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Abstract

We describe the first formal specification of a non-trivial subset of MPI, the dominant com-
munication API in high performance computing. Engineering a formal specification for
a non-trivial concurrency API requires the right combination of rigor, executability, and
traceability, while also serving as a smooth elaboration of a pre-existing informal specifi-
cation. It also requires the modularization of reusable specification components to keep the
length of the specification in check. Long-lived APIs such as MPI are not usually ‘textbook
minimalistic’ because they support a diverse array of applications, a diverse community of
users, and have efficient implementations over decades of computing hardware. We choose
the TLA+ notation to write our specifications, and describe how we organized the specifi-
cation of 150 of the 300 MPI 2.0 functions. We detail a handful of these functions in this
paper, and assess our specification with respect to the aforesaid requirements. We close
with a description of possible approaches that may help render the act of writing, under-
standing, and validating specifications much more productive.



1 Introduction

The Message Passing Interface (MPI, [32]) library has become a de facto standard in HPC,
and is being actively developed and supported through several implementations [9, 31, 7].
However, it is well known that even experienced programmers misunderstand MPI APIs
partially because they are described in natural languages. The behavior of APIs observed
through ad hoc experiments on actual platforms is not a conclusive or comprehensive de-
scription of the standard. A formalization of the MPI standard will help users avoid misun-
derstanding the semantics of MPI functions. However, formal specifications, as currently
written and distributed, are inaccessible to most practitioners.

In our previous work [22], we presented the formal specification of around 30% of the 128
MPI-1.0 functions (mainly for point-to-point communication) in a specification language
TLA+ [33]. TLA+ enjoys wide usage in industry by engineers (e.g. in Microsoft [34]
and Intel). The TLA+ language is easy to learn. A new user is able to understand our
specification and start practicing it after a half-an-hour tutorial. Additionally, in order to
help practitioners access our specification, we built a C front-end in the Microsoft Visual
Studio (VS) parallel debugger environment, through which users can submit and run short
(perhaps tricky) MPI programs with embedded assertions (called litmus tests). A short
litmus test may exhibit a high degree of interleaving and its running will reveal the nuances
of the semantics of the MPI functions involved. Such tests are turned into TLA+ code and
run through the TLC model checker [33], which searches all the reachable states to check
properties such as deadlocks and user-defined invariants. This permits practitioners to play
with (and find holes in) the semantics in a formal setting.

While we have demonstrated the merits of our previous work ([22]), this paper, the journal
version of our poster paper [15], handles far more details including those pertaining to data
transfers. In this work, we have covered much of MPI-2.0 (has over 300 API functions, as
opposed to 128 for MPI-1.0). In addition, this new work provides a rich collection of tests
that help validate our specifications. It also modularizes the specification, permitting reuse.

Model Validation. In order to make our specification be faithful to the English description,
we (i) organize the specification for easy traceability: many clauses in our specification are
cross-linked with [32] to particular page/line numbers; (ii) provide comprehensive unit tests
for MPI functions and a rich set of litmus tests for tricky scenarios; (iii) relate aspects of
MPI to each other and verify the self-consistency of the specification (see Section 4.11);
and (iv) provide a programming and debugging environment based on TLC, Phoenix, and
Visual Studio to help engage expert MPI users (who may not be formal methods experts)



into experimenting with our semantic definitions.

The structure of this paper is as follows. We first discuss the related work on formal speci-
fications of large standards and systems; other work on applying formal methods to verify
MPI programs is also discussed. Then we give a motivating example and introduce the
specification language TLA+. This example illustrates that vendor MPI implementations
do not capture the nuances of the semantics of an MPI function. As the main part of this
paper, the formal specification is given in Section 4, where the operational semantics of
representative MPI functions are presented in a mathematical language abstracted from
TLA+. In Section 5 we describe a C MPI front-end that translates MPI programs written in
C into TLA+ code, plus the verification framework that helps users execute the semantics.
Finally we give the concluding remarks. In the appendix we give an example to show how
the formal semantics may help the rigid analysis of MPI programs — we prove formally
the definition of a precedence relation is correct, which is the base of a dynamic partial
order reduction algorithm.

2 Related Work

The idea of writing formal specifications of standards and building executable environ-
ments is a vast area.

The IEEE Floating Point standard [12] was initially conceived as a standard that helped
minimize the danger of non-portable floating point implementations, and now has incarna-
tions in various higher order logic specifications (e.g., [10]), finding routine applications in
formal proofs of modern microprocessor floating point hardware circuits. Formal specifi-
cations using TLA+ include Lamport’s Win32 Threads API specification [34] and the RPC
Memory Problem specified in TLA+ and formally verified in the Isabelle theorem prover
by Lamport, Abadi, and Merz [1]. In [13], Jackson presents a lightweight object modeling
notation called Alloy, which has tool support [14] in terms of formal analysis and testing
based on Boolean satisfiability methods.

Bishop et al [3, 4] formalized in the HOL theorem prover [20] three widely-deployed imple-
mentations of the TCP protocol: FreeBSD 4.6-RELEASE, Linux 2.4.20-8, and Windows
XP Professional SP1. Analogous to our work, the specification of the interactions between
objects are modeled as transition rules. The fact that implementations other than the stan-
dard itself are specified requires repeating the same work for different implementations.



In order to validate the specification, they perform a vast number of conformance tests:
test programs in a concrete implementation are instrumented and executed to generate ex-
ecution trances, each of which is then symbolically executed with respect to the formal
operational semantics. Constraint solving is used to handle non-determinism in picking
rules or determining possible values in a rule. Compared with their work, we also rely on
testing for validation check. However, since it is the standard that we formalize, we need
to design and write all the test cases by hand.

Norrish [19] formalized in HOL [20] a structural operational semantics and a type system of
the majority of the C language, covering the dynamic behavior of C programs. Semantics of
expressions, statements and declarations are modeled as transition relations. The soundness
of the semantics and the type system is proved formally. Furthermore, in order to verify
properties of programs, a set of Hoare rules are derived from the operational semantics. In
contrast, the notion of type system does not appear in our specification because TLA+ is
an untyped language.

Each of the formal specification frameworks mentioned above solves modeling and analysis
issues specific to the object being described. In our case, we were initially not sure how
to handle the daunting complexity of MPI nor how to handle its modeling, given that there
has only been very limited effort in terms of formal characterization of MPI.

Georgelin and Pierre [8] specify some of the MPI functions in LOTOS [6]. Siegel and
Avrunin [29] describe a finite state model of a limited number of MPI point-to-point op-
erations. This finite state model is embedded in the SPIN model checker [11]. They [30]
also support a limited partial-order reduction method – one that handles wild-card commu-
nications in a restricted manner, as detailed in [24]. Siegel [28] models additional ‘non-
blocking’ MPI primitives in Promela. Our own past efforts in this area are described in
[2, 21, 25, 23]. None of these efforts: (i) approach the number of MPI functions we
handle, (ii) have the same style of high level specifications (TLA+ is much closer to math-
ematical logic than finite-state Promela or LOTOS models), (iii) have a model extraction
framework starting from C/MPI programs, and (iv) have a practical way of displaying error
traces in the user’s C code.

3 Motivation

MPI is a standardlized and portable message-passing system defining a core of library
routines useful to a wide range of users writing portable message-passing programs in
Fortran, C or C++. Versions 1.0 and 2.0 were released in 1994 and 1997 respectively.



Currently more than a dozen implementations exist, on a wide variety of platforms. All
segments of the parallel computing communicty including vendors, library writers and
application scientists will benefit from a formal specification of this standard.

3.1 Motivating Example

MPI is a portable standard and has a variety of implementations [9, 31, 7]. MPI programs
are often manually or automatically (e.g., [5]) re-tuned when ported to another hardware
platform, for example by changing its basic functions (e.g., MPI_Send) to specialized
versions (e.g., MPI_Isend). In this context, it is crucial that the designers performing
code tuning are aware of the very fine details of the MPI semantics. Unfortunately, such
details are far from obvious. For illustration, consider the following MPI pseudo-code
involving three processes:

P0 MPI Irecv(rcvbuf1, ∗, req1);
MPI Irecv(rcvbuf2, from 1, req2);
MPI Wait(req1);
MPI Wait(req2);
MPI Bcast(revbuf3, root = 1);

P1 sendbuf1 = 10;
MPI Bcast(sendbuf1, root = 1);
MPI Isend(sendbuf2, to 0, req);
MPI Wait(req);

P2 sendbuf2 = 20;
MPI Isend(sendbuf2, to 0, req);
MPI Bcast(recvbuf2, root = 1);
MPI Wait(req);

Process 1 and 2 are designed to issue immediate mode sends to process 0, while Process
0 is designed to post two immediate-mode receives. The first receive is a wildcard receive
that may match the send from P1 or P2. These processes also participate in a broadcast
communication with P1 as the root. Consider some simple questions pertaining to the
execution of this program:

1. Is there a case where a deadlock is incurred? If the broadcast is synchronizing such
that the call at each process is blocking, then the answer is ‘yes’, since P0 can-
not complete the broadcast before it receives the messages from P1 and P2, while
P1 will not isend the message until the broadcast is complete. On the other hand,
this deadlock will not occur if the broadcast is non-synchronizing. As in an actual
MPI implementation MPI Bcast may be implemented as synchronizing or non-
synchronizing, this deadlock may not be observed through ad hoc experiments on a
vendor MPI library. Our specification takes both bases into consideration and always
gives reliable answers.



2. Suppose the broadcast is non-synchronizing, is it possible that a deadlock occurs?
The answer is ‘yes’, since P0 may first receive a message from P1, then get stuck
waiting for another message from P1. Unfortunately, if we run this program in a
vendor MPI implementation, P1 may receive messages first from P2 and then from
P1. In this case no deadlock occurs. Thus it is possible that we will not encounter
this deadlock even we run the program for 1,000 times. In contrast, the TLC model
checker enumerates all execution possibilities and is guaranteed to detect this dead-
lock.

3. Suppose there is no deadlock, is it guaranteed that rcvbuf1 in P0 will eventually
contain the message sent from P2? The answer is ‘no’, since P1’s incoming messages
may arrive out of order. However, running experiments on a vendor implementation
may indicate that the answer is yes, especially when the message delivery delay from
P1 to P0 is greater than that from P2 to P0. In our framework, we can add in P0
an assertion rcvbuf1 == 20 right before the broadcast call. If it is possible under
the semantics for other values to be assigned to these two variables, then the model
checker will find the violation.

4. Suppose there is no deadlock, when can the buffers be accessed? Since all sends
and receives use the immediate mode, the handles that these calls return have to be
tested for completion using an explicit MPI_Test or MPI_Wait before the asso-
ciated buffers are allowed to be accessed. Vendor implementations may not give
reliable answer for this question. In contrast, we can move the assertions mentioned
in the response to the previous question to any other point before the corresponding
MPI waits. The model checker then finds violations—meaning that the data cannot
be accessed on the receiver until after the wait.

5. Will the first receive always complete before the second at P0? No such guarantee
exists, as these are immediate mode receives which are guaranteed only to be initiated
in program order. Again, the result obtained by observing the running of this program
in a vendor implementation may not be accurate. In order to answer this question,
we can reverse the order of the MPI_Wait commands. If the model checker does
not find a deadlock then it is possible for the operations to complete in either order.

The MPI reference standard [32] is a non machine-readable document that offers English
descriptions of the individual behaviors of MPI functions. It does not support any exe-
cutable facility that helps answer the above kinds of simple questions in any tractable and
reliable way. Running test programs, using actual MPI libraries, to reveal answers to the
above kinds of questions is also futile, given that (i) various MPI implementations exploit
the liberties of the standard by specializing the semantics in various ways, and (ii) it is
possible that some executions of a test program are not explored in these actual implemen-
tations.



Thus we are motivated to write a formal, high-level, and executable standard specification
for MPI 2.0. The availability of a formal specification allows formal analysis of MPI pro-
grams. For example, we have based on this formalization to create an efficient dynamic
partial order reduction algorithm [26]. Moreover, the TLC model checker incorporated in
our framework enables users to execute the formal semantic definitions and verify (simple)
MPI programs.

3.2 TLA+ and TLC

The specification is written in TLA+ [33], a formal specification notation widely used in
industry. It is a formal specification language based on (untyped) ZF set theory. Basically
it combines the expressiveness of first order logic with temporal logic operators. TLA+ is
particularly suitable for specifying and reasoning about concurrent and reactive systems.

TLC, a model checker for TLA+, explores all reachable states in the model defined by the
system. TLC looks for a state (i.e. an assignment of values to variables) where (a) an
invariant is not satisfied, (b) there are no exits (deadlocks), (c) the type invariant is violated,
or (d) a user-defined TLA+ assertion is violated. When TLC detects an error, a minimal-
length trace that leads to the bad state is reported (in our framework this trace turns into a
Visual Studio debugger replay of the C source).

It is possible to port our TLA+ specification to other specification languages such as Alloy
[13] and SAL [27]. We are working on a formalization of a small subset of MPI functions
in SAL, which comes with state-of-the-art symbolic model checkers and automated test
generators.

4 Specification

TLA+ provides basic modules for set, function, record, string and sequence. We first ex-
tend the TLA+ library by adding the definitions of advanced data structures including array,
map, and ordered set (oset), which are used to model a variety of MPI objects. For in-
stance, MPI groups and I/O files are represented as ordered sets.

The approximate sizes (without including comments and blank lines) of the major parts
in the current TLA+ specification are shown in Table 1, where #funcs and #lines give
the number of MPI functions and code lines respectively. We do not model functions



Figure 1: MPI objects and their interaction

whose behavior depends on the underlying operating system. For deprecated items (e.g.,
MPI KEYVAL CREATE), we only model their replacement (MPI COMM CREATE KEYVAL).

Main Module #funcs(#lines)
Point to Point Communication 35(800)
Userdefined Datatype 27(500)
Group and Communicator Management 34(650)
Intra Collective Communication 16(500)
Topology 18(250)
Environment Management in MPI 1.1 10(200)
Process Management 10(250)
One sided Communication 15(550)
Inter Collective Communication 14(350)
I/O 50(1100)
Interface and Environment in MPI 2.0 35(800)

Table 1. Size of the Specification (excluding comments and blank lines)

4.1 Data Structures

The data structures modeling explicit and opaque MPI objects are shown in Figure 1. Each
process contains a set of local objects such as the local memory object mems. Multiple
processes coordinate with each other through shared objects rendezvous, wins, and
so on. The message passing procedure is simulated by the MPI system scheduler (MSS),
whose task includes matching requests at origins and destinations and performing message
passing. MPI calls and the MSS are able to make transitions non-deterministically.



Request object reqs is used in point-to-point communications to initiate and complete
messages. A message contains the source, destination, tag, data type, count and commu-
nicator handle. It carries the data from the origin to the target. Note that noncontiguous
data is represented as (user-defined) datatypes. A similar file request object freqs is for
parallel I/O communications.

A group is used within a communicator to describe the participants in a communication
“universe”. Communicators comms are divided into two kinds: intra-communicators each
of which has a single group of processes, and inter-communicators each of which has two
groups of processes. A communicator also includes virtual topology and other attributes.

