
Partial-Order Ambiguous
Observations of Fluents and Actions

for Goal Recognition as Planning

Jennifer Nelson
University of Utah

UUCS-20-004

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

26 April 2020

Abstract

This work readies goal recognition for real-world scenarios by adapting a foun-
dational compilation by Ramı́rez and Geffner to work with partial-order, ambiguous
observations of both facts and actions. We first redefine what observations can be
and what it means to satisfy them. We provide a compilation from goal recognition
problem to classical planning problem, then prove it accommodates these more com-
plex observation types. Our compilation can be adapted towards other planning-based
plan/goal recognition techniques, as Ramı́rez and Geffner’s compilation was.

We prove that our method is at least as accurate as an “ignore complexity” strat-
egy that uses Ramı́rez and Geffner’s compilation. Experimental results confirm that,
while slower, our method never has more (and often has fewer) false positives. (Both
methods have no false negatives.) We discuss these findings in the context of goal
recognition problem difficulty, and present an avenue for future work.

1

PARTIAL-ORDER AMBIGUOUS
OBSERVATIONS OF FLUENTS AND ACTIONS

FOR GOAL RECOGNITION AS PLANNING

by
Jennifer Nelson

A Senior Honors Thesis Submitted to the Faculty of
The University of Utah

In Partial Fulfillment of the Requirements for the

Honors Degree in Bachelor of Science

In

The School of Computing

Approved:

Rogelio E. Cardona Rivera Ross Whitaker
Thesis Faculty Supervisor Director, School of Computing

Erin Parker Sylvia D. Torti
Honors Faculty Advisor Dean, Honors College

March 2020
Copyright c© 2020

All Rights Reserved

Partial-Order Ambiguous
Observations of Fluents and Actions

for Goal Recognition as Planning

Jennifer Nelson
University of Utah

UUCS-20-004

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

26 April 2020

Abstract

This work readies goal recognition for real-world scenarios by adapting a foun-
dational compilation by Ramı́rez and Geffner to work with partial-order, ambiguous
observations of both facts and actions. We first redefine what observations can be
and what it means to satisfy them. We provide a compilation from goal recognition
problem to classical planning problem, then prove it accommodates these more com-
plex observation types. Our compilation can be adapted towards other planning-based
plan/goal recognition techniques, as Ramı́rez and Geffner’s compilation was.

We prove that our method is at least as accurate as an “ignore complexity” strat-
egy that uses Ramı́rez and Geffner’s compilation. Experimental results confirm that,
while slower, our method never has more (and often has fewer) false positives. (Both
methods have no false negatives.) We discuss these findings in the context of goal
recognition problem difficulty, and present an avenue for future work.

1

ABSTRACT

This work readies goal recognition for real-world scenarios by adapting a foundational

compilation by Ramı́rez and Geffner to work with partial-order, ambiguous observations

of both facts and actions. We first redefine what observations can be and what it means to

satisfy them. We provide a compilation from goal recognition problem to classical planning

problem, then prove it accommodates these more complex observation types. Our compi-

lation can be adapted towards other planning-based plan/goal recognition techniques, as

Ramı́rez and Geffner’s compilation was. We prove that our method is at least as accurate

as an “ignore complexity” strategy that uses Ramı́rez and Geffner’s compilation. Experi-

mental results1 confirm that, while slower, our method never has more (and often has fewer)

false positives. (Both methods have no false negatives.) We discuss these findings in the

context of goal recognition problem difficulty, and present an avenue for future work.

1Compilation, evaluation, and analysis code can be found at https://github.com/qed-lab/
Complex-Observation-Compiler

ii

TABLE OF CONTENTS

ABSTRACT ii

1 Introduction 1

2 Motivating Example 2

3 The Goal Recognition Problem with Complex Observation Constraints 4

4 Compilation to Planning Problem 7

4.1 Example . 9

5 Proofs 10

5.1 Goal Recognition Problem is Solved . 10

5.2 No Worse than Ignoring Complexity . 12

6 Experimental Evaluation 13

6.1 Method . 13

6.2 Analysis . 14

6.3 Discussion . 14

7 Conclusion 16

iii

References 18

Appendices 19

Appendix A

Sample PDDL 19

A.1 Original DetectiveBot Domain . 19

A.2 Compiled DetectiveBot Domain . 22

A.3 Compiled DetectiveBot Problem . 27

iv

1

1 Introduction

Plan/goal recognition is the problem of identifying the plans and goals of an agent, given

some observations of their behavior(s) [10]. Plan/goal recognition has applications wher-

ever a system needs to anticipate an agent’s actions or desires. This variety includes robot-

human coordination [11], human-computer collaboration [4], assisted cognition [5], net-

work monitoring [8], interactive narratives [2], and language recognition [1, 12].

Ramı́rez and Geffner [7] realized that goal recognition problems are similar to classical

planning problems, and created a formulation to compile recognition problems into plan-

ning problems ready for off-the-shelf planning algorithms. Previously, plan recognition

relied on specialized algorithms and handcrafted libraries. Rather than rely on a library

of possible plan-goal pairs, Ramı́rez and Geffner’s formulation relies on a set of possible

goals and a domain theory describing possible actions. It assumes that any plan which

reaches a possible goal optimally, while also “explaining” all observations in order is part

of the solution to a recognition problem.

