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Abstract

[10] proposed a generative theory of shape, and generaltmogrbased on group actions
on sets as defined by the wreath product. Our position exgutdsre is that this approach
can provide a strong basis for robot cognition when:

1. tightly coupled to sensorimotor data and analysis,
2. used to structure both general concepts and specifiatetaand

3. combined with a probabilistic framework (Bayesian netsdto characterize uncer-
tainty.

We describe a roadmap to achieve these and provide somenegidéfeasibility.



1 INTRODUCTION

Our goal is to develop cognitive capabilities for autonosioabot agents. [11] state that
cognition "can be viewed as a process by which the systeneeaehirobust, adaptive, an-
ticipatory, autonomous behavior, entailing embodied @ation and action.” For us, this
includes the ability to:

1. analyze sensorimotor data in order to determine a rdtamase of action,

2. represent and recognize important concepts describeng/orld (including its own
self),

3. recognize similarities between concepts,
4. extend concepts to new domains, and

5. determine likelihoods of assertions about the world.

We have previously argued that an effective basis for robghition requires some form
of innate knowledge; see [6]. In fact, most current robotlangentations rely mostly on
innate knowledge programmed in by the system builder (semsor data analysis algo-
rithms, object recognition, kinematics and dynamics, piag, navigation, etc.), although
some aspects of the robot's knowledge may be learned frorriexge. This approach
to establishing robot cognitive faculties does not scal#,\vaad as a more effective and
efficient paradigm, we have proposed that a collection ofregirny theories form the ba-
sic innate knowledge of an autonomous agent [5, 8, 7, 9]. dlaes defined as formal,
logic-based systems, and then the robot proceeds to udanthwdedge by analyzing sen-
sorimotor data to discover models for the theories. For ganthe axioms which define
a group require a set of elements and an operator that acke@et such that the closure,
identity, inverse and associativity properties are satisfFigure 1 shows how this works.
Namely, sets and operators are found in the sensorimotarastat checked to see is they
satisfy the axioms. If so, then the robot may use the theomggbnew assertions (i.e.,
theorems) that follow from the axioms and have direct megfon the model, but which
may never have been experienced by the robot.

We propose that in addition to a logical framework to allowgeations about the world,

robot cognition requires a representational mechanisnséasorimotor experience. The

wreath product provides this; for a more detailed accountrefth products, see [2, 4, 10].

The wreath product is a group formed as a splitting extensfots normal subgroup (the

direct product of some group) and a permutation group. Axamele, consider the wreath
2
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Figure 1: Models for Theories are Discovered: (1) A theoyaBned; (2) Sets and Opera-
tors are Hypothesized from Sensorimotor Data; (3) Axiones\@lidated for Hypotheses;
(4) Theory is Exploited.

product representation of the outline of a square shgge Z. 11 24, where{e} represents
a point, Z, is the mod 2 group meaning select the point or fibts the continuous (one-
parameter Lie) translation groug, is the cyclic group of order 4, andis the wreath
product. [Note thatR: Z; = & x R x R x R x Z, wherex is the semi-direct product.]
Leyton [10] describes this representation in great detadl @xplains the meaning of the
expression as follows:

1. {e}: represents a point. (More precisely, the action of the groensisting of just
the identity acting on a set consisting of a point.)

2. {e} ! Z5: represents the selection of a point or not; i.e., to getasegment from a
line, just select the points on the line segment by assigthied. element to them.

3. {e} 1 Z5 1 R: represents a line segment; i.e., one side of the square.

4. {e} 1251 R Z4: represents the fact that each side of the square is a ratatsidn of
the base segment; i.e., the four element€pfepresent rotations of 0, 90, 180 and
270 degrees.

Each new group to the right side of the wreath symbol definesmta action on the group
to the left, and thus provides a description of how to gemeetia shape. E.g., to draw a
3
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Figure 2: Control Flow in a Wreath Product gives an Explicit Digfon in Terms of Ac-
tuation of how to Generate the Shajpethe group identity (rotate by O degrees) acts on
the first copy,R; to obtain the top of the square;, acts on; by rotating it 90 degrees
about the center of the square to obtain the right Sider 5o acts onk; by rotating it 180
degrees to obtaiit;, and finally,r,7 acts onR; rotating it 270 degrees to obtaity,.

rot(180)

square, start at the specified point (details of the x,y \wbfethe point, etc. are left to
annotations in the representation), translate some leaigtiy a straight line, then rotate
90 degrees and draw the next side, and repeat this two moes.tifigure 2 shows how
control flows from the rotation groug,, down to copies of the translation group,

Thus, taken together, innate theories allow the discovittysobasic algebraic entities (i.e.,
groups) of the wreath products, and wreath products all@ndgscription of concepts of
interest (here restricted to shape and structure). In th@nimg sections, we expand on
the exploitation of sensorimotor data (actuation is cijaneoperationally defining wreath
products.