A rendezvous is a place shared by the processes participating in a collective communica-
tion. A process stores its data to the rendezvous on the entry of the communication and
fetches the data from the rendezvous on the exit. A similar frend object is for (shared)
file operations.

For one-sided communications, epoches epos are used to control remote memory ac-
cesses; each epoch is associated with a “window”, modeled by wins, which is made
accessible to accesses by remote accesses. Similarly, a “file” supporting I/O accesses is
shared by a group of processes.

Other MPI objects are represented as components in a shared environment shared envs
and local environments envs. The underlying operating system is abstracted as os in a
limited sense, which includes those objects (such as physical files on the disk) visible to the
MPI system. Since the physical memory at each process is an important object, we extract
it from os and define a separate object mems for it.

4.2 Notations

We present our specification using notations extended and abstracted from TLA+.

4.2.1 TLA+

The basic concept in TLA+ is functions. A set of functions is expressed by [domain →
range]. Notation f [e] represents the application of function f on e; and [x ∈ S 7→ e]
defines the function f such that f [x] = e for x ∈ S. For example, the function fdouble that



doubles the input natural number is given by [x ∈ N 7→ 2× x] or [1 7→ 2, 2 7→ 4, . . . ]; and
fdouble[4] = 8.

For a n-tuple (or n-array) 〈e1, · · · , en〉, e[i] returns its ith component. It is actually a func-
tion mapping i to e[i] for 1 ≤ i ≤ n. Thus function fdouble is equivalent to the tuple
〈2, 4, 6, 8, · · ·〉. An ordered set consisting of n distinct elements is actually a n-tuple.

Notation [f EXCEPT ![e1] = e2] defines a function f ′ such that f ′ = f except f ′[e1] = e2.
A @ appeared in e2 represents the old value of f [e1]. For example, [fdouble EXCEPT ![3] =
@ + 10] is the same as fdouble except that it returns 16 when the input is 3. Similarly,
[r EXCEPT !.h = e] represents a record r′ such that r′ = r except r′.h = e, where r.h
returns the h-field of record r.

The basic temporal logic operator used to define transition relations is the next state oper-
ator, denoted using ’ or prime. For example, s′ = [s EXCEPT ![x] = e] indicates that the
next state s′ is equal to the original state s except that x’s value is changed to e.

For illustration, consider a stop watch that displays hour and minute. A typical behavior
of the clock is the sequence (hr = 0,mnt = 0) → (hr = 0,mnt = 1),→, · · · ,→, (hr =

0,mnt = 59), (hr = 1,mnt = 0),→, · · · , where (hr = 0,mnt = 1) is a state in which the
hour and minute have the value 0 and 1 respectively.

The next-state relation is a formula expressing the relation between the values of hr and
mnt in the old (first) state time and new (second) state time′ of a step. It assert that mnt
equalsmnt + 1 except ifmnt equals 59, in which case mnt is reset to 0 and hr is increased
by 1.

time′ = let c = time[mnt] 6= 59 in

[time EXCEPT ![mnt] = if c then @ + 1 else 0,
![hr] = if ¬c then @ + 1 else @]

Additionally, we introduce some commonly used notations when defining the semantics
of MPI functions.

Γ1 � Γ2 the concatenation of queue Γ1 and Γ2

Γ1 � xk � Γ2 the queue with x being the kth element
ε null value
α an arbitrary value
> and ⊥ boolean value ture and false
Γ1 v Γ2 Γ1 is a sub-array (sub-queue) of Γ2−→v v is an array
f ] 〈x, v〉 a new function (map) f1 such thatf1[x] = v and ∀y 6= x. f1[y] = f [y]
f |x the index of element x in function f, i.e. f [f |x] = x
c ? e1 : e2 if c then x else y
size(f) or |f | the number of elements in function f
remove(f, k) remove from f the item at index k
unused index(f) return an i such that i /∈ DOM(f)



TLA+ allows us to specify operations in a declarative style. For illustration we show below
a helper function used to implement the MPI COMM SPLIT primitive, where DOM, RNG,
CARD return the domain, range and cardinality of a set respectively. This code directly
formalizes the English description (see page 147 in [32]): “This function partitions the
group into disjoint subgroups, one for each value of color. Each subgroup contains all
processes of the same color. Within each subgroup, the processes are ranked in the order
defined by key, with ties broken according to their rank in the old group. When the process
supply the color value MPI UNDEFINED, a null communicator is returned.” In contrast,
such declarative specification cannot be done in the C language.

Comm split(group,
−−−−→
colors,

−−→
keys, proc)

.
=

1 : let rank = group|proc in
2 : if

−−−−→
colors[rank] = MPI UNDEFINED then MPI GROUP NULL

3 : else

4 : let s = {k ∈ DOM(group) :
−−−−→
colors[k] =

−−−−→
colors[rank]} in

5 : let s1 =
6 : choose g ∈ [0 ..CARD(s)− 1→ DOM(group)] :
7 : ∧ RNG(g) = s
8 : ∧ ∀i, j ∈ s :

9 : g|i < g|j ⇒ (
−−→
keys[i] <

−−→
keys[j] ∨ −−→keys[i] =

−−→
keys[j] ∧ i < j)

12 : in [i ∈ DOM(s1) 7→ group[s1[i]]]

After collecting the color and key information from all other processes, a process proc
calls this function to create the group of a new communicator. Line 1 calculates the rank of
this process in the group; line 4 obtains a set of processes of the same color as proc’s; lines
5-11 sort this set in the ascending order of keys, with ties broken according to the ranks.
For example, suppose group = 〈2, 5, 1〉, −−−→colors = 1, 0, 0 and

−−→
keys = 〈0, 2, 1〉, then the

call of this function at process 5 creates a new group 〈1, 5〉.

4.2.2 Operational Semantics

The formal semantics of an MPI function is modeled by a state transition. A system state
consists of explicit and opaque objects mentioned above. We write objp for the object
obj at process p. For example, reqsp refers to the request object (for point-to-point
communications) at process p.

We use notation$ to define the semantics of an MPI primitive, and .
= to introduce an auxil-

iary function. The pre-condition cond of a primitive, if exists, is specifies by “requires {cond}”.
An error occurs if this pre-condition is violated. In general a transition is expressed as a
rule of format guard

action
, where guard specifies the requirement for the transistion to be trig-

gered, and action defines how the MPI objects are updated after the transition. When the
guard is satisfied, the action is enabled and may be performed by the system. A null guard
will be omitted, meaning that the transition is always enabled.



For instance, the semantics of MPI Buffer detach is shown below. The pre-condition
says that buffer at process p must exist; the guard indicates that the call will block until all
messages in the buffer have been transmitted (i.e. the buffer is empty); the action is to write
the buffer address and the buffer size into the p’s local memory, and deallocate the space
taken by the buffer. The buffer locates in the envs object. A variable such as buff is
actually a reference to a location in the memory; in many cases we simply write buff for
memsp[buff ] for brevity.

MPI Buffer detach(buff, size, p) $
requires {bufferp 6= ε}

bufferp.capacity = buffer.max capacity
mems′p[buff ] = bufferp.buff ∧ mems′p[size] = bufferp.size ∧ buffer′p = ε

In the following we describe briefly the specification of a set of representative MPI func-
tions. The semantics presented here are abstracted from the actual TLA+ code for suc-
cinctness and readability, which has been tested thoroughly using the TLC model checker.
The entire specification including tests and examples and the verification framework are
available online [17].

4.3 Quick Guide

In this section we use a simple example to illustrate how MPI programs and MPI functions
are modeled. Consider the following MPI program involving two processes:

P0 : MPI Send(bufs, 2,MPI INT, 1, 10,MPI COMM WORLD)
MPI Bcast(bufb, 1,MPI FLOAT, 0,MPI COMM WORLD)

P1 : MPI Bcast(bufb, 1,MPI FLOAT, 0,MPI COMM WORLD)
MPI Recv(bufr, 2,MPI INT, 0,MPI ANY TAG,MPI COMM WORLD)

This program is converted by the compiler into the following TLA+ code (i.e. the model
of this program). An extra parameter is added to an MPI function to indicate the process
this primitive belongs to. In essence, a model is a transition system consisting of transition
rules. When the guard of a rule is satisfied, this rule is enabled and ready for execution.
Multiple enabled rules are executed in a non-deterministic manner, leading to multiple
executions. The control flow of a program at a process is represented by the pc values: pc[0]
and pc[1] store the current values of the program pointers at process 0 and 1 respectively.
In our framework, a blocking call is modeled by its non-blocking version followed by a
wait operation, e.g. MPI Send = MPI Isend + MPI Wait. Note that new variables
such as request0 and status0 are introduced during the compilation, each of which is
assigned an integer address. For example, suppose request0 = 5 at process 0, then this
variable’s value is given by mems[0][request0] (i.e. mems[0][5]). To modify its value to v in



a transition rule, we use mems′[0][request0] = v (or request′0 = v for brevity purpose).

p0’s transition rules
∨ ∧ pc[0] = L1 ∧ pc′ = [pc EXCEPT ![0] = L2]
∧ MPI Isend(bufs, 2,MPI INT, 1, 10,MPI COMM WORLD, request0, 0)

∨ ∧ pc[0] = L2 ∧ pc′ = pc′ = [pc EXCEPT ![0] = L3]
∧ MPI Wait(request0, status0, 0)

∨ ∧ pc[0] = L3 ∧ pc′ = [pc EXCEPT ![pid] = L4]
∧ MPI Bcastinit(bufb, 1,MPI FLOAT, 0,MPI COMM WORLD, 0)

∨ ∧ pc[pid] = L4 ∧ pc′ = [pc EXCEPT ![pid] = L5]
∧ MPI Bcastwait(bufb, 1,MPI FLOAT, 0,MPI COMM WORLD, 0)

p1’s transition rules
∨ ∧ pc[1] = L1 ∧ pc′ = [pc EXCEPT ![1] = L2]
∧ MPI Bcastinit(bufb, 1,MPI FLOAT, 0,MPI COMM WORLD, 1)

∨ ∧ pc[1] = L2 ∧ pc′ = [pc EXCEPT ![1] = L3]
∧ MPI Bcastwait(bufb, 1,MPI FLOAT, 0,MPI COMM WORLD, 1)

∨ ∧ pc[1] = L3 ∧ pc′ = [pc EXCEPT ![1] = L4]
∧ MPI Irecv(bufs, 2,MPI INT, 0,MPI ANY TAG,MPI COMM WORLD, request1, 0)

∨ ∧ pc[1] = L4 ∧ pc′ = [pc EXCEPT ![1] = L5]
∧ MPI Wait(request1, status1, 0)

A enabled rule may be executed at any time. Suppose the program pointer of process p0 is
L1, then the MPI Isend rule may be executed, modifying the program pointer to L2. This
rule creates a new send request req of format 〈destination, communicator id, tag, value〉request id,
and appends req to p0’s request queue reqs0. Here function read data reads an array of
data from the memory according to the count and datatype information.

let v = read data(mems0, bufs, 2,MPI INT) in
reqs′0 = reqs0 � 〈1,comms0[MPI COMM WORLD].cid, 10, v〉request0

Similarly, when the MPI Irecv rule at process p1 is executed, a new receive request
of format 〈buffer, source, communicator id, tag, 〉request id is appended to reqs1, where
indicates that the data is yet to be received.

reqs′1 = reqs1 � 〈bufr, 0,comms1[MPI COMM WORLD].cid,MPI ANY TAG, 〉request1

As indicated below, the MPI System Scheduler will match the send request and the receive
request, and transfers the data v from process p0 to process p1. Then the send request
request0 becomes 〈1, cid, 10, 〉, and the receive request request1 becomes 〈1, cid, 10, v〉,
where cid is the context id of communicator MPI COMM WORLD.

is match(〈0, request0〉, 〈1, request1〉)
reqs′0[request0] = [@ EXCEPT !.value = ]
reqs′1[request1] = [@ EXCEPT !.value = v]

Suppose the send is not buffered at p0, then the MPI Wait rule shown below will be
blocked until the data in the send request is sent. When the value is sent, the send request
will be removed from p0’s request queue. We use notation Γ to denote all the requests
excluding the one pointed by request0 in p0’s request queue, and reqs0 = Gamma �
〈. . .〉request0 is a predicate for pattern matching.

reqs0 = Γ � 〈1, cid, 10, 〉request0
reqs′0 = Γ



Analogously, the MPI Wait rule at process p1 is blocked until the receive request re-
ceives the incoming value. Then this request is removed from p1’s request queue, and the
incoming value v is written into p1’s local memory.

reqs1 = Γ � 〈bufr, 0, cid,MPI ANY TAG, v〉request1
reqs′1 = Γ ∧ mems′1[bufr] = v

In our formalization, each process divides a collective call into two phases: an “init”
phase that initializes the call, and a “wait” phase that synchronizes the communications
with other processes. In these two phases processes synchronize with each other through
the rendezvous (or rend for short) object which records the information including
the status of the communication and the data sent by the processes. For a communicator
with context ID cid there exists a separate rendezvous object rend[cid]. In the “init”
phase, process p is blocked if the status of the current communication is not ‘v‘ (‘vacant’);
otherwise p updates the status to be ‘e‘ (‘entered’) and store its data in the rendezvous.
Recall that notation Ψ ] 〈p, ‘v′〉 represents the function Ψ with the item at p updated to ‘v ′,
and [i 7→ v1, j 7→ v2] is a function that maps i and j to v1 and v2 respectively. In the given
example, the rendezvous object pertaining to communicator MPI COMM WORLD becomes
〈[0 7→ ‘v′, 1 7→ ‘v′], [0 7→ v]〉, where v = read data(mems0, bufb, 1,MPI FLOAT), after
the “init” phases of the broadcast at process 0 and 1 are over.

syninit(cid, v, p)
.
= process p joins the communication and stores data v in rend

rend[cid] = 〈Ψ ] 〈p, ‘v′〉, Sv〉
rend′[cid] = 〈Ψ ] 〈p, ‘e′〉, Sv ] 〈p, v〉〉

In the “wait” phase, if the communication is synchronizing, then process p has to wait until
all other processes in the same communication have finished their “init” phases. If p is the
last process that leaves, then the entire collective communication is over and the object will
be deleted; otherwise p just updates its status to be l (‘left’).

synwait(cid, p)
.
= process p leaves the synchronizaing communication
rend[cid] = 〈Ψ ] 〈p, ‘e′〉, Sv〉 ∧
∀k ∈ commsp[cid].group : Ψ[k] ∈ {‘e′, ‘l′}

rend′[cid] = if ∀k ∈ commsp[cid].group : Ψ[k] = ‘l′ then ε
else 〈Ψ ] 〈p, ‘l′〉, Sv〉

These simplified rules illustrate how MPI point-to-point and collective communications are
modeled. The standard rules for these communications are given in Section 4.4 and 4.6.

4.4 Point-to-point Communication

In our formalization, a blocking primitive is implemented as an asynchronous operation
followed immediately by a wait operation, e.g. MPI Ssend = MPI Issend + MPI Wait and
MPI Sendrecv = MPI Isend + MPI Wait + MPI Irecv + MPI Wait. The semantics of core



point to point communication functions are shown in figures 3, 4, 5 and 6; and an example
illstruating how a MPI program is “executed” according to these semantics is in figure 2.
The reader is supposed to refer to these semantics when reading through this section.

