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Abstract

We propose the combination of a mobile robot and a compualtisensor network ap-
proach to perform structural health monitoring of struetur The robot is equipped with
piezoelectric sensor actuators capable of sending antiregeltrasound signals, and ex-
plores the surface of a structure to be monitored. A comjmualt model of ultrasound
propagation through the material is used to define two strathealth monitoring meth-
ods: (1) a time reversal damage imaging (TRDI) process, and @mage range sensor
(DRS)(i.e., it provides the range to damaged areas in the stejctdine damage in the
structure is mapped using the DRS approach.
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1 Introduction

Periodic inspection of aircraft structures is requireddtetmine if maintenance and repair
must be performed due to damaged elements. Since down tinteef@ircraft is costly,
uncertainty bounds are useful to making cost effectiveireggisions. The Dynamic Data
Driven Application System (DDDAS) approach acquires dataasnically, and compares
that to a model of the structure to solve this problem. Theofigayesian methods allows
an iterative process in which the computational model isatgul (e.g., Young’s modulus,
diffusion constants, etc.), and inverse problems can be tesenprove knowledge of the
sensor system and the data it produces (e.g., pose, nogterdsis, etc.).

Current ultrasonic sensing systems based on Lamb waves attyregperimental (see
[24] for a very good overview of this topic), and one of our 3o to develop robust
methods for structural health monitoring which can then jpgliad even when there are
uncertainties in the measurements, system models andrdecations, as well as possible
time variations of the underlying systems. The overall gafathis work is to advance
the DDDAS state-of-the-art by developing a framework in athihe data acquired for a
specific aircraft allow the most cost effective determioiatof whether damage has been
produced in the structure, and the location of the possiheat)e.

Previous work by the authors has shown how Computationalddétetworks (CSN) [14,

13, 15, 16, 17] combine computational models of physicalnphgena (e.g., heat flow,
ultrasound, etc.) with sensor models to monitor and cherizet a variety of systems. Our
overall DDDAS approach is shown in Figure 1. This approadbased on the validation,
calibration and prediction process as described by Obegrk§]. Experiments are used
to establish parameters in the computational model, argkthreturn affect the result of
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the validation metric. Both simulations and physical expemnts are used to help with
experiment design as well as to inform the computationaleting process.

1.1 Ultrasound-based Damage Assessment

Active SHM is performed by exciting the structure to be mored with waveforms pro-
duced by an actuating transducer. Signals propagated faoim &ctuator are collected at
sensors distributed on the structure. Assuming that we haseline signals collected from
the structure at some time, any change in the structure fample, new damage) will
result in corresponding changes in the sensor signals.ré&-@shows an example. The
bottom left panel displays the sensor signal from a healftuctire. Assuming that new
damage was introduced in the structure as shown in the thppanel, we can expect new
measurements using the same transducer-sensor pairst&ncaflected components of
the excitation waveforms from the boundaries of the damade waveform depicted in
the bottom right panel describes such a scenario. Based grdperties of the received
signals, the damage state of the structure is estimatete lexample of Figure 2, one may
estimate the time of arrival of the directly propagated viarra and the reflected compo-
nent. Knowing the velocity of propagation (we assume in éxiample that the structure
is isotropic), we can define an ellipse on which the refledtiagndary lies. This is shown
in Figure 3. With the help of multiple actuator-sensor pawe may then estimate the
boundary of the anomaly in the structure. Other methodsdoating the damage and
characterizing the extent of the damage are also available.

These algorithms are implemented so that automated mmgtof the structure may be

achieved. An alternate approach to bonding or embeddingpsgmn the structure is to
employ mobile robotic elements to sense at selected lowato the structure. Such a
technique is under study in our research. Knowledge of thatiwave, time difference

between transmission and reception of different companienthe sensor waveform, as
well as the wave propagation properties of the structukentégogether allow the estimation
of damage existence, location and scale.

The basics of robot sensing for structural health monitprinas follows. A picture of a
robot equipped with two sensors used in this work is showngate 14. The robot has two
ultrasound transducers fixed at a distance L apart as shothe iigure. A set of samples
are taken over the surface of the structure, and assumihgahameters characterizing the
undamaged structure are available, a baseline model oéttsmssignal for each actuator-
sensor pair can be estimated.

By moving the robot and obtaining several range estimatesntersection of the ellipses
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Figure 2: Ultrasound Transducer Sensor Network.
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Figure 3. Damage Detection with Ultrasound Network.

provides an estimate of the damage location. By circumn#iaigdhe detected damage
location, the robot can use the range information to detegrthie reflecting boundaries of
the damage, and thus, its extent.

