
SLAMBOT: Structural Health
Monitoring Robot using Lamb

Waves

Wenyi Wang, Thomas C. Henderson, and
Anshul Joshi

University of Utah

Edward Grant
North Carolina State University

UUCS-14-001

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

27 May 2014

Abstract

We propose the combination of a mobile robot and a computational sensor network ap-
proach to perform structural health monitoring of structures. The robot is equipped with
piezoelectric sensor actuators capable of sending and receiving ultrasound signals, and ex-
plores the surface of a structure to be monitored. A computational model of ultrasound
propagation through the material is used to define two structural health monitoring meth-
ods: (1) a time reversal damage imaging (TRDI) process, and (2) a damage range sensor
(DRS)(i.e., it provides the range to damaged areas in the structure). The damage in the
structure is mapped using the DRS approach.
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Figure 1: Verification and Validation for Bayesian Computational Sensor Networks.

1 Introduction

Periodic inspection of aircraft structures is required to determine if maintenance and repair
must be performed due to damaged elements. Since down time for the aircraft is costly,
uncertainty bounds are useful to making cost effective repair decisions. The Dynamic Data
Driven Application System (DDDAS) approach acquires data dynamically, and compares
that to a model of the structure to solve this problem. The useof Bayesian methods allows
an iterative process in which the computational model is updated (e.g., Young’s modulus,
diffusion constants, etc.), and inverse problems can be used to improve knowledge of the
sensor system and the data it produces (e.g., pose, noise, hysteresis, etc.).

Current ultrasonic sensing systems based on Lamb waves are mostly experimental (see
[24] for a very good overview of this topic), and one of our goals is to develop robust
methods for structural health monitoring which can then be applied even when there are
uncertainties in the measurements, system models and sensor locations, as well as possible
time variations of the underlying systems. The overall goalof this work is to advance
the DDDAS state-of-the-art by developing a framework in which the data acquired for a
specific aircraft allow the most cost effective determination of whether damage has been
produced in the structure, and the location of the possible damage.

Previous work by the authors has shown how Computational Sensor Networks (CSN) [14,
13, 15, 16, 17] combine computational models of physical phenomena (e.g., heat flow,
ultrasound, etc.) with sensor models to monitor and characterize a variety of systems. Our
overall DDDAS approach is shown in Figure 1. This approach isbased on the validation,
calibration and prediction process as described by Oberkampf [21]. Experiments are used
to establish parameters in the computational model, and these in turn affect the result of
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the validation metric. Both simulations and physical experiments are used to help with
experiment design as well as to inform the computational modeling process.

1.1 Ultrasound-based Damage Assessment

Active SHM is performed by exciting the structure to be monitored with waveforms pro-
duced by an actuating transducer. Signals propagated from each actuator are collected at
sensors distributed on the structure. Assuming that we havebaseline signals collected from
the structure at some time, any change in the structure (for example, new damage) will
result in corresponding changes in the sensor signals. Figure 2 shows an example. The
bottom left panel displays the sensor signal from a healthy structure. Assuming that new
damage was introduced in the structure as shown in the top right panel, we can expect new
measurements using the same transducer-sensor pairs to contain reflected components of
the excitation waveforms from the boundaries of the damage.The waveform depicted in
the bottom right panel describes such a scenario. Based on theproperties of the received
signals, the damage state of the structure is estimated. In the example of Figure 2, one may
estimate the time of arrival of the directly propagated waveform and the reflected compo-
nent. Knowing the velocity of propagation (we assume in thisexample that the structure
is isotropic), we can define an ellipse on which the reflectingboundary lies. This is shown
in Figure 3. With the help of multiple actuator-sensor pairs, we may then estimate the
boundary of the anomaly in the structure. Other methods for locating the damage and
characterizing the extent of the damage are also available.

These algorithms are implemented so that automated monitoring of the structure may be
achieved. An alternate approach to bonding or embedding sensors on the structure is to
employ mobile robotic elements to sense at selected locations on the structure. Such a
technique is under study in our research. Knowledge of the input wave, time difference
between transmission and reception of different components in the sensor waveform, as
well as the wave propagation properties of the structure, taken together allow the estimation
of damage existence, location and scale.

The basics of robot sensing for structural health monitoring is as follows. A picture of a
robot equipped with two sensors used in this work is shown in Figure 14. The robot has two
ultrasound transducers fixed at a distance L apart as shown inthe figure. A set of samples
are taken over the surface of the structure, and assuming that parameters characterizing the
undamaged structure are available, a baseline model of the sensor signal for each actuator-
sensor pair can be estimated.

By moving the robot and obtaining several range estimates, the intersection of the ellipses
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Figure 2: Ultrasound Transducer Sensor Network.

Figure 3: Damage Detection with Ultrasound Network.

provides an estimate of the damage location. By circumnavigating the detected damage
location, the robot can use the range information to determine the reflecting boundaries of
the damage, and thus, its extent.