In addition to defining an optimal solution set, Ramı́rez and Geffner [7] also relaxed

its own optimality assumption to allow approximate solutions computed with faster algo-

rithms. This also allowed solutions to “skip” some observations if necessary. Ramı́rez and

Geffner [6] also relaxed the optimality assumption, such that goals whose optimal plans

differed significantly from the observations were considered less likely. Sohrabi et al. [9]

further relaxed the optimality assumption, admitting that observation sequences may be

non-optimal, noisy, or missing segments. It assumed observations of single fluents, rather

than actions.

The methods above all assume total-ordered fully specified observations, though real-

world applications may be more complex. One might find artifacts of past actions, but not

know the order in which the artifacts appeared. One might see the actor pick something up,

2

Takes key
or cash

Unlocked,
emptied

1

2
3

4

OBSERVATIONS

Take
cash

1

2 3

4Steal cash

Take
key

Open, throw
contents out

Unlock, take
contents

1

2

6

5

4

3

Destroy contents

Gone

opened
4

4

Take
key

1

2 3

5Steal contents

Unlock, take
contents 4

Figure 1: DetectiveBot’s observations, and unconstrained plans for the culprit’s possible
motivations

but not know what was picked up (an ambiguous observation). One might later observe that

a key is missing from that spot (a fluent observation). This is important information if the

agent’s goal is behind a locked door, but current methods cannot use it. Our work provides

methods to utilize this information. In this work we modify the original [7] compilation,

but our approach can be adapted for any of the methods mentioned above. We focus only

on the “optimal” set of answers for complex observations, leaving relaxations to future

work.

2 Motivating Example

We illustrate our method with the following scenario: DetectiveBot is trying to solve a

breaking-and-entering case at a museum. Cameras record the culprit breaking into the mu-

seum office, rifling through the manager’s top drawer, pocketing something, then sprinting

into an unfilmed backroom. A witness states they saw the culprit running down a stairwell

3

later that night. DetectiveBot inspects the backroom: it contains a single window (opened),

a chest (unlocked and emptied), and the stairwell towards the exit. DetectiveBot wants to

figure out the culprit’s motives. Were they stealing cash from the managers drawer? Were

they stealing the contents of the chest? Or were they destroying the contents of the chest?

DetectiveBot knows the culprit took either cash or a key to the chest from the drawer,

then entered the back room. DetectiveBot does not know what order things happened in the

backroom, but it knows that the window was opened, the chest was unlocked and emptied,

and the culprit left via the stairwell. First DetectiveBot computes plans for what the culprit

would’ve done for each of their three possible motives, unconstrained by DetectiveBot’s

observations (Figure 2). Then it computes plans for each of the three possible motives,

such that each plan also “sees” (satisfies) the observations. DetectiveBot compares the

unconstrained plans to their constrained counterparts, and discovers that only one pair has

identical costs: destroying the contents.

Fortunately, DetectiveBot just upgraded its plan recognition software, or else it would’ve

been forced to model the situation as a sequence of fully-specified ordered steps. It couldn’t

have modeled the culprit rifling through the drawers, because it didn’t know what the culprit

was taking. It wouldn’t know how to model anything about the backroom, because it didn’t

see any actions, just the results. Even if it could model the backroom facts as actions, it

still wouldn’t know their relative order. It would’ve had to either forget them or fix their

order, possibly accidentally fixing the culprit leaving before opening the chest or window.

4

3 The Goal Recognition Problem with Complex Observation

Constraints

Planning Background This paper relies on the formulation of classical planning. Clas-

sical planning is a model of problem solving, wherein agent actions are fully observable and

deterministic. Classical problems are typically represented in the STRIPS formalism [3]. A

STRIPS planning problem is a tuple P = 〈F, I, A,G, fcost〉 where F is the set of fluents,

I ⊆ F is the initial state, G ⊆ F is the set of goal conditions, and A is a set of deter-

ministic actions. Each action is a triple a = 〈PRE(a), ADD(a), DEL(a)〉, that represents the

precondition, add, and delete lists respectively, all subsets of F . A state is a conjunction of

fluents. An action a is applicable in a state s if PRE(a) ⊆ s; applying said applicable action

in the state results in a new state s′ = (s\DEL(a))∪ ADD(a) and incurs a non-negative cost

determined by the function fcost:A −→ R0+.

The solution to a planning problem P is a plan π = [a1, ..., am], a sequence of actions

ai ∈ A that transforms the problem’s initial state I to a state sm that satisfies the goal; i.e.,

G ⊆ sm. The cost c(π) of a plan π is
∑
ai∈π

fcost(ai). A plan segment is a section of a plan,

denoted πkj = [aj, ..., ak] (ai ∈ A, 1 ≤ j ≤ k ≤ m).

The execution trace trace(π, I) = [I, a1, s1, ..., am, sm] of plan π from initial state I is

defined as the alternating sequence of states and actions, starting with I , such that si results

from applying ai to state si−1.