Finally, we propose a probabilistic framework for charaeziag the uncertainty in wreath
products. The wreath product maps directly onto a Bayesiamank (BN) as follows:

1. The rightmost group of the wreath product forms the rooienaf the BN. Its children
are the direct product group copies to the left of the semaetliproduct operator.

2. Recursively find the children of each interior node by trepit as the rightmost
group of the remaining wreath product.

For example, consider the square expressd@ ps2, ¢ R Z,. Figure 3 shows the corre-
sponding BN.
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Figure 3: Bayesian Network for the Wreath Product of a Squarat€ddoy Rotation.

[Note that the continuous translation grotipcalls for an uncountable number of cross
product groups (one for each real), but we do not implemesetkplicitly.] The following
sections describe how the conditional probability tabkes lse determined from frequen-
cies encountered in the world (e.g., the likelihood of sgearersus other shapes), and
experience with the sensors and actuators (e.g., thehdatdi of the detection of the edge
of a square given that the square is present in the sceng)tdfipsed a Bayesian network
approach for object recognition based on generalized agisy but our method differs in
that we use the more general wreath product representatiuno can represent general-
ized cylinders) and include actuation in the descriptiord we derive the BN’s from the
wreath product; also see [12].

2 ROBOT CONCEPT FORMATION

We now describe an architecture to allow object representato be constructed from
groups discovered in sensorimotor data, and combined o fameath products. Figure 4
gives a high-level view of the interaction of innate knowjedand sensorimotor data to
produce derived knowledge. A lower level architecture v&giin Figure 5 involving long-

term memory, short-term memory, behavior selection and@é@notor data. Cognition

can be driven by the data (bottom-up) or by a template predentthe behavior selection
unit (top-down). In the former case, symmetries are detkictehe data which gives rise
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Figure 5: Lower Level Layout of Cognitive Process.

Suppose that data from a single object (a square) is to bgzadhl Figure 6 shows a
number of group elements that can be discovered by symmetegidrs applied to image
data of a square; this includes translation, reflection atation symmetries; we have
described symmetry detectors for 1D, 2D and 3D data elsenBei7, 9]. The symmetry
groups would allow the synthesis &f: D, (this is the same aB x & x & x R x D,) as
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Figure 6: Symmetry Detection in Image of a Square.

a representation of the data. On the other hand if the draefitige square were observed,
and it was done by starting with the top most edge and drawlockwise around the
square, theift ! Z, would be generated. If first the top edge were drawn, then otterin
edge, then the right, then the left, this would give risedg: Z, Actuation used to observe
the data can also be used to determine the appropriate wnesthict; e.g., if motors move
the camera so that the center of the image follows the corgbtine square, then this
gives rise to a symmetry in the angles followed (one anglgearirom 0 t@2r, while the
other follows a periodic trajectory. [Also, note that aleie wreath products could have a
pre-fixed{e} ! Z, which represents selecting the points on the line segment.]

Next consider the 3D cube. Just like the square, there asradenreath product repre-
sentations, each corresponding to a distinct generataeeps. Actual 3D data (e.g., from
a Kinect), will most likely come from viewing one face of thalke or three faces.; Fig-
ure 7 shows an example Kinect image for these two situatiotisel case of a cube-shaped
footstool. For the 3-face view, each visible face has a spoading hidden parallel face
which can be viewed as either generated from the visible ligceeflection or rotation.
The Z, group represents either of these (in the specific encodiegshwose reflection).
Figure 8(a)(Top) shows the cube viewed along a diagonaltbxisigh two corners of the
cube, and theZ; rotational symmetry can be seen; i.e., a rotation of 120edeggabout the
axis (K in Figure 8(a)(Bottom)) sends each pair of paralleefainto another pair. The
wreath product for this is theR? : Z, Z; while the tree structure shown in Figure 8(b)
gives the control action tree.