2 Lamb Waves in Structural Health Monitoring

Figure 4 lays out the approach to using Lamb waves for SHM. Lamb waves are guided
waves that propagate in solid structures. In active SHM systems, Lamb waves may be in-
duced in the structure by ultrasound transducers that may act as actuators and sensors as
needed. The propagation takes place in multiple modes. The velocity of each mode at any
location of the structure depends on the product of the frequency of excitation and the thick-
ness of the structure at that location. Figure 5 displays thephase velocity of different Lamb
wave modes in an Aluminum plate. Because of the frequency dependent velocity profiles,
the propagation of these modes is dispersive. For a detailedintroduction to ultrasound
waves, see [23]; there has also been a lot of work in the application of these techniques
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Figure 4: Lamb Wave-based Structural Health Monitoring.

Figure 5: Lamb Wave Dispersion Curves.

in SHM (see [7, 8, 9, 10, 18, 19, 28], as well as a number of Air Force Masters theses
on the topic [1, 2, 3, 5, 6, 11, 20, 22, 26]. For an excellent recent study on a data-driven
approach, see [12]. Overlapped original and reflected modes(from boundaries or damaged
areas) are then separated, and finally damage locations are identified based on this knowl-
edge. Online model accuracy assessment is crucial since themultimodal and dispersive
characteristics of Lamb waves may change due to changes in environmental conditions and
structural properties. Such changes may result in the failure of static damage localization
models, and thus in the DDDAS approach, the models are updated (re-calibrated) in every
data collection step.

2.1 TRDI: Imaging in a Homogeneous Aluminum Plate Using Ultra-
sonic Waves

In this approach we image the cracks or other damage using theKirchhoff migration
method which exploits the waves scattered from the cracks toimage them. The aluminum
plate is considered sufficiently thin so that the Lamb wave approximation determines the
modes that travel in the plate. No boundary effects occur since the plate is assumed infinite.
First we present the Lamb approximation for the propagationof waves in a plate. At a high
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level, this is described as follows: Green’s function is given throughk(ω) = ω
C(ω)

, and
wave propagation is given by the convolution of the source function and Green’s function.
Then the imaging technique is explained, and finally numerical results are given.

Suppose each transducer emits an identical signal source. Denote the source function byf
as a function a time. Assume the wave propagation satisfies Helmholtz equation:

∆u+ k2u = 0

for each frequencyω, wherek = ω
c(ω)

is a function ofω, andc(ω) is the phase velocity.
Green’s function is the solution of the Helmholtz equations. In the frequency domain,
Ĝ(S,R, ω) indicates the wave propagates toR if a unit point source is emitted atS at
angular frequencyω. In a two-dimensional plate,̂G(S,R, ω) = i

4
H

(1)
0 (k‖S − R‖). A

signal received from sourceS to receiverR is given by:

s(S,R, t) = f(t) ∗G(S,R, t)

=
1

2π

∫ ∞

−∞

f̂(ω)Ĝ(S,R, ω)e−iωtdω,

wheref̂(ω) =
∫∞

−∞
f(t)eiωtdt, andĜ is the two point Green function at radian frequency

ω.
LetD be a range of passive scatterers, which is quiet and can be detected and imaged from
scattered signals received. Then using the Born approximation, the signal received from
sourceS to D and scattered to receiverR is:

P (S,R, t) =
1

2π

∫ ∞

−∞

P̂ (S,R, ω)e−iωtdω,

where

P̂ (S,R, ω) = k2f̂(ω)

∫
D

ρ(y)Ĝ(S, y, ω)Ĝ(y,R, ω)dy

with ρ the reflectivity function onD, k = ω
C(ω)

is the wavenumber, andC(ω) is the phase
velocity at frequencyω. We model damage as passive scatterers.

Wave propagation in an aluminum plate with uniform thickness is described as Lamb
waves. The central frequencyω0

2π
we use is2 × 105 Hz. In our setup, only two Lamb

wave modes need to be considered: the first anti-symmetric mode (A0) and the first sym-
metric mode (S0). We neglect the effect of all the other modes. For each mode,the Green
function isĜ(A,B, ω) = e−ik(ω)‖A−B‖, wherek(ω) = ω

C(ω)
is the wave number of cor-

responding frequency, various in different modes.C is solved numerically based on the
following equations: Letp2 = ( ω