Handling Complex Observations Our formulation is based on the formulation by Ramı́rez

and Geffner, but we exchange the sequence of total-order action observations O with the

more expressive “observation group” Θ. For brevity, we use the notation P [G] to mean an

incomplete planning problem P completed with the addition of the goal G.

5

Definition 1. A goal recognition problem over a domain theory is the tuple T = 〈P,G,Θ〉,

where P = 〈F, I, A, fcost〉 is an incomplete planning problem, G is the set of possible goals,

and Θ is an observation group as defined below. The solution to T is the set G∗ = {G ∈

G : ∃π satisfying Θ and optimally solving P [G]}

Θ relaxes the assumption that all observations are totally ordered and grounded actions.

Instead, we allow an observation to be either an observed action or a set of observed fluents.

Further, we allow partial orderings in the observations as well as ambiguous observations

via sets of possible observations.

Fundamental to this formulation are observation groups, which impose constraints on

the observations they contain. We describe two types of observations, three types of groups,

and what it means for a plan to satisfy each. To enable partial-ordering, we define satisfac-

tion of a group/observation by a plan through a plan segment.

Definition 2. An action observation o of action a ∈ A is satisfied by the plan π through

segment πkj iff a = ai for some ai ∈ πkj (j ≤ i ≤ k).

An action observation is merely an action, and is satisfied by plan segments that contain

that action.

Definition 3. A fluent observation o of fluents (Fo ⊆ F) is satisfied by the plan π with

initial state I through segment πkj iff Fo ⊆ si for some si (j ≤ i ≤ k) in trace(π, I).

A fluent observation is a set of fluents, and is satisfied by plan segments that mark out

a time period where those fluents are true for some state. The actions in the plan segment

do not need to contribute to the observed fluents for this notion of satisfaction. The plan

segment merely marks a time period in which the fluents were observed. It may be that Fo

was true since the initial state, but was not observable until much later. Our intent is to rule

out goal-plan pairs where the plan never co-occurs with the fluents in Fo being true.

6

Now we define ordered groups that impose ordering constraints on members. An or-

dered group can only be satisfied by a plan segment if that segment can be split into chunks

that satisfy each member in order. (These chunks are the reason we define satisfaction in

terms of plan segments.)

Definition 4. An ordered observation group Θ< = [θ1, ..., θn] is a totally ordered sequence

of observation groups and/or simple observations. A plan π satisfies Θ< through the plan

segment πkj iff there exists a monotonically increasing function of the form f : [1, n+ 1]→

[j, k + 1], which maps members of Θ< to segments of πkj such that πf(i+1)−1
f(i) satisfies θi.

The function f above is used to ensure ordering. It maps consecutive group members to

consecutive plan segments. f(i) marks the beginning of θi’s plan segment. We allow no

gaps in plan segments, so θi’s segment ends right before θi+1’s segment begins, and θn’s

segment ends where the whole plan segment ends.

Next we define unordered groups that are only satisfied when all members are. When

embedded in an ordered group, these form the partial part of partial order.

Definition 5. An unordered group Θ∧ = {θ1, ..., θn} is a set of observation groups and/or

simple observations that have no ordering constraints with respect to each other. A plan π

satisfies Θ∧ through the segment πkj iff πkj satisfies all members.

Lastly, we define option groups. Unlike the other groups, this group may contain only

simple observations, not nested groups, and is intended to describe a set of mutually exclu-

sive possible observations. This is how we support ambiguous observations: by transform-

ing each into an option group of all its possible interpretations. This group is satisfied if at

least one of its members is satisfied.

Definition 6. An option group Θ⊕ = |oa, ..., ob| is a set of single observations. A plan π

satisfies Θ⊕ through the segment πkj satisfies at least one member.

7

4 Compilation to Planning Problem

We compile a plan recognition problem into a set of planning problems {P ′[G′] |G′ derived

from G ∈ G} such that a solution to P ′[G′] “explains” the observations nested in Θ, while

respecting Θ’s ordering constraints and not double-explaining different observations in the

same option group. If an optimal solution to P ′[G′] has the same cost as an optimal solution

to P [G], G and the plan solving P ′[G′] are considered a solution to the plan recognition

problem.

This compilation adds an ”explanation” action for every observation. To ensure a so-

lution to P ′[G′] respects Θ’s constraints, we use ordering fluents to ensure an explanation

may only happen after all prior observations have been explained, and that only one ex-

planation is allowed per observation, or per option group. Let nest(θ) denote the set of all

observations nested within θ or its subgroups. (For example, an observation can be placed

in an option group that is inside an unordered group, which is embedded in an ordered

group.)

Definition 7. For the plan recognition problem T = 〈P = 〈F, I, A, fcost〉,G,Θ〉 the plan-

ning problem for each G ∈ G is defined as P ′[G′] = 〈F ′, I ′, A′, G′〉, f ′cost such that:

• F ′ = F ∪ Fe, where Fe = {poi |∀oi ∈ nest(Θ)}

• I ′ = I

• A′ = A ∪ Ae, where Ae = {eoi|∀oi ∈ nest(Θ)}, and

• G′ = G ∪ Fe.