A process p appends its send or receive request containing the message to its request queue
reqsp. A send request contains information about the destination process (dst), the con-
text ID of the communincator (cid), the tag to be matched (tag), the data value to be send
(value), and the status (omitted here) of the message. This request also includes boolean
flags indicating whether the request is persistent, active, live, canceled and deallocated
or not. For brevity we do not show the last three flags when presenting the content of a
request in the queue. In addition, in order to model a ready send, we include in a send
request a field prematch of format 〈destination process, request index〉 which refers to
the receive request that matches this send request. A receive request has the similar format,
except that it includes the buffer address and a field to store the incoming data. Initially the
data is missing (represented by the “ ” in the data field). Later on an incoming message
from a sender will replace the “ ” with the data it carries. Notation v indicates that the
data may be missing or contain a value. For example, 〈buf, 0, 10, ∗, ,>,>, 〈0, 5〉〉recv2 is a
receive request such that: (i) the source process is process 0; (ii) the context id and the tag
are 10 and MPI ANY TAG respectively; (iii) the incoming data is still missing; (iv) it is a
persistent request that is still active; (v) it has been prematched with the send request with
index 5 at process 0; and (vi) the index of this receive request in the request queue is 2.

MPI offers four send modes. A standard send may or may not buffer the outgoing mes-
sage. If buffer space is available, then it behaves the same as a send in the buffered mode;
otherwise it acts as a send in the synchronous mode. A buffered mode send will buffer
the outgoing message and may complete before a matching receive is posted; while a syn-
chronous send will complete successfully only if a matching receive is posted. A ready
mode send may be started only if the matching receive is already posted.

As an illustration, we show below the specification of MPI IBsend. Since dtype and
comm are the references (pointers) to a datatype and a communicator object respectively,
their values are obtained by datatypesp[dtype] and commsp[comm] respectively. The
value to be send is read from the local memory of process p through the read data func-
tion. It is the auxiliary function ibsend that creates a new send request and appends it
to p’s request queue. This function also modifies the send buffer object at process p (i.e.
bufferp), to accomodated the data. Moreover, the request handle is set to point to the



p0 p1 p2

Issend(v1, dst = 1, cid = 5, Irecv(b, src = 0, cid = 5, Irecv(b, src = ∗, cid = 5,
tag = 0, req = 0) tag = ∗, req = 0) tag = ∗, req = 0)

Irsend(v2, dst = 2, cid = 5, Wait(req = 0) Wait(req = 0)
tag = 0, req = 1)

Wait(req = 0)
Wait(req = 1)

step event reqs0 reqs1 reqs2

1 issend(v, 1, 5, 0, 0) 〈1, 5, 0, v,⊥,>, ε〉ss0
2 irecv(b, 0, 5, ∗, 1) 〈1, 5, 0, v,⊥,>, ε〉ss0 〈b, 0, 5, ∗, ,⊥,>, ε〉
3 irecv(b, ∗, 5, ∗, 2) 〈1, 5, 0, v,⊥,>, ε〉ss0 〈b, 0, 5, ∗, ,⊥,>, ε〉rc0 〈b, ∗, 5, ∗, ,⊥,>, ε〉rc0
4 irsend(v, 2, 5, 0, 0) 〈1, 5, 0, v1,⊥,>, ε〉ss0 � 〈b, 0, 5, ∗, ,⊥,>, ε〉rc0 〈b, ∗, 5, ∗, ,⊥,>, 〈0, 1〉〉rc0

〈1, 5, 0, v2,⊥,>, 〈2, 0〉〉rs1
5 transfer(0, 1) 〈1, 5, 0, ,⊥,>, ε〉ss0 � 〈b, 0, 5, ∗, v1,⊥,>, ε〉rc0 〈b, ∗, 5, ∗, ,⊥,>, 〈0, 1〉〉rc0

〈1, 5, 0, v2,⊥,>, 〈2, 0〉〉rs1
6 wait(0, 0) 〈1, 5, 0, v2,⊥,>, 〈2, 0〉〉rs1 〈b, 0, 5, ∗, v1,⊥,>, ε〉rc0 〈b, ∗, 5, ∗, ,⊥,>, 〈0, 1〉〉rc0
7 wait(1, 0) 〈1, 5, 0, v2,⊥,>, 〈2, 0〉〉rs1 〈b, 0, 5, ∗, v1,⊥,>, ε〉rc0 〈b, ∗, 5, ∗, ,⊥,>, 〈0, 1〉〉rc0
8 transfer(0, 2) 〈b, 0, 5, ∗, v1,⊥,>, ε〉rc0 〈b, ∗, 5, ∗, v2,⊥,>, 〈0, 1〉〉rc0
9 wait(0, 2) 〈b, 0, 5, ∗, v1,⊥,>, ε〉rc0
10 wait(0, 1)

Figure 2: A point-to-point communication program and one of its possible executions.
Process p0 sends messages to p1 and p2 in synchronous send mode and ready send mode
respectively. The scheduler first forwards the message to p1, then to p2. A request is
deallocated after the wait call on it. Superscripts ss, rs and rc represent ssend, rsend and
recv respectively. The execution follows from the semantics shown in Figures 3, 4 and 5.

new request, which is the last request in the queue.

ibsend(v, dst, cid, tag, p) $ buffer send
requires {size(v) ≤ bufferp.vacancy}

append a new send request (which is active and non-persistent) into the queue
reqs′p = reqsp � 〈dst, cid, tag, v,⊥,>, ε〉bsend ∧
reduce the capacity of the send buffer by the size of v
buffer′p.vacancy = bufferp.vacancy − size(v)

MPI IBsend(buf, count, dtype, dest, tag, comm, request, p) $ top level definition
let cm = commsp[comm] in the communicator
∧ ibsend(read data(memsp, buf, count,datatypesp[dtype]), cm.group[dest], cm.cid, tag, p)
∧ mems′p[request] = len(reqsp) set the request handle

The MPI Recv is modeled in a similar way. If a send request and a receive request match,
then the MPI System Sceduler can transfer the value from the send request to the receive
request. Relation P defines the meaning of “matching”. There are two cases needed to be
considered:

• The send is in ready mode. Recall that when a send request reqs is added into the
queue, it is prematched to a receive request reqr such that the prematch field (abbre-



viated as ω) in reqs stores the tuple 〈destination process, destination request index 〉,
and in reqr stores the tuple 〈source process, source request index〉. The MSS knows
that reqs and reqr match if these two tuples match.

• The send is in other modes. The send request and receive request are matched if their
source, destination, context ID and tag information match. Note that the source and
tag in the receive request may be MPI ANY SOURCE and MPI ANY TAG respec-
tively.

(〈p, dst, tagp, ωp, kp〉 P 〈src, q, tagq, ωq , kq〉) .
=

if ωq = ε ∧ ωq = ε then

the two requests contain no pre-matched information
∧ tagq ∈ {tagp,ANY TAG} the tags match
∧ q = dst q is the destination
∧ src ∈ {p,ANY SOURCE} the source is p or any process

else the two requests should have been pre-matched
ωp = 〈q, kq〉 ∧ ωq = 〈p, kp〉

It is the rule transfer that models the message passing mechanism: if a send message
in process p’s queue matches a receive request in q’s queue, then the data is transferred.
Note that messages from the same source to the same destination should be matched in a
FIFO order. Suppose in process p’s request queue there exists an active send request reqi =
〈dst, cid, tagp, v, prp,>, ωp〉sendi , which contains a data value v to be sent; and process q’s
request queue contains an active receive request reqi = 〈buf, src, cid, tagq, , prq,>, ωq〉recvj ,
whose data is yet to be received. If reqp (reqp) is the first request in its queue that matches
reqq (reqp), then the value in reqp can be transferred to reqq. The following predicate
guarantees this FIFO requirement:

@〈dst, cid, tag1, v, pr1,>, ω1〉sendm ∈ Γp1 : @〈buf, src2, cid, tag2, , pr2,>, ω2〉recvn ∈ Γq1 :
∨ 〈p, dst, tag1, ω1,m〉 P 〈src, q, tagq , ωq, j〉 ∨ 〈p, dst, tagp, ωp, i〉 P 〈src2, q, tag2, ω2, n〉
∨ 〈p, dst, tag1, ω1,m〉 P 〈src2, q, tag2, ω2, n〉

As shown in this rule, when the transfer is done, the value field in the receive request reqj
is filled with the incoming value v, and the value field in the send request reqi is set to ,
indicating that the value has been sent out. If the request is not persistent and not live (i.e.
the corresponding MPI Wait has been called), then it will be removed from the request
queue. In addition, if the receive request at process q is not live, then the incoming value
will be written to q’s local memory.

The MPI Wait call returns when the operation identified by the request request is com-
plete. If request is a null handle, then an empty status (where the tag and source are
MPI ANY TAG and MPI ANY SOURCE respectively, and count equals to 0) is returned;
otherwise the assitant function wait one is invoked, which picks the appropriate wait func-



Data Structures

send request : important fields + less important fields
〈dst : int, cid : int, tag : int, value, pr : bool, active : bool, prematch〉mode +
〈cancelled : bool, dealloc : bool, live : bool〉

recv request : important fields + less important fields
〈buf : int, src : int, cid : int, tag : int, value, pr : bool, active : bool, prematch〉recv +
〈cancelled : bool, dealloc : bool, live : bool〉

ibsend(v, dst, cid, tag, p) $ buffer send
requires {size(v) ≤ bufferp.vacancy} check buffer availability
reqs′p = reqsp � 〈dst, cid, tag, v,⊥,>, ε〉bsend ∧ append a new send request
buffer′p.vacancy = bufferp.vacancy − size(v) allocate buffer space

issend(v, dst, cid, tag, p) $ synchronous send
reqs′p = reqsp � 〈dst, cid, tag, v,⊥,>, ε〉ssend

(〈p, dst, tagp, ωp, kp〉 P 〈src, q, tagq, ωq , kq〉) .
= match a send request and a receive request

if ωq = ε ∧ ωq = ε then
tagq ∈ {tagp,ANY TAG} ∧ q = dst ∧ src ∈ {p,ANY SOURCE}

else ωp = 〈q, kq〉 ∧ ωq = 〈p, kp〉 prematched requests

irsend(v, dst, cid, tag, p) $ ready send

requires { ∃q : ∃〈src, cid, tag1, , pr1,>, ε〉recvk ∈ reqsq :
〈p, dst, tag, ε, len(reqsp)〉 P 〈src, q, tag1, ε, k〉 } a matching receive exists?

reqs′p = reqsp � 〈dst, cid, tag, v,⊥,>, 〈q, k〉〉rsend ∧ reqs′q .ω = 〈p, len(reqsp)〉

isend $ if use buffer then ibsend else issend standard mode send

irecv(buf, src, cid, tag, p) $ receive
reqs′p = reqsp � 〈buf, src, cid, tag, ,⊥,>, ε〉recv

MPI Isend(buf, count, dtype, dest, tag, comm, request, p)$ standard immediate send
let cm = commsp[comm] in the communicator
∧ isend(read data(memsp, buf, count, dtype), cm.group[dest], cm.cid, tag, p)
∧ mems′p[request] = len(reqsp) set the request handle

MPI Irecv(buf, count, dtype, source, tag, comm, request, p)$ immediate receive
let cm = commsp[comm] in the communicator
∧ irecv(buf, cm.group[dest], cm.cid, tag, p)
∧ mems′p[request] = len(reqsp)

wait one(request, status, p)
.
= wait for one request to complete

if reqsp[memsp[request]].mode = recv

then recv wait(request) for receive request
else send wait(request) for send request

MPI Wait(request, status, p) $ the top level wait function
if memsp[request] = REQUEST NULL then

mems′p[status] = empty status the handle is null, return an empty status
else wait one(request, status, p)

Figure 3: Modeling point-to-point communications (I)



transfer(p, q) $ message transferring from process p to process q
∧ reqsp = Γp1 � 〈dst, cid, tagp, v, prp,>, ωp〉sendi � Γp2
∧ reqsq = Γq1 � 〈buf, src, cid, tagq, , prq ,>, ωq〉recvj � Γq2 ∧
∧ match the requests in a FIFO manner
〈p, dst, tagp, ωp, i〉 P 〈src, q, tagq , ωq , j〉 ∧
@〈dst, cid, tag1, v, pr1,>, ω1〉sendm ∈ Γp1 :
@〈buf, src2, cid, tag2, , pr2,>, ω2〉recvn ∈ Γq1 :
∨ 〈p, dst, tag1, ω1,m〉 P 〈src, q, tagq , ωq, j〉
∨ 〈p, dst, tagp, ωp, i〉 P 〈src2, q, tag2, ω2, n〉
∨ 〈p, dst, tag1, ω1,m〉 P 〈src2, q, tag2, ω2, n〉

∧ reqs′p = send the data
let b = reqsp[i].live in
if ¬b ∧ ¬reqsp[i].pr then Γp1 � Γp2
else Γp1 � 〈dst, cid, tagp, , prp, b, ωp〉send � Γp2

∧ reqs′q = receive the data
let b = reqsq[j].live in
if ¬b ∧ ¬reqsq[j].pr then Γq1 � Γq2
else Γq1 � 〈buf, p, cid, tagq, v, prq , b, ωq〉recv � Γq2

∧ ¬reqsq [j].live⇒ mems′q [buf ] = v write the data into memory

recv wait(request, status, p) $ wait for a receive request to complete
let req index = memsp[request] in
∧ reqs′p[req index].live = ⊥ indicate the wait has been called
∧
∨ ¬reqsp[req index].active⇒ memsp[status] = empty status

∨ the request is still active
let Γ1 � 〈buf, src, cid, tag, v , pr,>, ω〉recvreq index � Γ2 = reqsq in
let b = pr ∧ ¬reqsp[req index].dealloc in
let new reqs =
if b then

Γ1 � 〈buf, src, cid, tag, v , pr,⊥, ω〉recv � Γ2 set the request to be inactive
else Γ1 � Γ2 remove the request

in

let new req index = update the request handle
if b then req index else REQUEST NULL in

if reqsq[req index].cancelled then
mems′p[status] = get status(reqsp[req index]) ∧
reqs′p = new reqs ∧ mems′p[request] = new req index

else if src = PROC NULL then

mems′p[status] = null status ∧
reqs′p = new reqs ∧ mems′p[request] = new req index

else

wait until the data arrive, then write it to the memory
v 6=

mems′p[status] = get status(reqsp[req index]) ∧
mems′p[buf ] = v ∧
reqs′p = new reqs ∧ mems′p[request] = new req index

Figure 4: Modeling point-to-point communications (II)



send wait(request, status, p) $ wait for a receive request to complete
let req index = memsp[request] in
∧ reqs′p[req index].live = ⊥ indicate the wait has been called
∧
∨ ¬reqsp[req index].active⇒ memsp[status] = empty status

