
Addressing Novice Coding Patterns:
Evaluating and Improving a Tool for

Code Analysis and Feedback

Jacqulyn MacHardy Anderson
University of Utah

UUCS-20-002

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

16 April 2020

Abstract

Successful software needs maintenance over long periods of time. The original
code needs to solve the problem and be maintainable. Computer science instructors at
universities try to teach students in introductory classes how to write code that meets
these goals. Results are inconsistent though. Readability is an important aspect of
maintainability, and writing readable code requires choosing and structuring state-
ments and expressions in a way that is idiomatic. Instructors of advanced CS courses
perceive that their students frequently don’t possess or don’t engage this skill of writ-
ing with good structure. Building and evaluating this skill is complicated. Could
students benefit from a tool that can identify and flag poor code structure and provide
hints or suggestions on how to improve it while they program? Can a batch-processing
version of the same tool help instructors quickly see and address the gaps in their stu-
dents’ understanding? These questions were investigated through think-alouds with
ten students as they coded in Eclipse using PMD, a code structure analysis tool and
interviews with four professors who teach introductory computer science courses.

In the think-alouds, students did produce novice code structures, and the tool per-
formed as intended in flagging these structures and providing feedback. All students
were able to correctly interpret the tool’s feedback to successfully revise at least one

1



of their initial implementations to use expert code structure. However, there is room
for improvement in the tool’s feedback.

The instructor interview results showed that although instructors believe that these
patterns are important for students to learn and use, assessing and giving feedback on
this aspect of student code by hand does not scale well to large class sizes, so their
current grading and feedback processes do not target these kinds of code structures.
Instructors believe these tools have the potential to address some of these gaps and
challenges. Although no instructors want to interface with the output of the batch-
processing tool the way it is currently presented, all of them were interested in seeing
it extended and provided input on how the tools could be extended to better meet their
needs.

2