• f ′cost is similar to fcost, with the addition of costs for Ae. (See Definitions 8 and 9.)

We further define Ae and Fe, and later prove that a solution to P ′[G′] satisfies Θ.

Definition 8. The explanation action eoi for the fluent observation oi corresponding to

fluents Foi ⊆ F is a dummy action that marks that Foi is observed, defined as:

8

• PRE(eoi) = Foi ∪ {¬poi} ∪ {popre |opre ∈ B} where B is the set of all observations

nested in any group immediately preceding a group that oi is nested within.

• ADD(eoi) = {poi}

• DEL(eoi) = ∅

• fcost(eoi) = 0

• poi = poj for all oj in the same option group as oi

This definition is based on those of Sohrabi et al. [9], except multiple fluents can be

included in the same observation. A metric planner is needed to work with this zero-cost

action, or the cost of these actions can be subtracted post-planning.

Definition 9. The explanation action eoi for the action observation oi corresponding to

action a ∈ A is an action identical to a but with additional ordering fluents:

• PRE(eoi) = PRE(a)∪{¬poi}∪{popre |opre ∈ B} whereB is the set of all observations

nested in any group immediately preceding a group that oi is nested within.

• ADD(eoi) = ADD(a) ∪ {poi}

• DEL(eoi) = DEL(a)

• fcost(eoi) = fcost(a)

• poi = poj for all oj in the same option group as oi

Note that explanation actions have the precondition ¬poi , but add poi as an effect. As no

action removes poi , this means an explanation action cannot be used twice. Additionally,

explaining an observation in an option group prevents all other explanations from that op-

tion group from being used. In the next section, we prove that our compilation indicates

members of G∗: G is in G∗ when the optimal plan for P ′[G′] costs the same as an optimal

plan for P [G]. To find all members of G∗, we optimally solve P ′[G′] and P [G] for all G in

G, and compare costs.

9

enter-building
take-key

take-money
enter-backroom

exit-building

chest-empty

window-open

option
unorderedordered

Figure 2: DetectiveBot’s observation groups as diagram.

4.1 Example

We illustrate this compilation using the motivating example. DetectiveBot encodes its ob-

servations using the following observation groups:

[enter-building, |take-key,take-money|, enter-backroom,
{(window-opened),(chest-empty), exit-building}]

(Square brackets indicate an ordered group, bars indicate an option group, curly brackets
indicate an unordered group, and parentheses indicate a fluent observation)

From this, DetectiveBot compiles its model of the world, the observations, and one of its
posited goals: outside ∧ contents-destroyed. It first fully grounds the domain
using any objects in the world (in the example domain little grounding is needed, though
our software grounds (NOT (OUTSIDE)) to (NOT-OUTSIDE)). It adds six ordering
fluents, two for the entering actions, one for the option group (MUTEX 1), and three for the
unordered group. The problem’s goal is to see all of these ordering fluents, and to see the
posited goal. DetectiveBot keeps normal actions available, and adds actions corresponding
to each of its observations. For example, the observation of take-key compiles to the
following:

1 (:action EXPLAIN_OBS_TAKE-KEY
2 :parameters ()
3 :precondition (and
4 (not (MUTEX_1)) ;; Don’t repeat anything in this option group
5 (KEY-IN-DRAWER)
6 (IN-OFFICE)
7 (NOT-OUTSIDE)
8 (OBSERVATION_0) ;; Must have seen prior observation
9)

10 :effect (and
11 (increase (total-cost) 1)
12 (HOLDING-KEY)
13 (not (KEY-IN-DRAWER))
14 (MUTEX_1) ;; Mark that we’ve observed this option group

10

15)
16)

If an unordered group was prior to the option group, instead of the observation
enter-building, EXPLAIN OBS TAKE KEY would have ordering fluents from every
observation in the prior unordered group, and anything nested in that unordered group.

The full original domain, problem, and compiled version can be found in Appendix A.

5 Proofs

In this section we present two main proofs. The first is a proof that our compilation in-
dicates if a goal is in the solution to a goal recognition problem; i.e., if the goal has an
observation-satisfying plan that optimally reaches the goal. The second is a proof that our
compilation will never yield a goal set larger than the goal set created by ignoring complex
observations and using Ramı́rez and Geffner’s 2009 compilation. This proves that, with
respect to accuracy (i.e., the size of the optimal goal set), our compilation is no worse than
the compilation by Ramı́rez and Geffner. The subsequent section presents and empirical
evaluation demonstrating that in several cases we are in fact better.

5.1 Goal Recognition Problem is Solved

We prove that our compilation produces a planning problem that solves the goal recognition
problem in two steps. We first prove that any plan π for P ′[G′] has a corresponding plan
ψ(π) of equivalent cost that solves P [G]. We then prove that ψ(π) satisfies Θ and (by the
first proof) solves P [G] with the same cost as π. If this cost is the same as an optimal plan
for just P [G], then G is in the solution set G∗ for T .

