs
a 1 MB 5-cycle L2 cache. We first show results for an organization that assumes a 1 MB
user-L2 combined with a 1 MB OS-L2. While this design clearly has more resources than
the baseline, it is similar in spirit to the off-load approach where we attempt to improve
performance by increasing the transistor budget. This experiment also allows us to make

14



Benchmark Route Data Only Route Instructions Only Route Instructions and Data
Parallel Lookup

ComputeAVG 1.04 .99 1.03
SPECjbb2005 1.35 1.05 1.33

Apache 1.53 1.42 1.49
Sequential Lookup

ComputeAVG 1.05 1.00 1.03
SPECjbb2005 1.36 1.05 1.32

Apache 1.53 1.45 1.50

Table 2: IPC performance relative to baseline by implementing secondary OS L2 cache

a direct comparison against the off-load results. As is the norm, all L2 caches perform
sequential tag and data access. All of our cache delay estimates are obtained with CACTI
6.0. A parallel look-up into both 1 MB banks has an access time of 8 cycles. A sequential
look-up with a correct bank prediction takes 6 cycles (this is similar to a 1 MB cache access
plus the wire delay to route the request to the correct bank). A sequential look-up with a
bank mispredict takes 10 cycles according to CACTI (since we must route the request to
the predicted bank, perform a tag look-up in the predicted bank, discover a miss and route
the request to the second bank, and then finally perform tag and data look-up over the 1 MB
bank).

Table 2 shows results with parallel and sequential look-up for the three bank placement
policies. Thanks to the extra cache space, performance is almost always better than the
baseline. For the two OS-intensive applications the improvements are in the range of 36%
to 53%. This implementation is very similar to the multi-core approach described in Sec-
tion 4 but we have eliminated 100% of the offloading penalty, thus substantially improving
performance. We hypothesized that optimal performance would occur by routing OS in-
struction and data blocks to the OS cache, but our results show that there is substantial
interference between OS data and instruction references in a shared cache. Thus, we ob-
serve that optimal performance is seen by separating only the OS data references, allowing
instruction blocks to share space with user data blocks. Thanks to the high bank predic-
tion accuracy, we observe that sequential look-up performs equal to or slightly better than
parallel look-up in every case.

Note that having the two cache banks co-located opens up the door for creative bank place-
ment policies (for example, with the multi-core off-load solution, it would be highly ineffi-
cient to place OS instructions in the user core’s cache).
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Benchmark Route Data Only Route Instructions Only Route Instructions and Data
Parallel Lookup

SPECjbb2005 1.17 .91 1.15
Apache 1.02 .93 .99

Sequential Lookup
SPECjbb2005 1.18 .96 1.16

Apache 1.03 .93 .99

Table 3: IPC performance of a cache hierarchy with as many transistors as the baseline
(512 KB OS and 512 KB user)

5.2 Improvements with an Identical Transistor Budget

To make a more fair apples-to-apples comparison against the baseline, we also model the
case that has 512 KB banks for the OS and user L2 caches. This effectively partitions an
existing L2 design into two equal sub-pieces for OS and user execution. Correspondingly,
the parallel look-up now takes 5 cycles, and the sequential look-up takes 4 or 7 cycles
depending on whether the bank prediction is correct or not.

The results in Table 3 show us that sequential look-up again outperforms parallel look-
up. For SPECjbb2005 we are able to achieve a performance improvement of 19% given
the same transistor budget, while Apache improves only a modest 3%. Again data block
separation yields the best results; an instruction only block placement policy decreases
performance across the board due to underutilization of the OS cache.

For the compute-intensive applications, we observed that the default bank placement poli-
cies can yield significant slowdowns compared to the baseline. This is because we are
statically allocating half the cache space to user and OS and this is poor allocation for
compute-bound applications (and many others) that engage in little OS activity. This
under-utilization of the OS cache is much more expensive in these experiments that are
increasingly storage-constrained. To remedy this common case, we slightly alter our bank
placement policy. If fewer than 25% of all instructions in the last one million instruction
epoch were privileged instructions (in other words, there was little OS activity), the bank
placement policy alternately uses either bank to place a newly fetched block. This new
policy can be easily implemented using only a few hardware counters and minimal logic.
Additionally, when using such a round robin allocation, sequential look-up yields no per-
formance improvement because there is no basis for L2 bank predictability. We therefore
default back to parallel look-ups. The average performance of our compute bound applica-
tions was only 0.4% below the baseline utilizing this alternate block placement policy.
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In a similar vein to a dynamic bank placement policy, one could consider dynamically al-
locating portions of the cache space to user and OS. All of the above experiments statically
allocate half the L2 cache space to the user and OS. To allow a dynamic allocation of space,
the ways of a unified cache can be dynamically assigned to either OS or user space. While
we haven’t considered these policies for this paper, we expect that already existing policies
such as UCP (utility-based cache partitioning) [10, 20] would help determine what fraction
of the 1 MB L2 cache is designated as OS and user.