∨ the request is still active
let Γ1 � 〈dst, cid, tag, v , pr,>, ω〉modereq index � Γ2 = reqsq in
let b = pr ∧ ¬reqsp[req index].dealloc ∨ v 6= in

let new reqs =
if b then

Γ1 � 〈buf, src, cid, tag, v , pr,⊥, ω〉recv � Γ2 set the request to be inactive
else Γ1 � Γ2 remove the request

in

let new req index = update the request handle
if b then req index else REQUEST NULL in

let action =

update the request queue, the status and the request handle
∧ mems′p[status] = get status(reqsp[req index])
∧ reqs′p = new reqs ∧ mems′p[request] = new req index

in

if reqsq [req index].cancelled then action
else if dst = PROC NULL then

mems′p[status] = null status
reqs′p = new reqs ∧ mems′p[request] = new req index

else if mode = ssend then synchronous send
can complete only a matching receive has been started
∃q : ∃〈src1, cid, tag1, , pr1,>, ω1〉recvk ∈ Γ1 :
〈dst, p, tag, ω, req〉 P 〈src1, q, tag1, ω1, k〉
action

else if mode = bsend then
action ∧ buffer′.capaticy = buffer.capaticy − size(v )

else if no buffer is used then wait until the value is sent
¬use buffer⇒ (v = )

action

issend init(v, dst, cid, tag, p)$ persistent (inactive) request for synchronous send
reqs′p = reqsp � 〈dst, cid, tag, v,>,⊥, ε〉ssend

irecv init(buf, src, cid, tag, p) $ persistent (inactive) receive request
reqs′p = reqsp � 〈buf, src, cid, tag, ,>,⊥, ε〉recv

start(req index, p) $ start (activate) a persistent request
requires {reqsp[req index].pr ∧ ¬reqsp[req index].active}
reqs′p[req index] = [reqsp[req index] EXCEPT !.active = >]

Figure 5: Modeling point-to-point communications (III)



cancel(req index, p) $ cancel a request
if reqsp[req index].active then reqs′p[req index].cancelled = > mark for cancellation
else reqs′p = remove(reqsp, req index)

free request(request, p) $ free a request
let req index = memsp[request] in
let Γ1 � 〈dst, tag, v , pr, act, ε〉modereq index � Γ2 = reqsq in

if act then reqs′p[req index].dealloc = > mark for deallocation
else reqs′p = Γ1 � Γ2 ∧ mems′p[request] = REQUEST NULL remove the request

has completed(req index, p)
.
= whether a request has completed

∨ ∃〈buf, src, cid, tag, v, pr,>, ω〉recv = reqsq[req index] the data v have arrived
∨ ∃〈dst, cid, tag, v , pr,>, ω〉mode = reqsq [req index] :

∨ mode = bsend the data are buffered
∨ mode = rsend ∧ (use buffer ∨ (v = )) the data have been sent or buffered
∨ mode = ssend ∧ there must exist a matching receive
∃q : ∃〈buf1, src1, cid, tag1, , pr1,>, ω1〉recvk ∈ reqsq :
〈dst, p, tag, ω, req〉 P 〈src1, q, tag1, ω1, k〉

wait any(count,−−−−−→reqarray, index, status, p) $ wait for any request in −−−−−→reqarray to complete
if ∀i ∈ 0..count− 1 : −−−−−→reqarray[i] = REQUEST NULL ∨ ¬reqsp[−−−−−→reqarray[i]].active
then mems′p[index] = UNDEFINED ∧ memsp[status] = empty status

else
choose i : has completed(−−−−−→reqarray[i], q)

mems′p[index] = i ∧
mems′p[status] = get status(reqsp[

−−−−−→reqarray[i]])

wait all(count,−−−−−−→req array,
−−−−−−−−−→
status array, p) $ wait for all requests in −−−−−→reqarray to complete

∀i ∈ 0 .. count− 1 : wait one(−−−−−→reqarray[i],
−−−−−−−−−→
status array[i], p)

wait for all enabled requests in −−−−−→reqarray to complete, abstracting away the statuses

wait some(incount,−−−−−→reqarray, outcount,
−−−−−−−→
indicearray, p) $

if ∀i ∈ 0 .. count− 1 : −−−−−→reqarray[i] = REQUEST NULL ∨ ¬reqsp[−−−−−→reqarray[i]].active
then mems′p[index] = UNDEFINED
else

let (
−−−→
index, count) = pick all the completed requests

choose (
−→
A v −−−−−→reqarray, max k ∈ 1 .. incount− 1) : ∀l ∈ 0 .. k − 1 : has completed(

−→
A [l], p)

in

wait all(count,
−−−→
index, p)

outcount′ = count ∧ −−−−−−−→indicearray
′ =
−−−→
index

Figure 6: Modeling point-to-point communications (IV)



tion according to the type of the request.

wait one(req, status, p)
.
= wait for one request to complete

if reqsp[req].mode = recv

then recv wait(req) for receive request
else send wait(req) for send request

MPI Wait(request, status, p) $
let req index = memsp[request] in
if req index = REQUEST NULL then

mems′p[status] = empty status the handle is null, return an empty status
else wait one(req index, status, p)

Let us look closer at the definition of recv wait (see figure 4). First of all, after this wait
call the request is not “live” any more, thus the live flag is set to false. When the call is
made with an inactive request, it returns immediately with an empty status. If the request
is persistent and is not marked for deallocation, then the request becomes inactive after the
call; otherwise it is removed from the request queue and the corresponding request handle
is set to MPI REQUEST NULL.

Then, if the request has been marked for cancellation, then the call completes without
writing the data into the memory. If the source process is a null process, then the call returns
immediately with a null status with source = MPI PROC NULL, tag = MPI ANY TAG, and
count = 0. Finally, if the value has been received (i.e. v 6= ), then the value v is written to
process p’s local memory and the status object is updated accordingly.

The semantics of a wait call on a send request is defined similarly, especially when the
call is made with a null or inactive or cancelled request, or the target process is null. The
main difference is that the wait on a receive request can complete only after the incoming
data have arrived, while the wait on a send request may complete before the data are sent
out. Thus we cannot delete the send request when its data haven’t been sent, this requires
the condition b to be pr ∧ ¬reqsp[req index].dealloc ∨ v 6= . After the call, the
status object, request queue and request handle are updated. In particular, if the request has
sent the data, and it is not persistent or has been marked for deallocation, then the request
handle is set to MPI REQUEST NULL. On the other hand, if the data have not been sent
(i.e. v 6= ), then the request handle will be intact.

mems′p[status] = get status(reqsp[req index])
reqs′p = new reqs ∧ mems′p[request] = new req index

Depending on the send mode, the wait call may or may not complete before the data are
sent. A send in a synchronous mode will complete only if a matching receive is already
posted.

∃q : ∃〈src1, cid1, tag1, , pr1,>, ω1〉recvk ∈ Γ1 :
〈dst, p, cid, tag, ω, req〉 P 〈src1, q, cid1, tag1, ω1, k〉

A buffered mode send will complete immediately since the data is buffered. If no buffer



is used, a ready mode send will be blocked until the data is transferred; otherwise it returns
intermediately.

When a persistent communication request is created, we set its presistent flag. A commu-
nication using a persistent request is initiated by the start function. When this function is
called, the request should be inactive. The request becomes active after the call. A pending,
nonblocking communication can be canceled by a cancel call, which marks the request
for cancellation. A free request call marks the request object for deallocation and set
the request handle to MPI REQUEST NULL. An ongoing communication will be allowed
to complete and the request will be deallocated only after its completion.

In our implementation, the requirement for a request to be complete is modeled by the
has completed function. A receive request is complete when the data have been received.
A send request in the buffer mode is complete when the data have been buffered or trans-
ferred. This function is used to implement communication operations of multiple comple-
tions. For example, MPI Waitany blocks until one of the communication associated with
requests in the array has completed. It returns in index the array location of the completed
request. MPI Waitall blocks until all communications complete, and returns the statuses
of all requests. MPI Waitsome waits until at least one of the communications completes
and returns the completed requests.

4.5 Datatype

A general datatype is an opague object that specifies a sequence of basic datatypes and inte-
ger displacements. The extend of a datatype is the span from the first byte to the last byte in
this datatype. A datatype can be derived from simpler datatypes through datatype construc-
tors. The simplest datatype constructor, modeled by contiguous copy, allows replica-
tion of a datatype into contiguous locations. For example, contiguous copy(2, 〈〈double, 0〉,
〈char, 8〉〉) results in 〈〈double, 0〉, 〈char, 8〉, 〈double, 16〉, 〈char, 24〉〉.

Constructor type vector constructs a type consisting of the replication of a datatype
into locations that consist of equally spaced blocks; each block is obtained by concatenat-
ing the same number of copies of the old datatype. type indexed allows one to spec-
ify a noncontiguous data layout where displacements between blocks need not be equal.
type struct is the most general type constructor; it allows each block to consist of repli-
cations of different datatypes. These constructors are defined with the contiguous copy
constructor and the set offset function (which increases the displacements of the items



in the type by a certain offset). Other constructors are defined similarly. For instance,

type vector(2, 2, 3, 〈〈double, 0〉, 〈char, 8〉〉) =
〈〈double, 0〉, 〈char, 8〉, 〈double, 16〉, 〈char, 24〉,
〈double, 48〉, 〈char, 56〉, 〈double, 64〉, 〈char, 72〉〉

type indexed(2, 〈3, 1〉, 〈4, 0〉, 〈〈double, 0〉, 〈char, 8〉〉) =
〈〈double, 64〉, 〈char, 72〉, 〈double, 80〉, 〈char, 88〉,
〈double, 96〉, 〈char, 104〉, 〈double, 0〉, 〈char, 8〉〉

type struct(3, 〈2, 1, 3〉, 〈0, 16, 26〉, 〈float, 〈〈double, 0〉, 〈char, 8〉〉, char〉) =
〈〈float, 0〉, 〈float, 4〉, 〈double, 16〉, 〈char, 24〉, 〈char, 26〉, 〈char, 27〉, 〈char, 28〉〉

When creating a new type at process p, we store the type in an unused place in the
datatypesp object, and have the output reference datatype point to this place. When
deleting a datatype at process p, we remove it from the datatypesp object and set the ref-
erence to MPI DATATYPE NULL. Derived datatypes support the specification of noncon-
tiguous communication buffers. We show in Figure 7 how to read data from such buffers:
noncontiguous data are “packed” into contiguous data which may be “unpacked” later in
accordance to other datatypes.

Datatype operations are local function — no interprocess communication is needed when
such an operation is executed. In the transition relations, only the datatypes object at the
calling process is modified. For example, the transition implementing MPI Type index
is as follows. Note that arguement blocklengths is actually the start address of the block
length array in the memory; auguments oldtype and newtype store the references to datatypes
in the datatypes objects.

MPI Type index(count, blocklengths, displacements, oldtype, newtype, p)$
let
−−−−−→
lengths = [i ∈ 0 .. count 7→ memsp[blocklengths+ i]] in length array

let
−−−−−−−−−−→
displacements = [i ∈ 0 .. count 7→ memsp[displacements+ i]] in

let type index = unused index(datatypesp) in new datatype index
let dtype = datatypesp[oldtype] in

∧ datatypesp[type index] = type indexed(count,
−−−−−−−−−→
blocklengths,

−−−−−−−−−−→
displacements, dtype)

∧ memsp[newtype]′ = type index update the reference to the new datatype

4.6 Collective Communication

All processes participating in a collective communication coordinate with each other through
the shared rend object. There is a rend object corresponding to each communicator; and
rend[cid] refers to the rendezvous used by the communicator with context id cid. A rend
object consists of a sequence of communication slots. In each slot, the status field records
the status of each process: ‘e‘ (‘entered’), ‘l‘ (‘left’) or ‘v‘ (‘vacant’, which is the initial
value); the shared data field stores the data shared among all processes; and data stores
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typemap : 〈type, disp : int〉 array

contiguous copy(count, dtype)
.
= replicate a datatype into contiguous locations

let F (i) =
if i = 1 then dtype
else F (i− 1) � [k ∈ DOM(dtype) 7→

〈dtype[k].type, dtype[k].disp+ (i− 1) ∗ extend(dtype)〉]
in F (count)

set offset(dtype, offset)
.
= adjust displacements

[k ∈ DOM(dtype) 7→ 〈dtype[k].type, dtype[k] + offset〉]

replicate a datatype into equally spaced blocks
type vector(count, blocklength, stride, dtype)$
let F (i) =
if i = count then 〈〉
else let offset = set offset(dtype, extend(dtype) ∗ stride ∗ i) in

contiguous copy(blocklength, offset) � F (i+ 1)
in F (0)

replicate a datatype into a sequence of blocks

type indexed(count,
−−−−−−−−−→
blocklengths,

−−−−−−−−−−→
displacements, dtype) $

let F (i) =
if i = 0 then 〈〉
else F (i− 1) �
contiguous copy(

−−−−−−−−−→
blocklengths[i− 1],

set offset(dtype,
−−−−−−−−−−→
displacements[i− 1] ∗ extend(dtype)))

in F (count)

replicate a datatype to blocks that may consist of different datatypes

type struct(count,
−−−−−−−−−→
blocklengths,

−−−−−−−−−−→
displacements,

−−−−→
dtypes) $

let F (i) =
if i = 0 then 〈〉
else F (i− 1) � contiguous copy(

−−−−−−−−−→
blocklengths[i− 1],

set offset(
−−−−→
dtypes[i− 1],

−−−−−−−−−−→
displacements[i− 1])

in F (count)

create datatype(datatype, dtype, p)
.
= create a new datatype

let index = unused index(datatypesp) in
datatypes′p[index] = dtype ∧ mems′p[datatype] = index

type free(datatype, p)
.
= free a datatype

datatypes′p = datatypesp \ {datatypesp[datatype]} ∧ datatype′ = DATATYPE NULL

read data(mem, buf, count, dtype)
.
= read (non-contiguous) data from the memory

let read one(buf) =
let F1(i) = if i = 0 then 〈〉 else F1(i− 1) � mem[buf + dtype[i− 1].disp]
in F1(size(dtype))

in let F2(i ∈ 0 .. count) =
if i = 0 then 〈〉 else F2(i− 1) � read one(buf + (i− 1) ∗ extend(dtype))

in F2(count)

Figure 7: Modeling datatype operations



the data sent by each process to the rendezvous. We use the notation Ψ to represent the
content in the status.

Most collective communications are synchronizing, while the rest (like MPI Bcast) can
either be synchronizing or non-synchronizing. A collective primitive is implemented by
a loose synchronization protocol: in the first “init” phase, process p checks whether there
exists a slot such that p has not participant in. A negative answer means that p is initializing
a new collective communication, thus p creates a new slot, sets its status to be ‘entered’ and
stores its value v in this slot. If there are slots indicating that p has not joined the associated
communications (i.e. p’s status is ‘v’), then p registers itself in the first of such slots by
updating its status and value in the slot. This phase is the same for both synchronizing and
non-synchronizing communications. Rule syninit and synwrite are the simplified cases of
synput.

After the “init” phase, process p proceeds to its next “wait” phase. Among all the slots p
locates the first one indicating that it has entered but not left the associated communication.
If the communication is synchronizing, then it has to wait until all other processes in the
same communication have finished their “init” phases; otherwise it does not have to wait.
If p is the last process that leaves, then the entire collective communication is over and the
communication slot can be removed from the queue; otherwise p just updates its status to
be ‘left’.