Theorem 1. A plan π for P ′[G′] has a corresponding plan ψ(π), solving P [G], such that
c(π) = c(ψ(π)).

Proof. For π, let ψ(π) be the same sequence of actions, but with fluent observation ex-
planations removed, and action observation explanations replaced with their corresponding
action in A. Because fluent explanations have no cost, and action explanations cost the
same as their corresponding action, c(π) = c(ψ(π)). Fluent explanations only effect or-
dering fluents, and action explanations are identical to their corresponding actions, save for
ordering fluents. Since G does not include any ordering fluents, ψ(π) still achieves G.

Theorem 2. If plan segment πkj = [aj, ..., ak](ai ∈ A′) achieves all poi for oi ∈ nest(Θ),
then ψ(πkj) satisfies Θ.

11

Proof. We prove this theorem through a series of Lemmas showing that such a plan seg-
ment will satisfy every observation and observation group.

Lemma 2.1 (Simple Observations). If πkj achieves poi , then ψ(πkj) satisfies oi.

Proof. The only way for πkj to achieve poi is through explanation action eoi . If oi is an
observation of action a, then eoi is translated to a in ψ(πkj), satisfying oi. If oi is an obser-
vation of fluents Foi , then eoi has Foi as precondition, so Foi must exist in the execution
trace for πkj , and thus in the trace for ψ(πkj). In either case, ψ(πkj) satisfies oi.

Lemma 2.2 (Option Group). If πkj achieves any poi for oi in the option group Θ⊕, then
ψ(πkj) satisfies Θ⊕.

Proof. If πkj achieves a particular poi for oi ∈ Θ⊕, then by Lemma 2.1, ψ(πkj) satisfies oi.
By satisfying a member of Θ⊕, ψ(πkj) satisfies Θ⊕.

Lemma 2.3 (Unordered Group). If πkj achieves all poi for oi ∈ nest(Θ∧), then ψ(πkj)
satisfies Θ∧.

Proof. ψ(πkj) satisfies every simple observation and option group contained directly in Θ∧,
per Lemmas 2.1 and 2.2. ψ(πkj) also satisfies any contained option groups, per Lemma 2.2.
If Θ∧ contains unordered groups, this is equivalent to containing the unordered group’s
members directly. Any contained ordered groups are also satisfied by ψ(πkj), via Lemma
2.4.

Lemma 2.4 (Ordered Group). If πkj achieves all poi for oi nested in the ordered group
Θ< = [θ1, ..., θn], ψ(πkj) satisfies Θ<.

Proof. Let f : [1, n+ 1]→ [j, k+ 1] be a function where f(n+ 1) = k + 1 and f(i) is the
index of the first explanation action for any o ∈ nest(θi). Segment πf(i+1)−1

f(i) then achieves
all po for o ∈ nest(θi), since the explanation action at f(i + 1) has {po | o ∈ θi} as a
precondition. Via the other Lemmas, ψ(π

f(i+1)−1
f(i)) satisfies θi.

Let fψ be of the form fψ : [1, n+ 1]→ [1, |ψ(πkj)|+ 1] where fψ(n+ 1) = |ψ(πkj)|+ 1
and fψ(i) maps to where the action at f(i) would be if the ψ(·) transformation did not re-
move/transform it. This way, fψ creates plan segments corresponding to the plan segments
f creates, such that

ψ(π
f(i+1)−1
f(i)) = (ψ(πkj))

fψ(i+1)−1
fψ(i)

Since the left-hand side of this equation satisfies θi, so too does the right-hand side. This
makes fψ a monotonically increasing function which separates ψ(πkj) into sections which
satisfy each member of Θ<. With it, ψ(πkj) satisfies Θ<.

12

Lemmas 2.3 and 2.4 recurse into themselves if an unordered group contains an ordered
group (or vice versa), but are satisfied by the base case where a group contains only simple
observations and/or option groups.
With Lemmas 2.1 - 2.4, we prove a plan segment achieving all poi has a corresponding plan
that satisfies Θ.

An optimal solution to P ′[G′] necessarily achieves all poi , and so by Theorem 2, has
a corresponding plan that satisfies Θ. With Theorem 1, we prove that this corresponding
plan also solves P [G]. If the cost of this plan is the same as the cost for an optimal plan to
just P [G] (not constrained by Θ), then a plan exists that satisfies Θ and optimally solves
P [G]. By definition 1, G is in T ’s solution set G∗.

5.2 No Worse than Ignoring Complexity

We prove that our compilation will never yield a goal set larger than the goal set created
by ignoring complex observations. We begin by defining an “ignore complexity” strategy
for simplifying observation groups to a form Ramı́rez and Geffner’s 2009 compilation can
handle. This strategy removes fluent observations and option groups, reduces unordered
groups to a single member, then simplifies one- or no-member groups. We choose this
strategy over strategies that try different orderings/option group members because they
would take exponentially longer to solve, requiring as many tries as there are combinations
of unordered group orders and option group choices. We sketch a proof that using observa-
tions will always be at least as accurate as ignoring them. Accuracy is measured by number
of goals indicated: fewer false positives is more accurate. It’s worth noting that both com-
pilations have perfect recall for goal recognition problems (if Gtrue is in G) but may have
imperfect recall for plan recognition problems, which are concerned with indicating both
the correct G and the true plan π used to achieve G.