2 Lamb Wavesin Structural Health Monitoring

Figure 4 lays out the approach to using Lamb waves for SHM.h.araves are guided
waves that propagate in solid structures. In active SHMesgst Lamb waves may be in-
duced in the structure by ultrasound transducers that magsaactuators and sensors as
needed. The propagation takes place in multiple modes. &loeity of each mode at any
location of the structure depends on the product of the frquof excitation and the thick-
ness of the structure at that location. Figure 5 displayphtiase velocity of different Lamb
wave modes in an Aluminum plate. Because of the frequencyndigme velocity profiles,
the propagation of these modes is dispersive. For a detatssbuction to ultrasound
waves, see [23]; there has also been a lot of work in the agifgit of these techniques
4
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Figure 4. Lamb Wave-based Structural Health Monitoring.
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Figure 5: Lamb Wave Dispersion Curves.

in SHM (see [7, 8, 9, 10, 18, 19, 28], as well as a number of AircEdViasters theses
on the topic [1, 2, 3, 5, 6, 11, 20, 22, 26]. For an excellenemestudy on a data-driven
approach, see [12]. Overlapped original and reflected m@den boundaries or damaged
areas) are then separated, and finally damage locationdeantfied based on this knowl-
edge. Online model accuracy assessment is crucial sincewhenodal and dispersive
characteristics of Lamb waves may change due to changesinoemental conditions and
structural properties. Such changes may result in therédii static damage localization
models, and thus in the DDDAS approach, the models are up@atealibrated) in every
data collection step.

2.1 TRDI: Imaging in a Homogeneous Aluminum Plate Using Ultra-
sonic Waves

In this approach we image the cracks or other damage usind itbbhoff migration
method which exploits the waves scattered from the crackaage them. The aluminum
plate is considered sufficiently thin so that the Lamb waver@ximation determines the
modes that travel in the plate. No boundary effects occuedine plate is assumed infinite.
First we present the Lamb approximation for the propagaifomaves in a plate. At a high
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level, this is described as follows: Green’s function isegithroughk(w) = IR and
wave propagation is given by the convolution of the sourcetion and Green'’s function.

Then the imaging technique is explained, and finally nunaéresults are given.

Suppose each transducer emits an identical signal souecet®the source function by
as a function a time. Assume the wave propagation satisfieshdétz equation:

Au+ku=0

for each frequency, wherek = —= is a function ofw, andc(w) is the phase velocity.
Green’s function is the solution 01) the Helmholtz equations the frequency domain,
G(S, R,w) indicates the wave propagates fif a unit point source is emitted & at
angular frequency. In a two-dimensional plate;(S, R, w) = ﬁHél)(k:HS — R|). A
signal received from sourceto receiverR is given by:

s(S,R,t) = f(t) * G(S, R, 1)

/ fIG(S, R e,

wheref f f(t)e“tdt, andG is the two point Green function at radian frequency
W.

Let D be a range of passive scatterers, which is quiet and can éeteétand imaged from
scattered signals received. Then using the Born approxamgatie signal received from
sourceS to D and scattered to receivéris:

1 [ . -
P(S,R,t) = 2—/ P(S, R,w)e ™" dw,
TJ_

o

where
maawﬁwﬂmqémwa&%mémemy

with p the reflectivity function oD, k = ¢ is the wavenumber, and(w) is the phase
velocity at frequencw. We model damage as passive scatterers.

Wave propagation in an aluminum plate with uniform thiclsés described as Lamb
waves. The central frequen¢} we use is2 x 10° Hz. In our setup, only two Lamb
wave modes need to be considered: the first anti-symmetriter(dy) and the first sym-
metric mode ;). We neglect the effect of all the other modes. For each mibgeGreen
function isG(A, B,w) = e *@IA-Bl wherek(w) = iy is the wave number of cor-
responding frequency, various in different modés.is solved numerically based on the
following equations: Lep? = (-)” — k* andq” = (&) — k®. For theA, mode,

tan(qh) 4k>pq

tan(ph) * (q2 — k2)2 =0 1)
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Figure 6: Dispersion Curve of First Symmetric Mode
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Figure 7: Dispersion Curve of First Anti-symmetric Mode

and

tan(qh) | (¢* —k*)* _
tan(ph) 4k2pqg

(2)

for the S, mode. C,, C, andh are material constants, which are compressional wave
velocity, shear wave velocity, and half plate thicknesspeetively [23]. Dispersion rela-
tions for first symmetric and anti-symmetric models are showFigures 6 and 7 witld),,
C, andh equal6270m/s, 3140m/s and0.8mm, respectively. At each angular frequency
w, corresponding phase velocities are numerical solutidregjoations 1 and 2 byzero
functions iINMATLAB for w > 10K H z. Initial values for the firstv > 10K H z are given
by 5500m/s and1500m /s for the S, and A, modes, respectively. Due to the continuity
of solutions with respect tw, initial values for eachv are taken from solutions for the
previousw. Note, solutions of equations 1 and 2 are even functionst Sdfices to solve
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only nonnegative frequencies. Frequencies of less thanH > are, in general, not easily
solvable by thefzero function. To avoid singular cases, spline interpolatioapglied to
those frequencies.