Cp
)2 − k2 andq2 = ( ω

Cs
)2 − k2. For theA0 mode,

tan(qh)

tan(ph)
+

4k2pq

(q2 − k2)2
= 0. (1)
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Figure 6: Dispersion Curve of First Symmetric Mode
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Figure 7: Dispersion Curve of First Anti-symmetric Mode

and

tan(qh)

tan(ph)
+

(q2 − k2)2

4k2pq
= 0 (2)

for the S0 mode. Cp, Cs, andh are material constants, which are compressional wave
velocity, shear wave velocity, and half plate thickness, respectively [23]. Dispersion rela-
tions for first symmetric and anti-symmetric models are shown in Figures 6 and 7 withCp,
Cs andh equal6270m/s, 3140m/s and0.8mm, respectively. At each angular frequency
ω, corresponding phase velocities are numerical solutions of equations 1 and 2 byfzero
functions inMATLAB for ω > 10KHz. Initial values for the firstω > 10KHz are given
by 5500m/s and1500m/s for theS0 andA0 modes, respectively. Due to the continuity
of solutions with respect toω, initial values for eachω are taken from solutions for the
previousω. Note, solutions of equations 1 and 2 are even functions. So it suffices to solve
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only nonnegative frequencies. Frequencies of less than10KHz are, in general, not easily
solvable by thefzero function. To avoid singular cases, spline interpolation isapplied to
those frequencies.

We are givenN received signalsP1, P2, . . . , PN with N pairs of source and receive loca-
tionsXS1 , . . . , XSN

, andXR1 , . . . , XRN
. The unknown reflectivity functionρ is imaged

by applying time reversal techniques. The idea of time reversal is to reverse the signals
P1, P2, . . . , PN and back propagate them numerically. The back propagated signals in prin-
ciple will focus on the scatterers with magnitude proportional to the integral ofρ on neigh-
borhood regions.

To image the unknown reflectivityρ(y) on search pointy, we evaluatePj at deterministic
arrival times

tj(y, ω) =
‖XSj

− y‖

C(ω)
+

‖XRj
− y‖

C(ω)

for all j = 1, 2, . . . , N andω ∈ R. Hence the Kirchhoff migration imaging functional [4]
is given by:

SIM(y) =
N∑
j=1

1

2π

∫ ∞

−∞

P̂j(ω) exp(−iωtj(y, ω))dω

Note: the imaging functional is linear with respect to received signals. This implies that
is it computationally effective as an online algorithm, andsuitable for dynamic data driven
system.

2.1.1 Numerical Results

Here we provide numerical results of imaging an aluminum plate as modeled above. Com-
putation that involves continuous Fourier transformations or inverse Fourier Transforma-
tions are approximated by Riemann sums by using the fast Fourier transform. We use sets
of finite points as representatives of scatterer regions. Instead of integrating over scatterer
regions, we sum the corresponding function at scatterer points and use the source function

f(t) = eiω0(t−t0)e−
(t−t0)

2

2σ2 , whereω0 = 4π×105, σ = 3×105, andt0 is the signal emit time.
In the following figures, red, blue and black crosses indicates source, receiver and scatterer
locations, respectively. In Figures 8 to 10, we image line scatterers in1m×0.4m windows
with different modes of signals and intersection angles between path of measurements and
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Figure 8: Image of Parallel Line Scatterer with Symmetric Mode Signals and Signal Path
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Figure 9: Image of Parallel Line Scatterer with Anti-Symmetric Mode Signals and Signal
Path
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Figure 10: Image of Orthogonal Line Scatterer with Anti-Symmetric Mode Signals and
Signal Path
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Figure 11: Image with Back−and−Forth Path

scatterer. By comparing 8 and 9 we see that imaging with Anti-symmetric mode signals
has higher resolution. Figures 9 and 10 shows that making measurements orthogonal to the
line scatter helps resolution. The following images are done by processing Anti-symmetric
mode signals. Figures 11 to 13 show images in scenarios such that a robot is carrying sen-
sors, moving, and making 25 measurements in2m×2m plate. Robot paths in Figures 11 to
12 were pre-designed with certain patterns. It was found experimentally that measurements
often exhibit artifacts, but that the path generated by a simple symmetric random walk as
shown in Figure 13 has less artifacts in general.
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Figure 12: Image with Three Rounds Circular Path
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Figure 13: Image with Random Walk Paths
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Figure 14: SLAMBOT for Dynamic Data Acquisition. The SLAMBOT is shown on the
left; on the right, the structure is excited in three different locations, and the final column is
the received signal for each; note that the reflected damage signal can be seen trailing the
direct signal.

2.2 SLAMBOT: Simultaneous Localization and Mapping using Lamb
Waves

We are currently developing a mobile robot platform which can move around on a structure
to take data (see Figure 14). Based on a modified SystronixTrackbotmobile platform, the
SLAMBOT has two attached actuation systems which cause the robot to be lifted off the
surface when the ultrasound sensors are used, thus, reducing the interference from the robot
on the sensor signals. Our current work is on Simultaneous Localization and Mapping
(SLAM) using Lamb waves (see [25] for a detailed account of the SLAM methodology).
The damage (and boundary) locations are considered point landmarks since the reflected
signal returned from the closest reflecting point determines the range value. The range
calculation method described earlier (shown in principle in Figure 3) is used by finding the
arrival time of the second Lamb wave signal received (the first being from the straight line
path from the transducer). The total number of features is controlled by the data acquisition
process, and both the range data and the robot motion are assumed to have been corrupted
by additive Gaussian noise.