Theorem 3. Given Tcpx = 〈P,G,Θ〉 and Tign = 〈P,G,Θign〉, where Θign removes some
number of observations from Θ without altering order constraints, |G∗cpx| ≤ |G∗ign|, where
G∗cpx is the solution set to Tcpx and G∗ign is the solution set to Tign.

Proof Sketch. Assume |G∗cpx| > |G∗ign|. Then there exists some G ∈ G such that G ∈ G∗cpx
but G 6∈ G∗ign. This means an explanation action for some observation in Θign created a
larger cost for the optimal plan for P ′[G′] compiled for Tign, making c∗(P ′[G′]) > c∗(P [G])
and eliminatingG from G∗ign. Because the observations in Θign are a subset of those in Θcpx,
that explanation action will also incur a cost for P ′[G′] compiled for Tcpx, eliminating G
from G∗cpx. This contradicts the premise, so |G∗cpx| ≤ |G∗ign|.

13

6 Experimental Evaluation

We evaluate the proposed formulation against the “ignore complexity” strategy for accom-
modating complex observations using the compilation in Ramı́rez and Geffner [7]. We use
the same domains and plan recognition problems, but generate new observations according
to two parameters. The metric we’re concerned with is the number of incorrect goals in the
optimal goal set G∗. By this metric we often perform better, and never perform worse. In
some domains the “ignore complexity” strategy often found no incorrect goals, leaving our
formulation no room for improvement. We report how often this occurred, and focus on
cases where we could improve. In general, our method is slower.

6.1 Method

Hypotheses We hypothesize that the size of our goal set will often be smaller, and never
larger, than the size of the goal set computed using simplified observations. We also mea-
sure the time it takes to compute the optimal goal set.

Apparatus We developed our software by expanding the original plan recognition as
planning code developed by Ramı́rez and Geffner [7]. Our software ran atop Centos 7.2
Linux with the 3.10 kernel, deployed on hardware equipped with a 3.60GHz Intel Core
i7-4790 Processor, 32GB DDR3 1600MHz overclocked RAM, and 240GB Intel 540 Solid
State Drive. Optimal plans were generated using A* search with admissible h-max heuris-
tic. When computing plans in P ′[G′] we pruned paths whose estimated cost-to-goal reached
the optimal cost of P [G] (pre-computed and not counted towards measures of time). This
sped up how soon incorrect goals were excluded from G∗. For each P ′[G′], we allotted ten
times the time taken to compute P [G], with a minimum of 20 seconds. (In the logistics
domain, this was sometimes still not enough time.)

Procedure For every plan recognition problem in Ramı́rez and Geffner [7], consisting
of a domain P and possible goals G of which Gtrue is correct, we found an optimal plan
for P [Gtrue], and generated complex observations from both the plan (A) and plan’s trace
(A+F). For each plan/trace, we generated 3 observation sets per setting, varying setting by
amount of observations of unknown order (U%) and amount of ‘ambiguated’ observations
missing a parameter (D%). To generate observations, we randomly removed half the opti-
mal plan/trace, and removed 90% of fluents from states in each trace. With the remaining
plan/trace we chunked U% of observations into unordered groups of size ∼3. Lastly, we
‘ambiguated’ D% of action observations by removing one parameter and replacing the ob-
servation with an option group of all matching observations. (E.g. (eat H)→ Θ⊕ = |(eat
A),...,(eat Z)|) D% was only applied to action observations with at least one parameter.

We varied U and D over five settings:

• No Obscuration: U=0% D=0%

14

• Vary Deboundedness: U=0% D=25%
• Vary Unorderedness: U=25% D=0%
• Vary Unorderedness: U=50% D=0%
• Vary Both: U=50% D=25%

For each problem 〈P,G,Θ〉, and each G ∈ G, we compiled two planning domains:
P ′[G′] (this work’s compilation) and P ′ign[G′ign] (Using the “ignore complexity” strategy
and Ramı́rez and Geffner’s 2009 compilation). We compare the optimal costs of both to
the optimal cost for P [G] (precomputed). If c∗(P ′[G′]) = c∗(P [G]), we place G in G∗cpx. If
c∗(P ′ign[G′ign]) = c∗(P [G]), we place G in G∗ign.

6.2 Analysis

We conducted tests over the four domains in [7]: Block-Words, Ipc-Grid, Grid-Navigation,
and Logistics. The size of |G| for each domain averaged 20.32, 8.56, 4.22, and 10.00,
respectively. For the latter three domains, most problems were perfectly solved with the
“ignore complexity” strategy, leaving no room for improvement. We removed instances
where our simplification strategy resulted in an empty observation set. (This occurred 38
times, mostly in the [A+F U:50%D:25%] setting.) Table 1 reports the number of per-
fectly solved problems (Opt) and problems with room for improvement (Imp), per setting,
per domain. It also reports the average number of observations (|Θ|) per method and the
average size of the solution set (|G∗|) when improvable, and the average time to compute
(whether or not improvable). Error rates indicate a 95% confidence interval. For |Θ|, we
defined option groups as being size 1.