We are givenV received signal$’;, P, ..., Py with N pairs of source and receive loca-
tions Xg,, ..., Xs,, andXg,,..., Xg,. The unknown reflectivity functiop is imaged
by applying time reversal techniques. The idea of time isales to reverse the signals
Py, Py, ..., Py and back propagate them numerically. The back propagagedlsiin prin-
ciple will focus on the scatterers with magnitude propardito the integral of on neigh-
borhood regions.

To image the unknown reflectivity(y) on search poiny, we evaluate®; at deterministic
arrival times

15, ol 1Xn, ]
Y=o o

forall j =1,2,..., N andw € R. Hence the Kirchhoff migration imaging functional [4]
is given by:

S[M(y) _ Z % /_OO pj(w) exp(—iwt;(y, w))dw

Note: the imaging functional is linear with respect to reedisignals. This implies that
is it computationally effective as an online algorithm, aitable for dynamic data driven
system.

2.1.1 Numerical Results

Here we provide numerical results of imaging an aluminuntepdes modeled above. Com-
putation that involves continuous Fourier transformagion inverse Fourier Transforma-
tions are approximated by Riemann sums by using the fastérduansform. We use sets
of finite points as representatives of scatterer regiorste& of integrating over scatterer

regions, we sum the corresponding function at scatteretpand use the source function
. _(—tp)? . . oL
f(t) = emolt—to)e™ 52— 'wherew, = 47 x 10°, ¢ = 3 x 10°, andt, is the signal emit time.

In the following figures, red, blue and black crosses indisaburce, receiver and scatterer
locations, respectively. In Figures 8 to 10, we image lirstscers inlm x 0.4m windows
with different modes of signals and intersection angles/beh path of measurements and
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Image of Parallel Line Scatterer with Symmetric Mode Signals and Singal Path
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Figure 8: Image of Parallel Line Scatterer with Symmetricdd&ignals and Signal Path

Image of Parallel Line Scatterer with Anti-Symmetric Mode Signals and Singal Path
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Figure 9: Image of Parallel Line Scatterer with Anti-SymrieeMode Signals and Signal
Path



Image of Perpendicular Line Scatterer with Anti-Symmetric Mode Signals and Singal Path
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Figure 10: Image of Orthogonal Line Scatterer with Anti-Syetric Mode Signals and
Signal Path

Figure 11: Image with Backand-Forth Path

scatterer. By comparing 8 and 9 we see that imaging with Amtirgetric mode signals

has higher resolution. Figures 9 and 10 shows that makingunements orthogonal to the
line scatter helps resolution. The following images aresdoyprocessing Anti-symmetric
mode signals. Figures 11 to 13 show images in scenarios kath tobot is carrying sen-

sors, moving, and making 25 measuremeniinx 2m plate. Robot paths in Figures 11 to
12 were pre-designed with certain patterns. It was founéexyentally that measurements
often exhibit artifacts, but that the path generated by aEmymmetric random walk as
shown in Figure 13 has less artifacts in general.
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Figure 12: Image with Three Rounds Circular Path

Figure 13: Image with Random Walk Paths
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SLAMBOT: Dynamic

Data Acquisition | m%

s

Figure 14. SLAMBOT for Dynamic Data Acquisition. The SLAMBO$% shown on the
left; on the right, the structure is excited in three diffgrlmcations, and the final column is
the received signal for each; note that the reflected damggeal<an be seen trailing the
direct signal.

2.2 SLAMBOT: SimultaneousL ocalization and M apping using Lamb
Waves

We are currently developing a mobile robot platform which g@ove around on a structure
to take data (see Figure 14). Based on a modified Systioackbotmobile platform, the
SLAMBOT has two attached actuation systems which cause tna to be lifted off the
surface when the ultrasound sensors are used, thus, rgdbeimterference from the robot
on the sensor signals. Our current work is on Simultaneowsilization and Mapping
(SLAM) using Lamb waves (see [25] for a detailed account ef #LAM methodology).
The damage (and boundary) locations are considered poidiarks since the reflected
signal returned from the closest reflecting point detersiitiee range value. The range
calculation method described earlier (shown in principl€igure 3) is used by finding the
arrival time of the second Lamb wave signal received (theliiegng from the straight line
path from the transducer). The total number of featuresngrobbed by the data acquisition
process, and both the range data and the robot motion ammedsa have been corrupted
by additive Gaussian noise.

