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Abstract

Formal dynamic verification can complement MPI program testing by detecting hard-to-

find concurrency bugs. In previous work, we described our dynamic verifier called ISP

that can parsimoniously search the execution space of an MPI program while detecting im-

portant classes of bugs. One major limitation of ISP, when used by itself, is the lack of a

powerful and widely usable graphical front-end. We present a new tool called Graphical

Explorer of Message Passing (GEM) that overcomes this limitation. GEM is a plug-in ar-

chitecture that greatly enhances the usability of ISP, and may help bring ISP within reach

of a wide array of programmers, given its imminent release as part of the Eclipse Foun-

dation Parallel Tools Platform (PTP) Version 3.0. This paper describes GEM’s features,

its architecture, and usage experience summary of the ISP/GEM combination. Recently,

we applied this combination on a widely used parallel hypergraph partitioner. Even with

modest amounts of computational resources, the ISP/GEM combination finished quickly,

and intuitively displayed a previously unknown resource leak in this code-base.



1 Introduction

Over the past two decades, high performance computing

(HPC) has evolved from the domain of the expert program-

mer to become an everyday approach used by engineers and

researchers. A majority of these parallel programs employ

the message passing interface (MPI [1]) library for inter-

process communications and for invoking collective oper-

ations such as barriers and reductions. MPI continues to

enjoy a dominant position in HPC, and has been ported

to run on virtually every parallel machine available today.

Given the extensive presence of MPI, it is imperative that

highly effective debugging tools be created for MPI pro-

grams. Today, there are an impressive array of tools avail-

able for debugging MPI programs. These tools tend to pro-

vide extensive facilities for stepping through process execu-

tions and graphically visualizing executions. Unfortunately,

these tools only provide ad hoc techniques for process in-

terleaving (schedule) generation, and as a result, many in-

terleavings are not considered. In practice, these omitted

interleavings are known to harbor bugs [2]. Considering all

interleavings is not an option because there are an astronom-

ical number of them (e.g., over 10 billion for a five-process

MPI program where each process performs merely five MPI

calls).

Formal verification methods can help parsimoniously

search the execution space of an MPI program while detect-

ing important classes of errors. It is essential that a practical

formal verification tool for MPI programs directly accept

user source codes, and not rely upon hand-built models of

the code, as needed by all other formal tools (e.g., [3]). Ob-

taining such models is next to impossible in practice, con-

sidering the difficulty of modeling the C/MPI semantics and

the rapidity with which programs are changed during opti-

mization cycles. Our tool ISP [4, 5, 6, 7] (summarized in

§ 1.1) is currently the only such tool.

Previously, the usage of ISP was hindered by the ab-

sence of a widely usable and intuitive graphical user in-

terface. This paper describes our contribution in this re-

gard of a tool called Graphical Explorer of Message pass-

ing (GEM). GEM borrows many ideas from our own past

work in this area, namely the integration of ISP within Vi-

sual Studio [8]. However, our past work was insufficiently

general. Besides, Visual Studio runs on proprietary Win-

dows platforms, whereas the HPC community often prefers

working with non-commercial software. Most relevant to

this paper is the fact that GEM is designed to serve as an

Eclipse plugin alongside the Parallel Tools Platform (PTP)

(PTP [9]), a rapidly evolving tool integration framework for

parallel program analysis. In fact, GEM is being released

along with PTP Version 3.0 – the latest PTP release that is

imminent. Given the growing use of PTP all over the world,

we believe that ISP and GEM will help bring dynamic for-

mal verification for MPI to every designer.

The rest of this section presents sufficient research back-

ground to appreciate our contributions. § 2 describes GEM

in detail. § 3 provides details of how GEM handles a real-

world verification task. § 4 describes our conclusions and

our future plans.

1.1 Background on ISP

Figure 1. Overview of ISP

There are many excellent MPI program debuggers, for

instance TotalView [10], Umpire [11], Marmot [12], and

Jitterbug [13]. Two unique features set ISP apart from all

these tools: the ability to determining relevant interleav-

ings, and the abilitity to enforce interleavings. For an illus-

tration of these concepts, consider the example in Figure 2

(for brevity, we do not show the Wait calls associated with

the non-blocking Isend and Irecv calls). Considering the

overall magnitude of the verification problem, we believe

that a verification tool must not spend effort varying the or-

der in which the constituent Barrier calls of a matching set

of MPI barriers are issued to the MPI runtime. Likewise,

unless the MPI library itself is in error, there is nothing

much to be gained by posting deterministic sends and re-

ceives in different orders (there are millions of such calls

issued in an MPI program). As far as we know, none of the

alternative tools exploit these options. ISP’s focus is away

from such permutations of deterministic matches, and to-

ward discovering the maximal degree of non-determinism

(i.e., discovering relevant interleavings).