We conducted an independent t-test, not assuming same variance, comparing the sizes
of solution sets when improvable. We found a statistically significant difference between
|G∗ign|(µ=3.91, σ=2.99) and |G∗cpx|(µ=2.51, σ=1.73) (t(df=2372.97)=15.620, p <0.01, µign–
µcpx=1.40, d=0.57) We also found statistically significant differences (p <0.01) for each
domain, with Block-Words having the largest difference (t(df=1703.41)=14.15, µign–µcpx=1.64,
d=0.61).

Figure 3 shows the results from Block-Words in more detail, comparing the size of G∗cpx
and G∗ign for each setting. Notches represent a 95% confidence interval around the median
value, and dashed lines represent mean. It only considers instances where |G∗ign| > 1,
leaving room for improvement.

6.3 Discussion

Figure 3 shows that complex observations can be a crucial factor in eliminating false hy-
potheses. Particularly for scenarios with multiple types of complexity, such as the [A+F
U:50% D:25%] setting, ignoring complexity can cost three or four false positives. In no

15

Table 1: Empirical Evaluation Results Per Domain and Setting

Number Observation Set Size (|Θ|) Solution Set Size (|G∗|) Time (seconds)
Setting Samples Ignore Complexity Our Method Ignore Cplex Complx Ignore Cplx Complex

U% D% Opt Imp Opt Imp Opt Imp Improvable Samples All Samples (Opt+Imp)
A

:A
ct

io
n

O
bs

er
va

tio
ns

O
nl

y
B

lo
ck

-W
or

ds 0% 0% 97 86 4.45 ± 0.24 4.08 ± 0.27 4.45 ± 0.24 4.08 ± 0.27 3.03 ± 0.33 3.03 ± 0.33 59.98 ± 3.25 77.11 ± 3.82

0% 25% 57 126 3.18 ± 0.19 2.75 ± 0.16 4.67 ± 0.29 4.10 ± 0.22 4.27 ± 0.48 3.17 ± 0.36 46.57 ± 3.08 93.38 ± 5.00

25% 0% 97 86 3.98 ± 0.15 3.78 ± 0.21 4.42 ± 0.23 4.12 ± 0.29 3.27 ± 0.33 3.02 ± 0.32 54.83 ± 2.97 83.55 ± 4.60

50% 0% 65 118 2.97 ± 0.14 2.81 ± 0.12 4.45 ± 0.28 4.19 ± 0.23 3.81 ± 0.40 2.86 ± 0.33 47.92 ± 2.98 99.81 ± 5.98

50% 25% 46 137 2.61 ± 0.23 2.14 ± 0.13 4.59 ± 0.33 4.18 ± 0.21 5.01 ± 0.60 3.42 ± 0.45 41.12 ± 3.04 115.78 ± 6.75

Ip
c-

G
ri

d

0% 0% 76 14 6.92 ± 0.53 7.21 ± 1.24 6.92 ± 0.53 7.21 ± 1.24 2.00 ± 0.00 2.00 ± 0.00 4.20 ± 0.84 8.53 ± 1.75

0% 25% 76 14 4.82 ± 0.41 5.14 ± 0.87 6.89 ± 0.53 7.36 ± 1.19 2.29 ± 0.42 1.93 ± 0.42 3.62 ± 0.74 8.01 ± 1.62

25% 0% 74 16 5.78 ± 0.41 6.25 ± 0.79 6.84 ± 0.54 7.56 ± 1.03 2.12 ± 0.27 2.06 ± 0.31 3.63 ± 0.72 8.41 ± 1.74

50% 0% 73 17 4.38 ± 0.35 4.65 ± 0.85 6.89 ± 0.54 7.29 ± 1.13 2.41 ± 0.66 1.94 ± 0.34 3.22 ± 0.65 10.88 ± 2.58

50% 25% 65 25 3.42 ± 0.34 3.16 ± 0.60 6.91 ± 0.59 7.12 ± 0.85 2.40 ± 0.55 1.64 ± 0.29 2.79 ± 0.54 11.70 ± 2.78

N
av

ig
at

io
n 0% 0% 58 5 9.31 ± 1.42 5.40 ± 0.68 9.31 ± 1.42 5.40 ± 0.68 3.60 ± 2.72 3.60 ± 2.72 0.20 ± 0.04 0.21 ± 0.02

0% 25% 52 11 6.17 ± 1.13 6.55 ± 2.56 8.90 ± 1.50 9.45 ± 3.36 2.73 ± 0.85 2.09 ± 0.63 0.21 ± 0.07 0.19 ± 0.03

25% 0% 56 7 7.36 ± 1.11 7.57 ± 5.36 8.96 ± 1.37 9.29 ± 6.51 2.71 ± 1.38 2.57 ± 1.50 0.19 ± 0.05 0.17 ± 0.02