Figure 7: (a) One Face View RGB (b) One Face View Depth Map (cedlirace View
RGB (d) Three Face View Depth Map
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Figure 8: (a) View of Cube along Diagonal Axis wifly Symmetries (b) the Control Action
Tree forR? 1 2,1 Z3
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Figure 9: Bayesian Network for Cube.

3 BAYESIAN SYMMETRY NETWORKS

We have already described how the wreath product providessted description of an
object which maps in a natural way onto a causal graph steiébw a Bayesian network.
As a working example, we continue with the cube as descriv&ejure 8(b) for which the
corresponding Bayesian netwéris shown in Figure 9. The graph structure is defined by
the wreath product, and the conditional probability taldes determined by considering
the context (indoors), the sensor data noise, and the #igoerror. The top-most node
Z3 has a prior of 5% true, since this condition holds for norn@lsny right-angle 3-
faced corner. The; nodes have a probability of 30% if there is no kno#Ensymmetry,
otherwise 80%, and th&? flat face nodes have conditional probability of 70% if &g
symmetry is known, otherwise 95%. The figure shows the lioglds of each symmetry
assertion with no evidence. Figure 10 shows the changeobapilities for the network
when it is known that 3 faces exist, and that there & @ymmetry for them. Note that the
likelihoods for the unseen parallel faces rise to 91% in ¢haise. This type of information
may not be readily available to a robot without this cogeitséructure.

This works reasonably well in practice; Figure 11 shows Kirgata for a cube shape
viewed along a diagonal and surface normals. To determithe i€; symmetry exists, we
determine the average normal for each face, then check thestry of the three normals

1This network was constructed using the AgenaRisk softwdiiemaccompanies [3].
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Figure 12: (a) Similarity of 3 Surface Normals under Rotaabout their Mean Vector; (b)
Trajectories of Normal Endpoints under Rotation.

rotated through2z radians about their mean vector. Figure 12(a) shows thdssityi
measure (best match of three original normals with rotatgdions of themselves, while
(b) shows the trajectories of the three normal endpointeutig rotation.

4 CONCLUSIONSAND FUTURE WORK

Our position is that wreath product representations ofabjprovide a very powerful ob-
ject concept mechanism, especially when combined with deepections to sensorimotor
data, tied to specific object descriptions, and embeddegiolzabilistic inference frame-
work. Current issues include:

e General Concept Representation: Arbitrary objects can be represented by use of
tensor spline groups, as well as shape modification prosessdescribed by Leyton.
Implementation will require careful attention. In additjd_eyton argued that wreath
products could represent any concept; therefore, extemsieed to be found for
structural, material properties, social, and other tygeslations.

e Combining Sensor and Actuation Data: A detailed characterization of how sen-
sorimotor data is embedded in the wreath product repres@mia required. There
11
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Figure 13: Error Distribution in Plane-Fitting for Kinectala.

are limitations in what the actuators can achieve comparachiat the sensors can
perceive, depending on the robot used andégrees of FreedoifboF). In the cube
example, we mentioned that a robot with a head hastity 3-DoF canactuate the
conceptsas motions. Similarly, a robot with a dextrous hand will béeab manip-
ulate the object and be able to map the actuations to the ptmce.g., in 2D the
robot can draw the square, given the generative concept @iiae, while in 3D it
can trace its fingers along the the smooth faces of a cube &dtive object type
based on the Bayesian network for a cube.

On the contrary, a two-wheeled robot with only a range seasdmo movable head
or hands can only move on the ground, and will thus have liioita in relating
actuations directly to concepts (especially 3D shape qusLe

e Prior and Conditional Probabilities. must be determined for the networks. This
requires a rigorous learning process for the statistica@environment and the sen-
sors. For example, we are studying the error in fitting pldoé&nect data, and first
results indicate that the noise appears Gaussian (seesHigur

e Prime Factorization: In the shapes we address, a Bayesian network can be created
in multiple ways for the same shape; e.g., two square reptasens arek ! Z, and
R Z5 x 250 Z5. The equivalence of resulting shape must be made known et
(even thought the generative mechanisms are different)areeexploring whether
subgroups of the largest group generating the shape allsviotbe identified.

e Object Coherence and Segmentation: Object segmentation is a major challenge,
12



and object classification processing will be more efficiémelated points are seg-
mented early on. We are looking at the use of local symmeteigs, color, texture,
material properties, etc.) to achieve this. Moreover, dbgeherence can be found
from motion of the object; namely, there will be a symmetrihiea motion parameters
for all parts of a rigid object which can be learned from exgece.
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