These protocols are used to specify collective communication primitives. For example,
MPI Bcast is implemented as two transitions: MPI Bcastinit and MPI Bcastwait. The
root first sends its data to the rendezvous in MPI Bcastinit, then by using the asynwait
rule it can return immediately without waiting for the completion of other processes. On
the other hand, if the call is synchronizing then it will use the synwait rule. In contrast, a
non-root process p needs to call the synwait because it must wait for the data from the root
to “reach” the rendezvous.

In the MPI Gather call, each process including the root sends data to the root; and the
root stores all data in rank order. Expression [i ∈ DOM(gr) → rendp[comm.cid].data[gr[i]]]

returns the concatenation of the data of all processes in rank order. Function write data
writes an array of data into the memory. MPI Scatter is the inverse operation to MPI Gather.
In MPI Alltoall, each process sends distinct data to each of the receivers. The j th block
sent from process i is received by process j and is placed in the ith block of the receive
buffer. Additionally, data from all processes in a group can be combined using a reduction
operation op. The call of MPI Scan at a process with rank i returns in the receive buffer
the reduction of the values from processes with ranks 0, · · · , i (inclusive).
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rendezvous for a communication :
〈status : [p : int→ {‘l′, ‘e′, ‘v′}], sdata, data : [p : int→ value]〉 array

process p joins the communication and stores the shared data vs and
its own data v in the rendevous
synput(cid, vs, v, p)

.
=

if cid /∈ DOM(rend) then rend′[cid] = 〈[p 7→ ‘e‘], vs, [p 7→ v]〉
else if ∀slot ∈ rend[cid] : slot.status[p] ∈ {‘e′, ‘l′} then

rend′[cid] = rend[cid] � 〈[p 7→ ‘e‘], vs, [p 7→ v]〉
else

rend[cid] = Γ1 � 〈Ψ ] 〈p, ‘v′〉, vs, Sv〉 � Γ2 ∧
∀slot ∈ Γ1 : slot.status[p] 6= ‘v′

rend′[cid] = Γ1 � 〈Ψ ] 〈p, ‘e′〉, vs, Sv ] 〈p, v〉〉 � Γ2

syninit(cid, p)
.
= syn write(cid, ε, ε, p) no data are stored

synwrite(cid, v, p)
.
= syn write(cid, ε, v, p) no shared data are stored

synwait(cid, p)
.
= process p leaves the synchronizaing communication
rend[cid] = Γ1 � 〈Ψ ] 〈p, ‘e′〉, vs, Sv〉 � Γ2 ∧
∀k ∈ commsp[cid].group : Ψ[k] ∈ {‘e′, ‘l′} ∧
∀slot ∈ Γ1 : slot.status[p] 6= ‘e′

rend′[cid] = if ∀k ∈ commsp[cid].group : Ψ[k] = ‘l′ then Γ1 � Γ2

else Γ1 � 〈Ψ ] 〈p, ‘l′〉, vs, Sv〉 � Γ2

asynwait(cid, p)
.
= process p leaves the non-synchronizaing communication
rend[cid] = Γ1 � 〈Ψ ] 〈p, ‘e′〉, vs, Sv〉 � Γ2 ∧
∀slot ∈ Γ1 : slot.status[p] 6= ‘e′

rend′[cid] = if ∀k ∈ commsp[cid].group : Ψ[k] = ‘l′ then Γ1 � Γ2

else Γ1 � 〈Ψ ] 〈p, ‘l′〉, vs, Sv〉 � Γ2

Figure 8: The basic protocol for collective communications



p0 p1 p2

synput(cid = 0, sdata = vs, data = v0) syninit(cid = 0) synwrite(cid = 0, data = v2)
asynwait(cid = 0) synwait(cid = 0) synwait(cid = 0)
syninit(cid = 0)

step event rend[0]
1 synput(0, vs, v0, 0) 〈[0 7→ ‘e′], vs, [0 7→ v0]〉
2 syninit(0, 1) 〈[0 7→ ‘e′, 1 7→ ‘e′], vs, [0 7→ v0]〉
3 synwait(0, 0) 〈[0 7→ ‘l′, 1 7→ ‘e′], vs, [0 7→ v0]〉
4 syninit(0, 0) 〈[0 7→ ‘l′, 1 7→ ‘e′], vs, [0 7→ v0]〉 � 〈[0 7→ ‘e′], ε, ε〉
5 synwrite(0, v2, 2) 〈[0 7→ ‘l′, 1 7→ ‘e′, 2 7→ ‘e′], vs, [0 7→ v0, 2 7→ v2]〉 � 〈[0 7→ ‘e′], ε, ε〉
6 synwait(0, 2) 〈[0 7→ ‘l′, 1 7→ ‘e′, 2 7→ ‘l′], vs, [0 7→ v0, 2 7→ v2]〉 � 〈[0 7→ ‘e′], ε, ε〉
7 synwait(0, 1) 〈[0 7→ ‘e′], ε, ε〉

Figure 9: An example using the collective protocol. Three processes participate in collec-
tive communications via a communicator with context ID = 0. Process p0’s asynchronous
wait returns even before p2 joins the synchronization; it also initializes a new synchroniza-
tion after it returns. Process p2, the last one joining the synchronization, deallocates the
slot. The execution follows from the semantics shown in figure 8.

MPI-2 introduces extensions of many of MPI-1 collective routines to intercommunicators,
each of which contain a local group and a remote group. In this case, we just need to
replace commsp[cid].group with commsp[cid].group∪commsp[cid].remote group in the
rules shown in figure 8. In our TLA+ specification we take both cases into account when
designing the collective protocol.

For example, if the comm in MPI Bcast is an intercommunicator, then the call involves
all processes in the intercommunicator, broadcasting from the root in one group (group
A) to all processes in the other group (group B). All processes in group B pass the same
value in argument root, which is the rank of the root in group A. The root passes the value
MPI ROOT in root, and other processes in group A pass the value MPI PROC NULL in
root.

4.7 Communicator

Message passing in MPI is via communicators, each of which specifies a set (group) of pro-
cesses that participate in the communication. Communicators can be created and destroyed
dynamically by coordinating processes. Information about topology and other attributes
of a communicator can be updated too. An intercommunicator is used for communication
between two disjoint groups of processes. No topology is associated with an intercommu-



the root broadcasts data to prococess
bcastinit(buf, v, root, comm, p) $

(comm.group[root] = p) ? synput(comm.cid, v, ε, p) : syninit(comm.cid, p)
bcastwait(buf, v, root, comm, p) $
if comm.group[root] = p then
need syn ? synwait(comm.cid, p) : asynwait(comm.cid, p)

else synwait(comm.cid, p) ∧ mems′p[buf ] = rendp[comm.cid].sdata

the root gather data from prococess
gatherinit(buf, v, root, comm, p) $ synwrite(comm.cid, v, p)
gatherwait(buf, v, root, comm, p) $
if comm.group[root] 6= p then
need syn ? synwait(comm.cid, p) : asynwait(comm.cid, p)

else

∧ synwait(comm.cid, p)
∧ let data = [i ∈ DOM(comm.group)→ rendp[comm.cid].data[comm.group[i]]]
in mems′p = write data(memsp, buf, data)

the root scatters data to prococess
scatterinit(buf,

−→v , root, comm, p) $
(comm.group[root] = p) ? synput(comm.cid,

−→v , ε, p) : syninit(comm.cid, p)
scatterwait(buf,

−→v , root, comm, p) $
if comm.group[root] = p ∧ ¬need syn then asynwait(comm.cid, p)
else synwait(comm.cid, p) ∧ mems′p[buf ] = rendp.sdata[comm.group|p]

all prococess send and receive data
alltoallinit(buf,

−→v , comm, p) $ syn write(comm.cid,−→v , p)
alltoallwait(buf,

−→v , comm, p) $
∧ synwait(comm.cid, p)
∧ let gr = comm.group in
let data = [i ∈ DOM gr → rend[comm.cid].data[gr[i]][gr|p]] in
mems′p = write data(memsp, buf, data)

reduce range(op,
−−→
data, start, end)

.
= reduce the data according to the range

let F (i) = if i = start then
−−→
data[i] else op(F (i− 1),

−−→
data[i]) in F (end)

reduce(op,
−−→
data)

.
= reduce range(op,

−−→
data, 0, size(

−−→
data)) reduce an array of values

prefix reduction on the data distributed across the group
scaninit(buf, v, op, comm, p) $ synwrite(comm.cid, v, p)
scanwait(buf, v, op, comm, p) $
∧ synwait(comm.cid, p)
∧ let gr = comm.group in
let data = [i ∈ 0 .. gr|p 7→ rendp[comm.cid].data[gr[i]]]
in mems′p[buf ] = reduce range(op, data, 0, gr|p)

inter bcastinit(buf, v, root, comm, p) $ broadcast in an inter-communicator
(comm.group[root] = ROOT) ? syn put(comm.cid, v, ε, p) : syninit(comm.cid, p)

inter bcastwait(buf, v, root, comm, p) $
if root ∈ {PROC NULL,ROOT} ∧ ¬need syn then asynwait(comm.cid, p)
else synwait(comm.cid, p) ∧ mems′p[buf ] = rendp[comm.cid].sdata

Figure 10: Modeling collective communications



nicator.

4.7.1 Group

A group defines the participants in the communication of a communicator. It is actually an
ordered collection of processes, each with a rank. An ordered set containing n elements
ranging from 0 to N can be modeled as a function:

[i ∈ 0 .. n− 1→ 0 .. N ]

Given a group gr modeled as an ordered set, the rank of a process p in this group is given
by gr|p, and the process with rank i is by gr[i].

The distinct concatenation of two ordered sets s1 and s2 is obtained by appending the
elements in s2 \ s1 to s1:

s1 � s2
.
= [i ∈ 0 .. (|s1|+ |s2| − 1) 7→ i < |s1| ? s1[i] : s2[i− size(s1)]].

The difference, intersection and union of two ordered sets are given by

s1 	 s2
.
= ordered set difference

let F (i ∈ 0..|s1|) =
(i = 0) ? 〈〉 : (s1[i− 1] /∈ s2) ? F (i− 1) � 〈s1[i− 1]〉 : F (i− 1)

in F [|s1|]

s1 � s2
.
= ordered set intersection

let F (i ∈ 0..|s1|) =
(i = 0) ? 〈〉 : (s1[i− 1] ∈ s2) ? F (i− 1) � 〈s1[i− 1]〉 : F (i− 1)

in F [|s1|]

s1 ⊕ s2
.
= s1 � (s2 	 s1) ordered set union

Function incl(s, n, ranks) creates an ordered set that consists of the n elements in swith
ranks ranks[0], . . . , ranks[n − 1]; excl creates an ordered set that is obtained by deleting
from s those elements with ranks ranks[0], . . . , ranks[n−1]; range incl (range excl)
accepts a ranges argument of form (first rank,last rank,stride) indicating ranks in s to be



included (excluded) in the new ordered set.

incl(s, n, ranks)
.
= [i ∈ 0 .. n− 1 7→ s[ranks[i]]]

excl(s, n, ranks)
.
= s	 (incl(s, n, ranks))

range incl(s, n, ranges)
.
=

let flatten(first, last, stride) = process one range
if last < first then 〈〉
else first � flatten(first+ stride, last, stride)

in

let F (i) = process all the ranges
if i = 0 then 〈〉
else let ranks = flatten(ranges[i− 1])

in F (i− 1) � incl(s, size(ranks), ranks)
in F (n)

range excl(s, n, ranges)
.
= s	 (range incl(s, n, ranges))

For example, suppose s1 = 〈a, b, c, d〉 and s2 = 〈d, a, e〉, then s1 ⊕ s2 = 〈a, b, c, d, e〉,
s1� s2 = 〈a, d〉, and s1	 s2 = 〈b, c〉. Suppose s = 〈a, b, c, d, e, f, g, h, i, j〉 and ranges =
〈〈6, 7, 1〉, 〈1, 6, 2〉, 〈0, 9, 4〉〉, then range incl(s, 3, ranges) = 〈g, h, b, d, f, a, e, i〉 and range excl(
s, 3, ranges) = 〈c, j〉.

Since most group operations are local and their execution do not require interprocess com-
munication, in the transition relations corresponding to such operations, only the groups
object at the calling process is modified. For example, the transition implementing the
union of two groups is as follows.

MPI Group union(group1, group2, groupnew, p) $
let gid = unused item(groupsp) in
groups′p = groupsp ] 〈gid, groupsp[group1]⊕ groupsp[group2]〉 ∧
mems′p[groupnew ] = gid

4.7.2 Communicator Operations

Communicator constructors and destructors are collective functions that are invoked by all
processes in the involved group. When a new communicator is created, each participanting
process first invokes the “synchronization initialization” primitive (mentioned in the Sec-
tion 4.6) to express its willing to join the creation; then it calls the “synchronization wait”
primitive to wait for the joining of all other processes; finally it creates the local version of
the new communicator and store it in its comms object.



Communicators may be attached with arbitrary pieces of information (called attributes).
When a attribute key is allocated (e.g. by calling the MPI Comm create keyval) and
stored in the keyvals object, it is attached with a copy callback function, a delete callback
function and an extra state for callback functions. When a communicator is created using
functions like MPI Comm dup, all callback copy functions for attributes are invoked (in
arbitrary order). When the copy function returns flag = ⊥, then the attribute is deleted in
the created communicator; otherwise the new attribute value is set to the value returned in
attribute val out.

The MPI Comm dup code shown in Figure 11 creates a new intracommunicator with the
same group and topology as the input intracommunicator. The association of cached at-
tributes is controlled by the copy callback functions. As the new communicator must have
a unique context id, the the process with rank 0 picks an unused context id, write it to the
shared area of the rendezvous, and registers it in the system. In the “synchronization wait”
phase each process fetches the unique context id, finds a place for the new communicator
in its comms object, and updates the reference to this place.

Intercommunicator operations are a little more complicated. For example, Intercomm merge
creates an intracommunicator from the union of the two groups of a intercommunicator. All
processes should provide the same high value within each of the two groups. The group
providing the value high = > should be ordered before the one providing high = ⊥; and
the order is arbitrary if all processes provide the same high argument.

The TLA+ specification of communicator operations is more detailed, where we need to: (i)
check whether all processes propose the same group and the group is a subset of the group
associated with the old communicator; (ii) have the function returns MPI COMM NULL to
processes that are not in the group; (iii) call the error callback functions when errors
occur.

4.7.3 Topology

A topology can provide a convenient naming mechanism for the processes within a com-
municator, and additionally, may assist the runtime system in mapping the processes onto
hardware. A topology can be represented by a graph, with nodes and edges standing for
processes and communication links respectively. In some cases it is desirable to use Carte-
sian topologies (of arbitrary dimensions).