For further illustration of these ideas, consider Figure 2

again. As shown, matching P2’s Isend with P1’s Irecv leads

to a bug; but can this match occur? The answer is yes:

first, let P0’s Isend and P1’s Irecv be issued; then the ex-

ecution is allowed to cross the Barrier calls; after that, P2’s

Isend can be issued. At this point, the MPI runtime faces

a non-deterministic choice of matching either Isend. No-

tice that this particular execution sequence can be obtained

only if the Barrier calls are allowed to match before the

Irecv matches. Existing MPI testing tools cannot exert such

fine control over MPI executions. Thanks to the theory of



P0 P1 P2

Isend(to : 1, 22); Irecv( f rom : ∗, x) Barrier;

Barrier; Barrier; Isend(to : 1, 33);

i f (x == 33)bug;

Figure 2. MPI Example

matches before that we introduced in [4], ISP can exert this

fine degree of execution control. In more detail, by inter-

posing a scheduler (Figure 1), ISP is able to safely reorder,

at runtime, MPI calls issued by the program. In our present

example, ISP’s scheduler (i) intercepts all MPI calls com-

ing to it in program order, (ii) dynamically reorders the calls

going into the MPI runtime (ISP’s scheduler sends Barriers
first; this is correct according to the MPI semantics), and

(iii) at that point discovers the non-determinism.

Once ISP determines that two matches must be consid-

ered, it re-executes (replays from the beginning) the pro-

gram in Figure 2 twice over: once where P0’s Isend is con-

sidered, and the second time where P2’s Isend is considered.

But in order to ensure that these matches do occur, ISP must

dynamically rewrite Irecv( f rom : ∗) into Irecv( f rom : 0)

and Irecv( f rom : 2) in these replays. If we did not so de-

terminize the Irecvs, but instead issued Irecv( f rom : ∗) into

the MPI runtime, such a call may match Isend from another

process, say P3. In summary, (i) ISP achieves discovers the

maximal extent of non-determinism through dynamic MPI

call reordering, (ii) it achieves scheduling control of rele-

vant interleavings by dynamic instruction rewriting. While

pursuing relevant interleavings, ISP detects the following

error conditions: (i) deadlocks, (ii) resource leaks (e.g., MPI

object leaks), and (iii) violations of C assertions placed in

the code. ISP re-runs the code through all the relevant in-

terleavings. For the given MPI program operating under the

given input data set, ISP guarantees to find all deadlocks,

resource leaks, and violations of local assertions (e.g., C

assert calls placed in the code).

It is important to emphasize that while the internal is-

sue order computed by ISP appears to be an extremely

skewed schedule, it can actually occur on an MPI platform.

Even though ISP executes the given MPI program on a spe-

cific machine using a specific MPI library, it forces this

skewed schedule to occur by delaying non-deterministic

non-blocking operations. For example, by delaying Irecv,

ISP is able to discover the match with respect to the Isend
of P2. The possibility of considering P0’s Isend is not lost

by so delaying. In this way, ISP can verify a program for

portability even though it is running the program on a spe-

cific platform where the natural schedule would perhaps al-

ways prefer P0’s Isend. ISP’s ability to maximize the latent

non-determinism at run time and then verifying over all the

possibilities gives it the ability to issue verification guaran-

tees.

Figure 3. CDT Make Targets View

2 Highlights of GEM

We begin with the design philosophies of GEM followed

by a description of its views. GEM is designed to accom-

modate MPI programmers with different levels of training.

As one example, even though ISP internally carries out dy-

namic reordering and instruction rewriting, GEM has the

ability to present verification results as if the matches hap-

pened according to program order. This view is ideally

suited for new MPI programmers. However, most expert

MPI programmers wish to see what a tool does internally

(to debug inexplicable behaviors). We therefore also pro-

vide the ability to view instructions in the internal execu-

tion order. Figure 5 clearly shows this ability. GEM also

strongly adheres to many of the conventions set forth by the

Eclipse foundation. This will help GEM serve as a cockpit

from which a designer can seamlessly invoke performance

measurement tools (that are being integrated into PTP) and

correctness tools (ISP being our focus). We also provide

the flexibility of using either CDT (Eclipse C/C++ Develop-

ment Tools) Managed Build or Makefile projects as shown

in Figure 3.