Because we only use positive landmark detection (landmarks that show up in the range data
as opposed to those occluded by other objects), as well as theconditions given above, EKF
SLAM works in this setting (see [25]). We therefore estimatethe robot posest = (x, y, θ)
as well as the landmark locations(Fi = fi,xfi,yfi,s) i = 1 . . . n, simultaneously using a
combined state vector. Then given a motion mode for the robot:

p(st | ut, st−1)
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Figure 15: Simulation of Damage Localization using the LambWave Range Sensor. On the
left is a surface plot view of the accumulator values; on the right a 2-D image representation.

whereut here indicates the robot control. The measurement model is:

p(zt | st, F, nt)

The SLAM problem is to find all landmark locations and the robot’s pose using the mea-
surements and control values; that is, the posterior:

p(st, F | zt, ut)

We assume feature correspondence is known, and use Algorithm EKF SLAM known cor-
respondences(see Table 10.1 [25], p. 314). The results of a simulation of the Lamb
wave based range finder are shown in Figure 15 (left). In this example, a 2 m X 2 m
aluminum plate is used with the origin at the center (thus range inx = [−1, 1] and range in
y = [−1, 1]) with one damage location at(−0.4,−0.4). The robot places the actuator and
receiver at six different locations around the damage, and each range value constrains the
location of the reflecting point to be on an ellipse with the actuator and receiver locations
as foci. Thus, by using an accumulator array and adding a ’vote’ to each location on the
ellipse, these six sensed range values allow the determination of the most likely location
of the reflecting point (damage in this case). This ’voting’ is done with a Gaussian spread
which leads to the smooth accumulator surface shown in the figure. Figure 15 (right) shows
a 2-D visualization of the strength of damage location likelihood based on this data.

Figure 16 shows the experimental layout for our testing scenario. The aluminum panel
was 1.6 mm thick, the sensors were VS900-RIC Vallen transducers, and the excitation
signal was a 100 KHz 2.5 cycle, Hann-windowed waveform. (Note that we have not fully
implemented the SLAM approach in the experimental setup, but are now able to acquire
data and obtain range results.) The actuator and receiver sensors are placed as shown
and a sensor reading taken for each location. Figure 17 showsfive range ellipses derived
from the ultrasound signals. As can be seen, the intersection of the signals localizes the
damage in the structure (in this case a hole in an aluminum plate). Figure 18 shows
observed signals and simulated reflected A0 mode signals with known minimized possible
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Figure 16: Experimental Layout for Damage Localization using the Lamb Wave Range
Sensor in an Aluminum Plate.
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Figure 17: Ultrasound Signals received (4 locations).
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Figure 18: First Step in DSR Sensor comparing Actual Data with Simulated Signal.
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Figure 19: Windowed SAP Signal versus Simulated Signal.

reflection range. The simulated reflected signal has much overlap with directly propagated
signals in the real data in first two cases. This means there must be a good way to separate
directly propagate waves (between the actuator and receiver transducers) and the reflected
waves in the observed data, otherwise, data taken with a reflected distance smaller than
some threshold cannot be considered. Another issue is that some of the earliest reflected
signals are not the main component reflected signals in the data. To avoid these two issues,
we simply window out signals outside a certain reflection range. Figure 19 shows the
windowed signals versus the simulated signals as describedabove. In this form, the peak
amplitude not clearly identifiable. We therefore compute the CWT based scaled-average
wavelet power (SAP) (see [24] page 166, for a description of this method). The computed
SAPs are shown in Figure 20; in this figure, the peaks are more clearly discernible.
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Figure 20: Computer Scaled-Average wavelet power (SAPs).

3 Conclusions and Future Work

We propose a Bayesian Computational Sensor Network approach as a formal basis for
Dynamic Data Drive Application Systems. To date, we have shown that this can be effective
in the 1D domain of heat flow, and we are currently working to develop a robust aircraft
structural health monitoring framework based on the use of Lamb waves. A dynamic data
acquisition method using a mobile robot has been described.Future work includes the
experimental validation of the approach as well as a formal analysis of the uncertainty
quantification. We are constructing several mobile robots and will perform experiments
using single and multiple robots to map damage in plate structures. The experiments will
first be performed with Aluminum plates, and then on composite structures.

We are currently exploring the field of uncertainty quantification [27] in order to provide
bounds on the confidence of inferences about the behavior of the SLAMBOTbased on
computational models and sensor data. In particular, we aimto characterize the uncertainty
properties of the range sensor function described earlier.
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