The primitive Cart create builds a new communicator with Cartesian topology in-
formation. Arguments ndims and dims give the number of dimensions and an inte-
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communicator : cid : int, group : oset, remote group : oset, topology, attributes : map

create comm(comm, keyvals)
.
= create a new communicator

let copy attr(comm, attr, keyvals) = call the copy function
let keyval = keyvals[attr.key] in
let y = keyval.copy attr fn(comm, attr.key, keyval.extra state, attr.value) in

[comm EXCEPT !.attributes =
if y.flag = ⊥ then remove(@, attr.key) else @ ] 〈attr.key, y.attribute val out〉

] in

let traverse(T ) = call the copy functions of all attributes
if T = {} then comm
else choose attr ∈ T : copy attr(traverse(T \ {attr}), attr, keyvals) in

if attributes /∈ DOM comm then comm else traverse(comm.attributes)

comm dupinit(comm,newcomm, p) $ duplicate a communicator
let cid = next comm cid in obtain an unused context id
if comm.gr|p = 0 then syn put(comm, cid, ε, p) ∧ register cid(cid)
else syn init(comm, p)

comm dupwait(comm,newcomm, p) $
syn wait(comm, p) ∧
let slot � Γ = rend[comm.cid] in
let cid = slot.sdata in let new index = unused index(commsp) in
comms′p = commsp ] 〈new index, [create comm(comm, keyvalsp) EXCEPT !.cid = cid]〉 ∧
newcomm′ = new index

create a new intracommunicator by merging the two groups of the inter-communicator
intercomm mergeinit(intercomm, high, intracommnew, p) $
let cid = next comm cid in

if comm.gr|p = 0 then syn put(intercomm, cid, high, p) ∧ register cid(cid)
else syn write(intercomm, high, p)

intercomm mergewait(intercomm, high, intracommnew, p) $
syn wait(intercomm, p) ∧
let slot � Γ = rend[intercomm.cid] in
let cid = slot.sdata in let new index = unused index(commsp) in
let lr = intercomm.group⊕ intercomm.remote group in
let rl = intercomm.remote group⊕ intercomm.group in
let group =
if ∀i, j ∈ intercomm.group ∪ intercomm.remote group :
rend[intercomm.cid].data[i] = rend[intercomm.cid].data[j]

then choose gr ∈ {lr, rl} processes propose the same high value
else high ? lr : rl in order the two groups according to the high value

comms′p = commsp ] (new index,
[create comm(@, keyvalsp) EXCEPT

!.cid = cid, !.group = group, !.remote group = ε]
) ∧

intercomm′new = new index

Figure 11: Modeling communicator operations



ger array specifying the number of processes in each dimension respectively. periods
specifies whether the grid is periodic or not in each dimension; and reorder specifies
whether ranks may be reordered or not. If the total size of the grid is smaller than the
size of the group of comm, then those processes not fitting into the grid are returned
MPI COMM NULL. Here the helper function range product(ndims, dims, i, j) computes
the value of dims[i]× · · · × dims[j].

Function coord 2 rank translates the logical process coordinates to process ranks; func-
tion rank 2 coord is the rank-to-coordinates translator. They are used to implemented the
MPI Cart rank and MPI Cart coords primitives.

For further illustration we give the code of MPI Cart shift. When a MPI Sendrecv
operation is called along a coordinate direction to perform a shift of data, the rank of a
source process for the receive and the rank of a destination process for the send can be
calculated by this MPI Cart shift function. The dir argument indicates the dimension
of the shift. In the case of an end-off shift, out-of-range processes will be returned the value
MPI PROC NULL. Clearly MPI Cart shift is not a collective function.

4.8 Process Management

The MPI-2 process model allows for the creation and cooperative termination of processes
after an MPI application has started. Since the runtime environment involving process
creation and termination is not modeled, we do not specify MPI Comm spawn, which
starts multiple copies of an MPI program specification, MPI Comm spawn multiple,
which starts multiple executable specifications, and MPI Comm get parent, which is
related to the “spawn” primitives.

Some functions are provided to establish communication between two groups of MPI pro-
cesses that do not share a communicator. One group of processes (the server) indicates
its willingness to accept connections from other groups of processes; the other group (the
client) connects to the server. In order to the client to locate the server, the server provides
a port name that encodes a low-level network address. In our specification it consists of a
process id and a port number. A server can publish a port name with MPI Publish name
and clients can retrieve the port name from the service name.

A server first calls MPI Open port to establish a port at which it may be contacted; then
it calls MPI Comm accept to accept connections from clients. This port name may be
reused after it is freed with MPI Close port. All published names must be unpublished
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Cartesian topology :
ndims : int, dims : int array, periods : bool array, coordinate : int array

range product(ndims, dims, i, j)
.
= compute dims[i]× · · · × dims[j]

let F (k) = k > j ? 1 : dims[k] ∗ F (k + 1) in F (i)

create a communicator with Cartesian topology
cart create init(comm,ndims, dims, periods, reorder, comm cart, p) $
let cid = next comm cid in

if comm.gr|p = 0 then syn put(comm, cid, ε, p) ∧ register cid(cid)
else syn init(comm, p)

cart create wait(comm,ndims, dims, periods, reorder, comm cart, p) $
syn wait(comm, p) ∧
let slot � Γ = rend[comm.cid] in
let cid = slot.sdata in let new index = unused item(commsp) in
let commnew =
if proc ≤ range product(ndims, dims, 0, ndims− 1) then COMM NULL
else

[create comm(commold, keyvalsp) EXCEPT
!.cid = cid,
!.group = reorder ? permute(@) : @

] ] 〈topology, [ndims 7→ ndims, dims 7→ dims, periods 7→ periods]〉
in comms′p = commsp ] 〈new index, commnew〉 ∧
comm cart′ = new index

coord 2 rank(coord, ndims, dims)
.
= convert a coordinate to the rank

let F (n) = if n = size(coord) then 0
else range product(ndims, dims, n+ 1, ndims− 1)× coord[n] + F (n+ 1)

in F (0)

rank 2 coord(rank, ndims, dims)
.
= convert a rank to the coordinate

let F (x, n) = if n = 0 then 〈x〉 else F (x÷ dims[n], n− 1) � (x % dims[n])
in F (rank, ndims− 1)

cart shift(comm, dir, disp, p)
.
= Cartesian shift coordinates

let tp = comm.topology in
let 〈dims, ndims〉 = 〈tp.dims, tp.ndims〉 in
let rank = comm.group|p in let coord = rank 2 coord(rank, ndims, dims) in

let f(i) = compute the rank of a node in a direction
if ¬tp.periods[rank] ∧ (i ≤ dims[dir] ∨ i < 0) then PROC NULL
else coord 2 rank([coord EXCEPT ![dir] = i], ndims, dims)

in [ranksource 7→ f((@− disp) % dims[dir]),
rankdest 7→ f((@ + disp) % dims[dir])]

Figure 12: Modeling topology operations



before the corresponding port is closed.

Call MPI Comm accept is collective over the calling communicator. It returns an in-
tercommunicator that allows communication with the client. In the “init” phase, the root
process sets the port’s client group to be its group. In the “wait” phase, each process creates
a new intercommunicator with the local (remote) group being the server (client) group of
the port. Furthermore, the root process sets the port’s status to be ‘waiting’ so that new
connection requests from clients can be accepted.

Call MPI Comm connect establishes communication with a server specified by a port
name. It is collective over the calling communicator and returns an intercommunicator
in which the remote group participated in an MPI Comm accept. We do not model the
time-out mechanism; instead, we assume the time out period is infinitely long (thus will
lead to deadlock if there is no matching MPI Comm accept). As shown in the code, the
root process picks a new context id in its “init” phase. In the “wait” phase, each process
creates a new intercommunicator; and the root process updates the port so that the server
can proceed to create intercommunicators.

4.9 One-sided Communication

Remote Memory Access (RMA) allows one process to specify all communication param-
eters, both for the sending side and for the receiving side. This mechanism separates the
communication of data from the synchronizations.

A process exposes a “window” of its memory accessible by remote processes. The wins ob-
ject represents the group of processes that own and access the set of windows they expose.
The management of this object, e.g. the creation and destroying of a window, is similar to
that of the communicator object comms except that window operations are synchronizing.

RMA communication calls associated with a window occur at a process only within an
epoch for this window. Such an epoch starts with a RMA synchronization call, proceeds
with some RMA communication calls (MPI Put, MPI Get and MPI Accumulate), and
completes with another synchronization call. RMA communications fall in two categories:
active target communication, where both the origin and target processes involve in the
communication, and passive target communication, where only the origin process involves
in the communication. We model active (passive) target communication with the eps
(locks) object.
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port : 〈name : 〈proc : int, port : int〉, cid : int, status : {‘connected′, ‘waiting′},
server group : oset, client group : oset〉

open port(port name, p)
.
= establish a network address

let new port id = unused item(portsp) in
let new port = [name 7→ 〈p, new port id〉, status 7→ ‘waiting′] in
ports′p = portsp ] [new port id 7→ new port] ∧
port name′ = new port.name

close port(port name, p)
.
= release a network address

requires{port name /∈ service names}
ports′p = remove(portsp, port name.port)

the server attempts to establish communication with a client
comm acceptinit(port name, root, comm,newcomm, p) $
let port no = port name.port in
if comm.gr|p = root then

portsp[port no].status = ‘waiting′ ∧ synput(comm.cid, port no, ε, p)
ports′p[port no] = [portsp[port no] EXCEPT !.server group = comm.group]

else syninit(comm.cid, p)

comm acceptwait(port name, root, comm,newcomm, p) $
let port no = rendp[cid].sdata in
let port = portscomm.group[root][port no] in

synwait(comm, p) ∧ port[port no].status = ‘connected′

comms′p[newcomm] = [ cid 7→ port.cid, group 7→ port.server group,
remote group 7→ port.client group] ∧

(p = comm.group[root])⇒ ports′p[port no].status = ‘waiting′

the client attempts to establish communication with a server
comm connectinit(port name, root, comm,newcomm, p) $
let port = portsport name.proc[port name.port] in
let cid = next comm cidin
if comm.gr|p = root then

port.status = ‘waiting′ ∧ synput(comm.cid, cid, ε, p)
register cid(cid)

else syninit(comm.cid, p)

comm connectwait(port name, root, comm,newcomm, p) $
synwait(comm.cid, p)

let cid = rendp[comm.cid].sdata in
let port = portscomm.group[root][port no] in
let 〈host, port no〉 = 〈port name.proc, port name.port〉 in
comms′p[newcomm] =

[cid 7→ cid, group 7→ comm.group,
remote group 7→ portshost[port no].server group] ∧

(p = comm.group[root])⇒
ports′p[port no].status = ‘connected′ ∧
ports′p[port no].client group = comm.group ∧
ports′p[port no].cid = cid

Figure 13: Modeling client-server communications



MPI Win start and MPI Win complete start and complete an access epoch (with
mode = ac) respectively; while MPI Win post and MPI Win wait start and complete
an exposure epoch (with mode = ex) respectively. There is one-to-one matching between
access epoches at origin processes and exposure epoches on target processes. Distinct
access epoches for a window at the same process must be disjoint; so must distinct expo-
sure epoches. In a typical communication, the target process first calls MPI Win post
to start an exposure epoch, then the origin process calls MPI Win start to starts an
access epoch, and then after some RMA communications it calls MPI Win complete
to complete this access epoch, finally the target process calls MPI Win wait to com-
plete the exposure epoch. This MPI Win post call will block until all matching class
to MPI Win complete have occured. Both MPI Win complete and MPI Win wait
enforce completion of all preceding RMA calls. If MPI Win start is blocking, then the
corresponding MPI Win post must have executed. However, these calls may be non-
blocking and complete ahead of the completion of others.

A process p maintains in epsp a queue of epoches. Each epoch contains a sequence of
RMA communications yet to be completed. Itsmatch field contains a set of 〈matching process,
matching epoch〉 tuples, each of which points to a matching epoch at another process. An
epoch becomes inactive when it is completed. When a new epoch ep is created and ap-
pended to the end of the epoch queue, this matching information is updated by calling the
helper function find match, which locates at a process the first active epoch that has not
be matched with ep. Additionally, since MPI Win start can be non-blocking such that
it may complete before MPI Win post is issued, MPI Win post needs to update the
matching information each time it is called. We do not remove completed epoches because
their status may be needed by other processes to perform synchronization.

Designed for passive target communication, MPI Win lock and MPI Win unlock start
and complete an access epoch repsectively. They are similar to those for active target
communication, except that no corresponding exposure epoches are needed. Accesses that
are protected by an exclusive lock will not be concurrent with other accesses to the same
window. We maintain these epoches in a different object locks, which resides in the
envs object in our specification.

RMA communication call MPI Put transfers data from the caller memory to the tar-
get memory; MPI Put transfers data from the target memory to the caller memory; and
MPI Accumulate updates locations in the target memory. When each of these calls is is-
sued, it is appended to the current active access epoch which may be in the eps or locks
object. Note that there is at most one active access epoch for a window at each process.
The calls in an epoch is performed in a FIFO manner. When a call completes, it is removed
from the queue.



The active transfer rule performs data transferring: when the corresponding expo-
sure epoch exists, the first RMA communication call in the current active epoch is carried
out and the value v will be written (or reduced) to the memory of the destination. The rule
for passive target communication is analogous.

p0 p1 p2

win start(group = 〈1, 2〉, win0) win post(group = 〈0〉, win0) win post(group = 〈0〉, win0)
put(origin = 0, target = 1, win0) win wait(win0) win wait(win0)
get(origin = 0, target = 2, win0)
win complete(win0)

step eps0 eps1 eps2

1 〈0, 〈0〉, 〈〉,>, {}〉ex0
2 〈0, 〈0〉, 〈〉,>, {}〉ex0 〈0, 〈0〉, 〈〉,>, {}〉ex0
3 〈0, 〈1, 2〉, 〈〉,>, {〈1, 0〉, 〈2, 0〉}〉ac0 〈0, 〈0〉, 〈〉,>, {〈0, 0〉}〉ex0 〈0, 〈0〉, 〈〉,>, {〈0, 0〉}〉ex0
4 〈0, 〈1, 2〉, 〈〈0, 1〉put〉,>, {〈1, 0〉, 〈2, 0〉}〉ac0 〈0, 〈0〉, 〈〉,>, {〈0, 0〉}〉ex0 〈0, 〈0〉, 〈〉,>, {〈0, 0〉}〉ex0
5 〈0, 〈1, 2〉, 〈〈0, 1〉put � 〈0, 1〉get〉, 〈0, 〈0〉, 〈〉,>, {〈0, 0〉}〉ex0 〈0, 〈0〉, 〈〉,>, {〈0, 0〉}〉ex0

>, {〈1, 0〉, 〈2, 0〉}〉ac0
6 〈0, 〈1, 2〉, 〈〈0, 2〉get〉,>, {〈1, 0〉, 〈2, 0〉}〉ac0 〈0, 〈0〉, 〈〉,>, {〈0, 0〉}〉ex0 〈0, 〈0〉, 〈〉,>, {〈0, 0〉}〉ex0
7 〈0, 〈1, 2〉, 〈〉,⊥, {〈1, 0〉, 〈2, 0〉}〉ac0 〈0, 〈0〉, 〈〉,>, {〈0, 0〉}〉ex0 〈0, 〈0〉, 〈〉,>, {〈0, 0〉}〉ex0
8 〈0, 〈1, 2〉, 〈〉,⊥, {〈1, 0〉, 〈2, 0〉}〉ac0 〈0, 〈0〉, 〈〉,⊥, {〈0, 0〉}〉ex0 〈0, 〈0〉, 〈〉,>, {〈0, 0〉}〉ex0
9 〈0, 〈1, 2〉, 〈〉,⊥, {〈1, 0〉, 〈2, 0〉}〉ac0 〈0, 〈0〉, 〈〉,⊥, {〈0, 0〉}〉ex0 〈0, 〈0〉, 〈〉,⊥, {〈0, 0〉}〉ex0

the execution (format: eventstep) :
win post(〈0〉, win0, 1)1, win post(〈0〉, win0, 2)2 , win start(〈1, 2〉, win0, 0)3, put(0, 1, win0, 0)4,
get(0, 2, win0, 0)5 , active transfer(0)6 , win complete(win0, 0)7, win wait(win0, 2)8, win wait(win0, 1)9

Figure 14: An active target communication example. The execution shows a case of strong
synchronization in the window win0’s with wid 0. Process p0 creates an access epoch, p1

and p2 creates an exposure epoch respectively. An epoch becomes inactive after it com-
pletes. For brevity we omit the value in a RMA operation. The execution follows from the
semantics shown in Figure 15 and 16.