Because we only use positive landmark detection (landmbatshow up in the range data
as opposed to those occluded by other objects), as well asthktions given above, EKF
SLAM works in this setting (see [25]). We therefore estintée robot pose; = (x,y, 6)
as well as the landmark locations; = f;.f.,fis) ¢ = 1...n, simultaneously using a
combined state vector. Then given a motion mode for the robot

P(St | Ug, Stfl)
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Figure 15: Simulation of Damage Localization using the Laifdve Range Sensor. On the
leftis a surface plot view of the accumulator values; on ihletra 2-D image representation.

whereu,; here indicates the robot control. The measurement model is:

p(zt | 54, I, nt)

The SLAM problem is to find all landmark locations and the ri$pose using the mea-
surements and control values; that is, the posterior:

p(s', F | 2", uf)

We assume feature correspondence is known, and use AlgdekF SLAM known cor-
respondencegsee Table 10.1 [25], p. 314). The results of a simulationhef Lamb
wave based range finder are shown in Figure 15 (left). In tkésnple, a2 m X 2 m
aluminum plate is used with the origin at the center (thugeanz = [—1, 1] and range in

y = [—1, 1]) with one damage location &t-0.4, —0.4). The robot places the actuator and
receiver at six different locations around the damage, acth eange value constrains the
location of the reflecting point to be on an ellipse with theuator and receiver locations
as foci. Thus, by using an accumulator array and adding &"¥oteach location on the
ellipse, these six sensed range values allow the deteronnat the most likely location
of the reflecting point (damage in this case). This 'votimgytone with a Gaussian spread
which leads to the smooth accumulator surface shown in thesfigrigure 15 (right) shows
a 2-D visualization of the strength of damage location Ihk@bd based on this data.

Figure 16 shows the experimental layout for our testing agen The aluminum panel
was 1.6 mm thick, the sensors were VS900-RIC Vallen transduead the excitation
signal was a 100 KHz 2.5 cycle, Hann-windowed waveform. @tbat we have not fully
implemented the SLAM approach in the experimental setupal®inow able to acquire
data and obtain range results.) The actuator and receivapieare placed as shown
and a sensor reading taken for each location. Figure 17 sfiasvsange ellipses derived
from the ultrasound signals. As can be seen, the interseofithe signals localizes the
damage in the structure (in this case a hole in an aluminute)pla Figure 18 shows
observed signals and simulated reflected AO mode signaiskwidwn minimized possible
13



Figure 16: Experimental Layout for Damage Localizatiomgsihe Lamb Wave Range

Sensor in an Aluminum Plate.
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Figure 19: Windowed SAP Signal versus Simulated Signal.

reflection range. The simulated reflected signal has muctapseith directly propagated
signals in the real data in first two cases. This means thest Ineua good way to separate
directly propagate waves (between the actuator and redearesducers) and the reflected
waves in the observed data, otherwise, data taken with actedlelistance smaller than
some threshold cannot be considered. Another issue isdha sf the earliest reflected
signals are not the main component reflected signals in tlze @a avoid these two issues,
we simply window out signals outside a certain reflectiongean Figure 19 shows the
windowed signals versus the simulated signals as descaibede. In this form, the peak
amplitude not clearly identifiable. We therefore compute @WT based scaled-average
wavelet power (SAP) (see [24] page 166, for a descriptiomigfrnethod). The computed
SAPs are shown in Figure 20; in this figure, the peaks are meagly discernible.
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3 Conclusions and Future Wor k

We propose a Bayesian Computational Sensor Network appr@ehf@mal basis for
Dynamic Data Drive Application Systems. To date, we havewithat this can be effective
in the 1D domain of heat flow, and we are currently working toedi@p a robust aircraft
structural health monitoring framework based on the useamhlh waves. A dynamic data
acquisition method using a mobile robot has been descrilfedure work includes the
experimental validation of the approach as well as a formalysis of the uncertainty
guantification. We are constructing several mobile robots &ill perform experiments
using single and multiple robots to map damage in plate wtres. The experiments will
first be performed with Aluminum plates, and then on compastituctures.

We are currently exploring the field of uncertainty quandifion [27] in order to provide
bounds on the confidence of inferences about the behavidiedblitAMBOTbased on
computational models and sensor data. In particular, we@characterize the uncertainty
properties of the range sensor function described earlier.

Acknowledgments: This work was supported by AFOSR-FA9550-12-1-0291. We aoul
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