6 Discussion

Performance Summary: The paper first builds upon the state-of-the-art in off-loading
mechanisms by estimating an optimal switch trigger per application and then dynamically
predicting if off-loading must happen or not. We make a number of optimistic assumptions
for this scheme and show that by adding another symmetric core, performance of Apache
and SPECjbb is improved by 20% and 8%, respectively. We then architect an in-core solu-
tion: a split L2 cache hierarchy within a core to capture the benefits of off-loading without
incurring the latency penalties of execution migration and cache coherence. We explore
various bank placement policies, bank prediction, and sequential/parallel look-up policies.
If the proposed model is allowed to grow the transistor budget, then by employing many
fewer transistors than the off-load case, we observe performance improvements of 55%
and 37% for Apache and SPECjbb, clearly better than even the most optimistic off-load
improvements. If we assume that total cache capacity in the new solution is not allowed to
exceed the cache capacity in the baseline, the in-core solution yields improvements of 3%
and 18%, compared to the -15% and -19% improvements (degradations!) for the off-load
solution. Note that in all these comparisons, the off-loading approach has a larger transistor
budget than the in-core approach because the former implements a second core.

Power Comparison: It has been argued that power can be saved by off-loading OS ex-
ecution to a low-power core. When off-loading happens, the user core moves to a low-
power mode and similarly, the OS core moves to a low-power mode when it is idle. To
allow these transitions to happen in tens to hundreds of cycles, only frequency changes can
be considered (voltage transitions take several thousand cycles in most implementations).
As a result, these low-power modes do little to reduce leakage, which can be as much as
25% of processor power [22]. If the OS and user cores are symmetric, this means that the
combination dissipates at least 1.25 times the power of the single-core baseline at any time.
As noted earlier, performance speedups are less than 1.25x. Of course, with an asymmetric
low-power OS core, the off-loading approach can yield improvements inEDP . However,
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note that a similar power-down strategy can also be adopted for the uni-core approach. If
we are willing to execute privileged OS instructions at a much lower performance level,
the single core can scale back its frequency by as large a factor as desired in the matter
of cycles (the Intel Montecito can do dynamic frequency scaling in less than a handful of
cycles) every time a privileged syscall is made. Thus, while both approaches can incur
equal power penalties from the extra cache, the off-load approach suffers because one of
its cores is always leaking power as it idles. It is certainly possible that with the right mi-
croarchitectural changes, the OS core can be designed to be so power-efficient that it can
deliver betterEDP than the in-core solution with frequency scaling, but this is likely at
unacceptable performance overheads.

Scalability: The other argument in favor of the off-load approach is that it may be more
efficient (in terms of performance, transistors, and power) to implement a single OS core
that is shared by all cores on chip. This allows multiple OS syscalls (invoked by different
threads) to symbiotically maintain a shared working set in the OS core’s cache, thus possi-
bly boosting performance. Power overheads are also minimized since only one additional
core (and its leakage) is being introduced. However, we observed that the OS core has
very poor scalability when handling OS-intensive programs. As shown in Table 1, the OS
core is heavily utilized. This means that a syscall often has to stall because the OS core is
busy executing a syscall invoked by another core. These stall times were frequently of the
order of 1000 cycles when executing two SPECjbb threads and exploded to 25,000 cycles
for four threads (the OS core is basically saturated by requests from as few as four cores).
Hence, the off-loading approach has very limited scalability for OS-intensive workloads
and negligible improvements for non-OS-intensive workloads.

Thus, across all metrics, we believe that the in-core approach is superior to the off-load
approach.

7 Conclusions

This paper considers two competing approaches to handle the execution of privileged OS
instructions. Our focus is on performance, and primarily the boost afforded by reducing
OS-user interference within the cache. We consider several novel innovations to each ap-
proach. For the off-loading approach, we introduce an adaptive off-load policy based on
behavior profiling and syscall run-length prediction. While this yields good benefits, we
argue that there is room for improvement. We propose a novel competing in-core approach
that hasn’t been previously considered. We introduce a cache within a core to cache a
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subset of OS references and consider several design options for it, including various block
placement policies, bank predictors, and sequential/parallel look-ups. This option yields
significant improvements: up to 53% if one is willing to increase the transistor budget
(similar to the off-loading approach which adds a separate core), and up to 18%, while
preserving the same transistor budget as the baseline. We also show that this solution is
superior to the off-load approach in terms of performance, transistor budgets, and power.
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