4.10 I/O

MPI provides routines for transferring data to or from files on an external storage device.
An MPI file is an ordered collection of typed data items. It is opened collectively by a
group of processes. All subsequent collective I/O operations on the file are collective over
this group.

MPI supports blocking and nonblocking I/O routines. As usual, we model a blocking call
by a nonblocking one followed by a wait call such as MPI Wait. In addition to normal
collective routines (e.g. MPI File read all), MPI provides split collective data access
routines each of which is split into a begin routine and an end routine. Thus two rounds
of synchronizations are needed for a collective I/O communication to complete. This is
analogous to our splitting the collective communications into an “init” phase and a “wait”
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epoch :
〈wid : int, group : oset, rma : (RMA communication) array, active : bool,
match : 〈int, int〉 set〉mode:{ac,ex,fe}

lock : 〈wid : int, RMA : (RMA communication) array, active : bool〉type:{EXCLUSIVE,SHARED}
RMA communication :〈src : int, dst : int, value〉op:{put,get,accumulate}

find match(mode, group, p)
.
= match access epoches and exposure epoches

{〈q, first k〉 | q ∈ group ∧ epsq [k].mode = mode ∧
p ∈ epsq [k].group ∧ @〈p, α〉 ∈ epsq [k].match}

win post(group, win, p) $ start an exposure epoch
requires {@〈win.wid, α, α,>, α〉ex ∈ epsp} non-overlapping requirement
letmt = find match(ac, group, p) in
eps′p = epsp � 〈win.wid, group, 〈〉,>,mt〉ex ∧
∀q ∈ group : ∃〈q, k〉 ∈ mt⇒ eps′q[k].mt = epsq [k].mt ∪ 〈p, len(eps′p)〉

win start(group, win, p) $ start an access epoch
requires {@〈win.wid, α, α,>〉ac ∈ epsp} non-overlapping requirement
letmt = find match(ex, group, p) in
let action =
eps′p = epsp � 〈win.wid, group, 〈〉,>,mt〉ac ∧
∀q ∈ group : ∃〈q, k〉 ∈ mt⇒ eps′q[k].mt = epsq [k].mt ∪ 〈p, len(eps′p)〉

in if ¬is block then action
else

∀q ∈ group : ∃epex ∈ epsq : p ∈ ep.group
action

win complete(win, p) $ complete an access epoch
let k = first i : epsp[i].wid = win.wid ∧ epsp[i].mode = ac ∧ epsp[i].active
in

∀epsp[k].rma = 〈〉
if ¬is block then eps′p[k].active = ⊥
else

size(epsp[k].match) = size(epsp[k].group)
eps′p[k].active = ⊥

win wait(win, p) $ complete an exposure epoch
let k = first i : epsp[i].wid = win.wid ∧ epsp[i].mode = ex ∧ epsp[i].active
in

∀call ∈ epsp[k] : ¬call.active ∧
∀〈q, i〉 ∈ epsp[k].match : ¬epsq [i].active
eps′p[k].active = ⊥

Figure 15: Modeling one-sided communications (I)



post a RMA operation by adding it into the active epoch
RMA op(type, origin, target, disp, v, op, win, p) $
if ∃k : locksp[i].wid = win.wid ∧ locksp[i].active then
let k = first i : locksp[i].wid = win.wid ∧ locksp[i].active
in locks′p[k].rma = locksp[k].rma � 〈origin, target, disp, v, op〉type

else

let k = first i :
epsp[i].wid = win.wid ∧ epsp[i].mode = ac ∧ epsp[i].active

in eps′p[k].rma = epsp[k].rma � 〈origin, target, disp, v, op〉type

put(origin, target, addrorigin, disptarget, win, p) $ the “put” operation
RMA op(put, origin, target, disptarget, read data(memsp, addraddr), win, p)

perform active message passing origining at process p
active transfer(p) $
let k = first i : epsp[i].mode = ac ∧ epsp[i].rma 6= 〈〉 in
let 〈src, dst, disp, v, op〉type � Γ = epsp[k] in
eps′p[k].rma = Γ ∧
if type = get then mems′p = write data(memsp, win.base+ disp, v)
else if type = put then
let 〈q, α〉 = epsp[k].match in

mems′q = write data(memsq, win.base+ disp, v)
else

let 〈q, α〉 = epsp[k].match in

mems′p = reduce data(memsp, win.base+ disp, v, op)

start an access epoch for passive target communication
win lock(lock type, dst, win, p) $
requires {@〈win.wid, α, α,>〉ex ∈ epsp} non-overlapping requirement
if lock type = SHARED then

locks′p = locksp � 〈win.wid, dst, 〈〉,>〉lock type
else

∀q ∈ win.group : @k : locksq [k].wid = win.wid ∧ locksq [k].active

locks′p = locksp � 〈win.wid, dst, 〈〉,>〉lock type

complete an access epoch for passive target communication
win unlock(dst, win, p) $
let k = first i : locksp[i].wid = win.wid ∧ epsp[i].active
in

locksp[k].rma = 〈〉
locks′p[k].active = ⊥

Figure 16: Modeling one-sided communications (II)



phase.

Since at each process each file handle may have at most one active split collective opera-
tion, the frend object, which represents the place where processes rendezvous, stores the
information of one operation rather than a queue of operations for each file.

With respect to this fact, we design a protocol shown below to implement collective I/O
communications: in the first “begin” phase, process p will proceed to its “end” phase pro-
vided that it has not participated in the current synchronization (say syn) and syn’s status
is ‘entering′ (or ‘e′). Note that if all expected processes have participated then syn’s status
will advance to ‘leaving′ (or l). In the “end” phase, p is blocked if syn is not in leaving
status or p has left. The last leaving process will delete the syn. Here notation Ψ represents
the participants of a synchronization.

Data Structures

frend for each file :
〈status : {‘e′, ‘l′}, participants(ψ) : int set,
[shared data], [data : 〈proc : int, data〉 set]〉

fileput(fid, vs, v, p) $ process p joins the synchronization
if fid /∈ DOM frend then frend′[fid] = 〈‘e‘, {p}, vs, {〈p, v〉}〉
else

frend[fid] = 〈‘e′,Ψ, vs1 , Sv〉 ∧ p /∈ Ψ

frend′[fid] = 〈 (Ψ ∪ {p} = filesp[fid].group) ? ‘l‘ : ‘e‘,
Ψ ∪ {p}, vs, Sv ∪ {〈p, v〉}〉

filebegin(fid, p) $ fileput(fid, ε, ε, p)
filewrite(fid, v, p) $ fileput(fid, ε, v, p)

fileend(fid, p) $ process p leaves the synchronization
frend[fid] = 〈‘l′,Ψ ∪ {p}, vs, Sv〉

frend′[fid] = if Ψ = {} then ε else 〈‘l′,Ψ, vs, Sv〉

We use the files object to store the file information, which includes an individual file
pointer, which is local to a process, and a shared file pointer, which is shared by the group
of processes that opened the file. These pointers are used to locate the positions in the
file relative to the current view. A file is opened by the MPI File open call, which is
collective over all participanting processes.

When a process p wants to access the file in the operating system os.file, it appends a
read or write request to its request queue freqsp. A request contains information about
the offset in the file, the buffer address in the memory, the number of items to be read,
and a flag indicating whether this request is active or not. The MPI system schedules the
requests in the queue asynchronously, allowing the first active access to take effect at any



time. After the access is finished, the request becomes inactive, and a subsequent wait call
will return without being blocked. Note that we need to move the file pointers after the
access to the file.

Analogous to usual collective communications, a split collective data access call is split
into a begin phase and a end phase. For example, in the begin phase a collective read
access reads the data from the file and stores the data in the frend object; then in the end
phase it fetches the data and updates its own memory.

4.11 Evaluation

How to ensure that our formalization is faithful with the English description? To attack this
problem we rely heavily on testing in our formal framework. We provide comprehensive
unit tests and a rich set of short litmus tests of the specification. Generally it suffices to test
local, collective, and asynchronous MPI primitives on one, two and three processes respec-
tively. These test cases, which include many simple examples in the MPI reference, are
hand-written directly in TLA+ and modeled checked using TLC. As we have mentioned in
Section 3, thanks to the power of the TLC model checker our framework supports thorough
testing of MPI programs, thus giving more precise answers than vendor MPI implementa-
tions can.

Another set of test cases are built to verify the self-consistency of the specification. For
a communication (pattern), there may be many ways to express it. Thus it is possible to
relate aspects of MPI to each other. Actually, in the MPI definition certain MPI functions
are explained in terms of other MPI functions.

We introduce the notation MPI A ' MPI B to indicate that A and B have the same func-
tionality with respect to their semantics.

Our specification defines a blocking point-to-point operation by a corresponding nonblock-
ing operation followed immediately by a MPI Wait operation. Thus we have

MPI Send(n) ' MPI Isend(n) + MPI Wait

MPI Recv(n) ' MPI Irecv(n) + MPI Wait

MPI Sendrecv(n1, n2) ' MPI Isend(n1) + MPI Irecv(n2) + MPI Wait + MPI Wait

Typical relationships between the MPI communication routines, together with some exam-
ples, include:
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file information at a process :
fid : int, group : oset, fname : string, amode : mode set, size : int, view,
pts : 〈pshared, int, pind : int〉

file access request :
〈fh, offset : int, buf : int, count : int, active : bool〉

iread(fh, offset, buf, count, request, p) $ nonblocking file access
freqs′p = freqsp � 〈fh, offset, buf, count,>〉read ∧
mems′p[request] = size(freqsp)

iwrite(fh, offset, buf, count, request, p)$
freqs′p = freqsp � 〈fh, offset, buf, count,>〉write ∧
mems′p[request] = size(freqsp)

file access(p) $ perform file access asynchronously
let 〈fh, offset, buf, count,>〉mode � Γ = freqsp in
∧ freqs′p = 〈fh, offset, buf, count,⊥〉mode � Γ
∧ if mode = write then

let v = read mem(memsp, buf, count) in
files′p[fh.fid].pts = move pointers(fh, v) ∧
os.file′p = write file(fh,os.file, v)

else

let v = read file(fh, os.filep, offset, count) in
files′p[fh.fid].pts = move pointers(fh, v) ∧
mems′p = write mem(memsp, buf, v)

file wait(req, p) $
let Γ1 � 〈fh, offset, buf, count,⊥〉modereq � Γ2 = freqsp
in freqs′p = Γ1 � Γ2 remove the request

the begin call of a split collective file read operation
file read allbegin(fh, offset, buf, count, p) $
filewrite(fh.fid, read file(fh,os.filep, offset, count), p)

file read allend(fh, buf, p) $ the end call of a split collective file read operation
fileend(fh.fid, p)

let v = frend[fh.fid].data[p] in
files′p[fh.fid].pts = move pointers(fh, v) ∧
mems′p = write mem(memsp, buf, v)

the begin call of a split collective file write operation
file write allbegin(fh, buf, count, p) $
filewrite(fh.fid, read mem(memsp, buf, count), p)

file write allend(fh, buf, p) $ the begin call of a split collective file write operation
fileend(fh.fid, p)

let v = frend[fh.fid].data[p] in
files′p[fh.fid].pts = move pointers(fh, v) ∧
os.file′p = write file(fh,os.filep, v)

Figure 17: Modeling I/O operations



• A message can be divided into multiple sub-messages sent separately.

MPI A(k× n) ' MPI A(n)1 + · · · + MPI A(n)k
MPI A(k× n) ' MPI A(k)1 + · · ·+ MPI A(k)n

• A collective routine can be replaced by several point-to-point or one-sided routines.

MPI Bcast(n) ' MPI Send(n) + · · ·+ MPI Send(n)
MPI Gather(n) ' MPI Recv(n/p)1 + · · ·+ MPI Recv(n/p)p

• Communications using MPI Send, MPI Recv can be implemented by one-sided
communications.

MPI Win fence + MPI Get(n) + MPI Win fence '
MPI Barrier + MPI Recv(d) + MPI Recv(n) + MPI Barrier,
where d is the address and datatype information

• Process topologies do not affect the results of message passing. Communications
using a communicator that implements a random topology should has the same se-
mantics as the communication with a process topology (like a Cartesian topology).

Our specification is shown to meet the correctness requirements by model checking test
cases.

4.12 Discussion

It is important to point out that we have not modeled all the details of the MPI standard.
We list below the details that are omitted and the reasons why we do not model them:

• Implementation details. To the greatest extent possible we have avoided asserting
implementation-specific details in our formal semantics. One obvious example is
that the info object, which is one arguments of some MPI 2.0 functions, is ignored.

• Physical Hardware. The underlying, physical hardware is invisible in our model.
Thus we do not model low-level topology functions such as MPI Cart map and
MPI Graph map.

• Profiling Interface. The MPI profiling interface is to permit the implementation of
profiling tools. It is irrelevant to the semantics of MPI functions.



• Runtime Environment. Since we do not model the operation system to allow for the
dynamic process management (e.g. process creation and cooperative process termi-
nation), MPI routines accessing the runtime environment such as MPI Comm spawn
are not modeled. Functions associated with the thread environment are not specified
either.

Often our formal specifications mimic programs written using detailed data structures, i.e.
they are not as “declarative” as possible. We believe that this is in some sense inevitable
when attempting to obtain executable semantics of real world APIs. Even so, TLA+ based
“programs” can be considered superior to executable models created in C: (i) the notation
has a precise semantics, as opposed to C, (ii) another specification in a programming lan-
guage can provide complementary details, (iii) in our experience, there are still plenty of
short but tricky MPI programs that can be executed fast in our framework.

5 Verification Framework

Our modeling framework uses the Microsoft Phoenix [16] Compiler as a front-end for C
programs. Of course other front-end tools such as GCC can also be used. The Phoenix
framework allows developers to insert a compilation phase between existing compiler
phases in the process of lowering a program from language independent MSIL (Microsoft
Intermediate Language) to device specific assembly. We place our phase at the point where
the input program has (i) been simplified into a single static assignment (SSA) form, with
(ii) a homogenized pointer referencing style that is (iii) still device independent.

From Phoenix intermediate representation (IR) we build a state-transition system by con-
verting the control flow graph into TLA+ relations and mapping MPI primitives to their
names in TLA+. Specifically, control locations in the program are represented by states,
and program statements are represented using transitions. Assignments are modeled by
their effect on the memory. Jumps have standard transition rules modifying the values of
the program counters. This transition system will completely capture the control skeleton
of the input MPI program.