Finally, we provide an extensive help contribution with

GEM. We now describe the external view of GEM (§ 2.1)

and its internal architecture (§ 2.2).

2.1 GEM: External View

Basic Operation: Given a collection of files to analyze us-

ing ISP, GEM helps compile and links the files against the

ISP profiler, and then invokes ISP’s scheduler on the ex-

ecutable creating a log file containing post-verification re-

sults. GEM then parses the log file and organizes its con-

tents. It then attempts to associate MPI calls with one an-



Figure 5. Analyzer View on ParMETIS

other (e.g., sends need to be associated with their corre-

sponding receives). Any call that fails to associate in this

manner is flagged as a deadlock. As shown in Figure 4

GEM includes a valuable ability to localize errors by allow-

ing users to step through and display the states of processes

involved in the error. As mentioned earlier, GEM also al-

lows users to view the execution results according to the

program order or according to ISP’s internal execution or-

der. GEM displays MPI point to point operations by listing

the send and the receive actions in separate windows. Col-

lective operations such as barriers and reduction operations

are listed showing detailed information on one of the calls

in one window and listing the remaining calls in summary

form in another window.

GEM Views: In addition to the usual textual console

view, GEM also provides an analyzer view that serves

three functions: (i) summarize verification results, (ii) link

to the matches-before viewer, and (iii) allow the user to

step through matching MPI calls. Figure 5 depicts the

analyzer view obtained by running a 10-process version

of ParMETIS through GEM, clearly showing these facts:

(i) that 221,057 MPI calls were processed, (ii) that the

nineteenth transition is an MPI Send and its matching

MPI Recv which are shown along with information on

which files they occur in, and most interestingly (iii) that

a resource leak was found. At this point, a user can click

on the button “Browse Leaks” to obtain a GUI display in-

dicating which exact source line contains the leak. Notice

also the radio buttons Step Order for MPI Calls offering two

options: Internal Issue Order and Program Order. The No

Ranks Locked is another option (borrowed from [8]) which

shows whether the user is in the mode of stepping through

one process (rank) or whether the stepping encompasses all

processes. The analyzer view indicates whether a deadlock,

assertion violation, or resource leak was found. The button

Browse Leaks lists all leaks and opens an editor to help in-

vestigate the leak further. Currently, ISP keeps track of MPI

object leaks (communicators, type objects, and requests).

Future versions of ISP/GEM will also instrument C mallocs

and track their corresponding f ree operations.

Matches-Before Viewer: Happens-before is a distributed

system concept introduced by Lamport in [14] to keep track

of time in a distributed system on the basis of event causal-

ities. In MPI programs, the salient ‘happenings’ are mes-

sage matches; for this reason, we call this relation matches-

before. A formal definition of the matches-before relation



Figure 6. Matches-Before Viewer of ISP

for MPI was presented for the first time in [4]. The paper

[6] summarized how ISP’s ‘Java GUI’ (as it was called then)

presented this relation. GEM incorporates this unique view

as its happens-before viewer facility presented in Figure 6.

In this example, we can see that under Process0, we have

an Isend followed by a Barrier MPI call. However, there is

no arrow between this Isend and the Barrier – thus clearly

showing that these MPI commands may match out of pro-

gram order (as was explained in § 1.1). The other details in-

cluded in this view are the following: (i) which commands

are non-deterministic (in this example, Process1’s Irecv can

match with both Isends, and hence this Irecv is colored red,

and (ii) all possible matches. In summary, the matches-

before viewer informs MPI programmers how their code

can execute on any platform compliant MPI runtime.

2.2 GEM: Internal Details

We now describe how GEM was architected. The first

thing to keep in mind is that Eclipse is not a single tool with

a few small add ons, but rather a small kernel with a collec-

tion of extension points, or places to tie into and extend the

architecture. These extension points all differ in purpose

but all share a common interface. Described succinctly,

Eclipse is an extensible platform essentially consisting of

three layers. (i) Eclipse Platform which offers common

programming-language-neutral infrastructure; (ii) Java De-

velopment Tools (JDT), which adds a rich, full-featured Java

IDE to the Eclipse Platform; and (iii) Plug-In Develop-

ment Environment (PDE) which extends the JDT with plug-

in development support. The Eclipse platform itself con-

sists of several components separated into two primary cat-

egories: (i) Core, which is a runtime component that defines

plug-in infrastructure, and provides a workspace to manage

projects; (ii) User Interface (UI) that provides a Workbench



to define the Eclipse UI (e.g. editors, views, perspectives),

the Standard Widget Toolkit (SWT) to provide the graph-

ics and a set of widgets for UI design with layout strategies

to group collections of widgets, and JFace which is a UI

framework built on top of SWT to help manage images and

fonts and to provide more complex viewer objects. The cre-

ation of GEM and its help plug-in relies upon the following

Eclipse extension points:

• Popup Menus: org.eclipse.ui.popupMenus

• Toolbar Buttons (menus): org.eclipse.ui.menus

• Commands: org.eclipse.ui.commands

• Handlers: org.eclipse.ui.handlers

• Key Bindings: org.eclipse.ui.bindings

• Views: org.eclipse.ui.views

• Preferences: org.eclipse.core.runtime.preferences

• Preference Pages: org.eclipse.ui.preferencePages

• Help: org.eclipse.help.toc

With an initial intention of donating GEM to the Eclipse

Parallel Tools Platform (PTP), we used PTP-specific icons

for our graphical resources. For the help plug-in, we used

PTP style sheets. As GEM will now be part of the 3.0 re-

lease of PTP, both plug-ins are bundled into a feature prod-

uct which allows distribution with source code and license.

All strings have been externalized for internationalization.

Our hope in distributing our work along with source code

under the Eclipse Public License is that the community

would be able to contribute to and extend GEM in the fu-

ture.

3 Verifying ParMETIS using GEM

ParMETIS 3.1 [15] is a parallel graph partitioning and

sparse matrix ordering library that finds wide use. Verify-

ing ParMETIS makes for an excellent study due to the in-

herent complexities involved with verifying and analyzing

Figure 4. Deadlock Display by GEM

the runtime results of a project of such size. Some routines

provided by ParMETIS have more than 12,000 lines of code

between themselves and their helper functions, and involve

an enormous number of MPI calls. In past tests of ISP [5]

without GEM, the number of MPI calls recorded by the ISP

scheduler exceeded 1.3 million.

The test machine used for this particular case study us-

ing GEM was an HP Pavilion laptop running Ubuntu 8.10,

with 4GB RAM and an Intel Core2Duo T-9300 CPU run-

ning at 2.5 GHz. To get a feel for the runtime complexities

and realistic range of use for GEM, we began verifying with

two processes and gradually increased this number. At 10

processes, we found GEM to take 10 minutes for a verifi-

cation run. A 32 process verification of ParMETIS took 40

minutes and generated a log file that was 512MB. We feel

that beyond 10-12 processes, verifying a project of this size

is perhaps best suited for a cluster.

The Makefile support provided by GEM calls for only a

few small modifications to the ParMETIS Makefiles (Fig-

ure 3). Once the ParMETIS project builds correctly and the

ISP profiled executable is produced, we can access dynamic

formal verification using GEM essentially the same way we

would for any CDT Managed Build project. The only dif-

ference will be that we access the executable from context

menus via the Project Explorer View instead of the toolbar-

bar icon.

Thanks to ISP’s scheduling algorithm, only one sched-

ule was explored. All of our tests verified that the

ParMETIS code was free from deadlocks and local asser-

tion violations. However, our tests using GEM discovered

a communicator leak in the ParMETIS code, as already dis-

cussed (Figure 5). These types of results are instantly rec-

ognizable within the GEM Analyzer view. This particular

result is further proof of the effectiveness of graphical de-

bugging tools for parallel application development. With

one click in the shell window provided by GEM, the user

can navigate to the source line where the communicator was

allocated.

4 Conclusions and Future Plans

In this paper, we summarized how the usability of our

dynamic verifier for MPI programs, namely ISP, has been

vastly enhanced by the design of the Graphical Explorer of

Message Passing (GEM). Several interactive tutorials have

been offered using the ISP/GEM combination (the most re-

cent being a 15-minute slot in the IBM PTP tutorial dur-

ing Supercomputing 2009). We found that the availability

of GEM made what was a powerful but intimidating tool

(namely ISP) into a pleasant, intuitive, productivity enhanc-

ing tool.

A number of avenues of further research remain. First,

we are working on a number of approaches to scale up ISP’s



search algorithms. Second, we are in the process of adding

many more default checks into ISP, and correspondingly en-

hancing the error viewing facilities in GEM. Third, we plan

to instrument the salient aspects of the C code that lie be-

tween MPI calls (at present, these C codes are simply ex-

ecuted without any scheduler interception). We find that

given the importance of mixed programming, we will run

into the problem of deterministic replay should this C space

behavior harbor thread non-determinism and/or races. Once

we are able to instrument and replay the thread-space be-

haviors, we plan to enhance GEM’s display capabilities to

include these behaviors as well.
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