The architecture of the verification framework is shown in Figure 18. The user may input
a program in any language that can be compiled using the Phoenix back-end — we have
experimented only with C. The program is compiled into an intermediate representation,
the Phoenix IR. We read the Phoenix IR to create a separate intermediate representation,
which is used to produce TLA+ code. The TLC model checker integrated in our framework



Figure 18: Architecture of the verification framework. The upper (bottom) one indicates
the flow (hierarchical) relation of the components.

enables us to perform verification on the input C programs. If an error is found, the error
trail is then made available to the verification environment, and can be used by our tool
to drive the Visual Studio debugger to replay the trace to the error. In the following we
describe the simplification, code generation and replay capabilities of our framework.

Simplification. In order to reduce the complexity of model checking, we perform a se-
quence of transformations: (i) inline all user defined functions (currently function pointers
and recursion are not supported); (ii) remove operations foreign to the model checking
framework, e.g. printf; (iii) slice the model with respect to communications and user
assertions: the cone of influence of variables is computed using a chaotic iteration over the
program graph, similar to what is described in [18]; and (iv) eliminate redundant counting
loops.

Code Generation. During the translation from Phoenix IR to TLA+, we build a record
map to store all the variables in the intermediate language. The address of a variable
x is given by the TLA+ expression map.x; and its value at the memory is returned by
mems[map.x]. Before running the TLC, the initial values of all constants and variables are
specified (e.g. in a configuration file). The format of the main transition relation is shown
below, whereN is the number of processes, and predefined nxt is the “system” transition
which performs message passing for point-to-point communications, one-sided communi-
cations, and so on. In addition, “program” transitions transition1, transition2, · · · are
produced by translating MPI function calls and IR statements. In the examples shown later
we only show the program transition part.



Figure 19: Two screenshots of the verification framework.



∨ ∧ predefined nxt transitions performed by the MSS
∧ UNCHANGED 〈〈map〉〉

∨ ∃pid ∈ 0..(N − 1) : execute an enabled transition at a process
∨ transition1

∨ transition2

∨ · · ·
∨ ∀pid ∈ 0..(N − 1) : eliminate spurious deadlocks
∧ pc[pid] = last label
∧ UNCHANGED all varaibles

Error Trail Generation. In the event that the model contains an error, an error trail is
produced by the model checker and returned to the verification environment. To map the
error trail back onto the actual program we observe MPI function calls and the changes
in the error trail to variable values that appear in the program text. For each change on a
variable, we step the Visual Studio debugger until the corresponding value of the variable
in the debugger matches. We also observe which process moves at every step in the error
trail and context switch between processes in the debugger at corresponding points. When
the error trail ends, the debugger is within a few steps of the error with the process that
causes the error scheduled. The screenshots in figure 19 show the debugger interface and
the report of an error trace.

Examples. A simple C program containing only one statement “if (rank == 0) MPI Bcast
(&b, 1, MPI INT, 0, comm1) ” is translated to:

∨ ∧ pc[pid] = L1 ∧ pc′ = [pc EXCEPT ![pid] = L2]
∧ mems′ = [mems EXCEPT ![pid] = [@ EXCEPT ![map.t1] = (mems[pid][map. rank] = 0)]]

∨ ∧ pc[pid] = L2 ∧ mems[pid][map.t1]
∧ pc′ = [pc EXCEPT ![pid] = L3]

∨ ∧ pc[pid] = L2 ∧ ¬(mems[pid][map.t1])
∧ pc′ = [pc EXCEPT ![pid] = L5]

∨ ∧ pc[pid] = L3 ∧ pc′ = [pc EXCEPT ![pid] = L4]
∧ MPI Bcast init(map. b, 1,MPI INT, 0,map. comm1, pid)

∨ ∧ pc[pid] = L4 ∧ pc′ = [pc EXCEPT ![pid] = L5]
∧ MPI Bcast wait(map. b, 1,MPI INT, 0,map. comm1, pid)

At label L1, the value of rank == 0 is assigned to a temporary variable t1, and the pc
advances to L2. In the next step, if the value of t1 is true, then the pc advances to L3;
otherwise to the exit label L5. The broadcast is divided into an “init” phase (where pc
advances from L3 to L − 4) and a “wait” phase (where pc advances from L4 to L − 5). In
Figure 20 we show a more complicated example.



The source C program:

int main(int argc, char* argv[])
{

int rank;
int data;
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0) {
data = 10;
MPI_Send(&data,1,MPI_INT,1,0,MPI_COMM_WORLD);

}
else {
MPI_Recv(&data,1,MPI_INT,0,0,MPI_COMM_WORLD, &status);

}
MPI_Finalize();
return 0;

}

The TLA+ code generated by the compiler:

∨ ∧ pc[pid] = main ∧ pc′ = [pc EXCEPT ![pid] = L1]
∧ MPI Init(map. argc,map. argv, pid)

∨ ∧ pc[pid] = L7 ∧ pc′ = [pc EXCEPT ![pid] = L9]
∧ mems′ = [mems EXCEPT ![pid] = Update(@,map. data, 10)]
∧ changed(mems)

∨ ∧ pc[pid] = L6 ∧ pc′ = [pc EXCEPT ![pid] = L14]
∧ MPI Irecv(map. data, 1,MPI INT, 0, 0,MPI COMM WORLD,map.tmprequest1, pid)

∨ ∧ pc[pid] = L1 ∧ pc′ = [pc EXCEPT ![pid] = L2]
∧ MPI Comm rank(MPI COMM WORLD,map. rank, pid)

∨ ∧ pc[pid] = L2 ∧ pc′ = [pc EXCEPT ![pid] = L5]
∧ mems′ = [mems EXCEPT ![pid] =

Update(@,map.t277,mems[pid][map. rank] = 0)]
∧ changed(mems)

∨ ∧ pc[pid] = L5 ∧ pc′ = [pc EXCEPT ![pid] = L7]
∧ mems[pid][map.t277]

∨ ∧ pc[pid] = L5 ∧ pc′ = [pc EXCEPT ![pid] = L6]
∧ ¬(mems[pid][map.t277])

∨ ∧ pc[pid] = L9 ∧ pc′ = [pc EXCEPT ![pid] = L13]
∧ MPI Isend(map.data, 1,MPI INT, 1, 0,MPI COMM WORLD,map.tmprequest0, pid)

∨ ∧ pc[pid] = L11 ∧ pc′ = [pc EXCEPT ![pid] = L12]
∧ MPI Finalize(pid)

∨ ∧ pc[pid] = L13 ∧ pc′ = [pc EXCEPT ![pid] = L11]
∧ MPI Wait(map.tmprequest0,map.tmpstatus0, pid)

∨ ∧ pc[pid] = L14 ∧ pc′ = [pc EXCEPT ![pid] = L11]
∧ MPI Wait(map.tmprequest1,map. status, pid)

Figure 20: An example C program and its corresponding TLA+ code.



When we run the TLC to demonstrate the absence of deadlocks for 2 processes, 51 distinct
states are visited, and the depth of the complete state graph search is 17. The verification
time is less than 0.1 second on a 3GHz processor with 1GB of memory. However, although
it suffices in general to perform the test on a small number of processes, increasing the
number of processes will increase the verification time exponentially. Thus we are imple-
menting efficient methods such as partial order reduction algorithms [26][36] to reduce the
state space.

6 Conclusion

To help reason about programs that use MPI for communication, we have developed a
formal TLA+ semantic definition of MPI 2.0 operations to augment the existing stan-
dard. We described this formal specification, as well as our framework to extract models
from SPMD-style C programs. We discuss how the framework incorporates high level for-
mal specifications, and yet allows designers to experiment with these specifications, using
model checking, in a familiar debugging environment. Our effort has helped identify a few
omissions and ambiguities in the original MPI reference standard document. The expe-
rience gained so far suggests that a formal semantic definition and exploration approach
as described here must accompany every future effort in creating parallel and distributed
programming libraries.

In future, we hope to write general theorems (inspired by our litmus tests), and establish
them using the Isabelle theorem prover that has a tight TLA+ integration.
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A Soundness Proof with Formal Semantics

The main problem of model checking MPI programs is the state space explosion prob-
lem. This problem may be mitigated by using partial order reduction techniques. A sound
partial-order reduction guarantees that if there is a property violation in the full state space,
that violation will be discovered by the model checker while enumerating a subset of the
state space.

We have developed several partial order reduction (DPOR) algorithms [24, 26, 35] to model
check MPI programs. For instance, the ISP checker [35] exploits the out of order com-
pletion semantics of MPI by issuing MPI calls according to match-sets which are ample



‘big-step’ moves. The core of a DPOR algorithm is to base on an dependence analysis to
determine when it is safe to execute only a subset of the enabled calls. Such dependence
information is computed based on the semantics of MPI calls. In this section we show how
to justify the definition of dependence in our DPOR algorithms according to the formal
semantics of MPI calls.

Our goal is to prove the soundness of the complete-before relation ≺ defined in [35]. Re-
lation ≺ specifies the order enforced on the completion of MPI calls. An MPI immediate
send Si,j(k, 〈i, j〉, . . .), where k is the process targeted, i, j is the request handle used to
track the processes of this send, completes when it matches a receive (e.g. by the MPI
System Scheduler). An MPI immediate receive Si,j(k, 〈i, j〉, . . .), where k is the process
from which the message is sourced (k = ∗ means a ‘wildcard receive’), completes when
it receives the message. A barrier operation Bi,j completes when all participants exit the
synchronization. A wait operation Wi,j〈i, j〉 completes when the corresponding send (re-
ceive) operation completes and the data has been sent out (copied into the target process’s
memory).

The formal definition of the completes-before relation is given below as eight rules.

(Css-kk) ∀i, j1, j2, k : j1 < j2 ⇒ Si,j1(k, . . .) ≺ Si,j2(k, . . .)

(Crr-kk) ∀i, j1, j2, k : j1 < j2 ⇒ Ri,j1(k, . . .) ≺ Ri,j2(k, . . .)

(Crr-*k) ∀i, j1, j2, k : j1 < j2 ⇒ Ri,j1(∗, . . .) ≺ Ri,j2(k, . . .)

(Crr-**) ∀i, j1, j2, k : j1 < j2 ⇒ Ri,j1(∗, . . .) ≺ Ri,j2(∗, . . .)
(Csw) ∀i, j1, j2, k : j1 < j2 ⇒ Si,j1(k, 〈i, j1〉) ≺ Wi,j2(〈i, j1〉)
(Crw) ∀i, j1, j2, k : j1 < j2 ⇒ Ri,j1(k, 〈i, j1〉) ≺ Wi,j2(〈i, j1〉)
(Cb) ∀i, j1, j2, k : j1 < j2 ⇒ Bi,j1 ≺ anyi,j2(. . .)

(Cw) ∀i, j1, j2, k : j1 < j2 ⇒Wi,j1(. . .) ≺ anyi,j2(. . .)

Now we proceed to prove the correctness of these rules with respect to our formal seman-
tics. As in [35], We abstract away such fields as communicator ID, tag, prematch, value
and flags. First of all, rule Csw and rule Crw are valid because a blocking send or receive
operation is modeled by a non-blocking operation followed by a wait operation. As indi-
cated in the semantics, a non-blocking operation sets the active flag of the request, and the
corresponding wait operation can return only if this flag is set. Hence these two operations
cannot execute out of order.



A.0.1 Send and Receive.

Now consider the Css-kk rule, which specifies the order of two immediate sends from
process i to process k. Assume that the request queue at process i contains two active send
requests Si,j1(k, . . .) and Si,j2(k, . . .):

〈k, . . .〉sendj1 � 〈k, . . .〉sendj2

Suppose for contradiction that request j2 may complete before request j1. In order for j2 to
complete, there must exist a receive request 〈buf, i, . . .〉recvn at process k that matches this
send request, and the following condition specified in the transfer rule must hold (note
that the first request 〈k, . . .〉sendj1

is in Γi1):

@〈k, . . .〉sendm ∈ Γi1 : 〈i, k, . . . ,m〉 P 〈i, k, . . . , n〉

However, if m equals to j1, then this condition is false immediately because request j1

matches the receive request. This contradiction implies the correctness of rule Css-kk.
Rule Crr-kk can be proved in a similar way.

Let us look at rule Crr-*k and rule Crr-**, where the first receive is a wildcard receive.
Assume that the request queue at process i contains two active receive requestsRi,j1(∗, . . .)
andRi,j2(k∗, . . .). In the second receive either k∗ = k (i.e. the source is process k) or k∗ = ∗
(i.e. it is a wildcard receive):

〈buf1, ∗, . . .〉recvj1 � 〈buf2, k∗, . . .〉recvj2

If request j2 completes before request j1, then there must exist a send request 〈i, . . .〉sendn
at a process p (which may be k) that matches this receive request, and the FIFO condition
specified in the transfer rule must hold. In other words, we have

〈p, i, . . . , n〉 P 〈k∗, i, . . . , j2〉 ∧
@〈buf, q, . . .〉recvm ∈ Γi1 : 〈p, i, . . . , n〉 P 〈q, i, . . . ,m〉

Let m equal to j1, then the second condition requires us to prove that 〈p, i, . . . , n〉 P
〈∗, i, . . . , j1〉 is false. Using the definition of P (where the prematch fields are empty),

(〈p, dst, . . . , kp〉 P 〈src, q, . . . , kq〉) .
=

q = dst ∧ src ∈ {p, ∗} the source and target must match

after simplification we have

k∗ ∈ {p, ∗} ∧ ¬(∗ ∈ {p, ∗}),

which is obviously false. Thus request j2 cannot complete before j1, which implies the
correctness of these two rules.

On the other hand, the rule ∀i, j1, j2, k : j1 < j2 ⇒ Ri,j1(k, . . .) ≺ Ri,j2(∗, . . .) is invalid.
If we perform the same contradiction proof as shown above, then finally we will get a
predicate not leading to a contradiction: ∗ ∈ {p, ∗} ∧ ¬(k ∈ {p, ∗}). This predicate is true
when k 6= p, i.e. a process other than k sends the message.



A.0.2 Barrier.

Rule Cb specifies that any MPI call starting after a barrier operation will complete after the
barrier. This rule is valid because the barrier function has blocking semantics: the “wait”
phase of a barrier operationBi,j1 at process iwill be blocked until i leaves the synchronizing
communication. Thus only after Bi,j1 returns will a subsequent MPI call anyi,j2 start and
then complete. Similarly, rule Cw is valid because Wait also has blocking semantics.

On the other hand, the rule {∀i, j1, j2, k : j1 < j2 ⇒ anyi,j1(. . .) ≺ Bi,j2} is invalid. This
can be explained easily with the formal semantics. Recall that Bi,j2 is implemented as
Bi,j2 init followed by Bi,j2 wait. Suppose anyi,j1 is a send operation, as the barrier and
send operate on different MPI objects (i.e. rend and reqs respectively), the Bi,j2 wait
needs not to wait for the completion of the send. Hence the following sequence is possible,
implying that sendi,j1(. . .) ≺ Bi,j2 is false.

sendi,j1 starts < Bi,j2 init < Bi,j2 wait < sendi,j1 completes