50% 0% 56 7 5.80 ± 0.91 6.29 ± 4.33 8.91 ± 1.37 9.71 ± 6.31 2.43 ± 0.73 2.00 ± 0.53 0.19 ± 0.03 0.19 ± 0.02

50% 25% 52 11 4.58 ± 0.83 4.64 ± 2.00 8.94 ± 1.44 9.27 ± 4.08 3.00 ± 1.08 1.91 ± 0.97 0.19 ± 0.04 0.20 ± 0.03

L
og

is
tic

s

0% 0% 54 6 9.83 ± 0.10 10.00 ± 0.00 9.83 ± 0.10 10.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 892.68 ± 22.73 903.62 ± 22.72

0% 25% 52 8 6.83 ± 0.11 7.00 ± 0.00 9.83 ± 0.11 10.00 ± 0.00 2.12 ± 0.30 2.00 ± 0.45 902.31 ± 22.47 900.95 ± 22.82

25% 0% 45 15 7.84 ± 0.11 7.87 ± 0.19 9.84 ± 0.11 9.87 ± 0.19 2.13 ± 0.19 1.73 ± 0.33 884.55 ± 24.70 903.10 ± 24.98

50% 0% 49 11 6.86 ± 0.10 6.82 ± 0.27 9.86 ± 0.10 9.82 ± 0.27 2.18 ± 0.27 1.55 ± 0.35 893.55 ± 24.43 917.98 ± 22.67

50% 25% 47 13 5.28 ± 0.24 5.08 ± 0.39 9.83 ± 0.11 9.92 ± 0.17 2.46 ± 0.58 1.31 ± 0.29 888.69 ± 27.90 923.47 ± 20.64

A
+F

:A
ct

io
n

an
d

Fl
ue

nt
O

bs
er

va
tio

ns B
lo

ck
-W

or
ds 0% 0% 102 81 4.65 ± 0.25 4.51 ± 0.41 8.69 ± 0.43 8.40 ± 0.61 3.41 ± 0.53 2.57 ± 0.34 61.95 ± 3.71 112.73 ± 4.74

0% 25% 44 132 3.16 ± 0.41 1.98 ± 0.17 9.00 ± 0.71 8.45 ± 0.42 6.36 ± 0.80 2.36 ± 0.30 38.17 ± 3.33 144.43 ± 6.44

25% 0% 99 84 4.44 ± 0.22 4.06 ± 0.30 8.73 ± 0.44 8.36 ± 0.59 3.50 ± 0.46 2.77 ± 0.34 59.14 ± 3.44 140.76 ± 6.74

50% 0% 89 94 4.10 ± 0.24 3.27 ± 0.26 9.15 ± 0.45 8.00 ± 0.54 3.70 ± 0.47 2.49 ± 0.29 53.20 ± 3.09 165.64 ± 7.57

50% 25% 41 124 2.51 ± 0.29 2.02 ± 0.17 8.63 ± 0.59 8.81 ± 0.46 6.30 ± 0.75 2.35 ± 0.33 36.13 ± 3.03 190.01 ± 8.16

Ip
c-

G
ri

d

0% 0% 79 11 6.76 ± 0.57 7.18 ± 1.34 13.25 ± 1.01 14.73 ± 2.44 2.00 ± 0.00 2.00 ± 0.00 4.16 ± 0.83 1.23 ± 0.24

0% 25% 62 27 3.71 ± 0.44 2.67 ± 0.56 13.53 ± 1.19 13.33 ± 1.53 3.26 ± 0.97 1.37 ± 0.19 2.76 ± 0.58 1.60 ± 0.42

25% 0% 73 17 6.03 ± 0.52 6.82 ± 1.18 12.86 ± 1.01 15.88 ± 2.15 2.00 ± 0.00 1.76 ± 0.22 3.98 ± 0.80 1.81 ± 0.40

50% 0% 71 19 5.52 ± 0.50 5.84 ± 1.21 13.13 ± 1.06 14.58 ± 2.00 2.26 ± 0.39 1.79 ± 0.20 3.76 ± 0.75 2.34 ± 0.65

50% 25% 51 31 3.18 ± 0.38 3.06 ± 0.54 13.61 ± 1.27 14.52 ± 1.30 3.13 ± 0.82 1.58 ± 0.18 3.06 ± 0.64 2.59 ± 0.61

N
av

ig
at

io
n 0% 0% 54 9 9.17 ± 1.49 8.33 ± 4.25 17.41 ± 2.79 17.56 ± 9.35 2.56 ± 1.02 2.44 ± 1.09 0.18 ± 0.02 0.23 ± 0.03

0% 25% 48 14 4.56 ± 0.95 4.07 ± 1.61 16.73 ± 2.91 20.14 ± 6.89 3.07 ± 0.86 1.79 ± 0.79 0.18 ± 0.02 0.20 ± 0.04

25% 0% 56 7 8.02 ± 1.31 9.29 ± 5.92 17.27 ± 2.71 18.71 ± 12.51 3.14 ± 1.35 2.57 ± 1.68 0.17 ± 0.01 0.20 ± 0.03

50% 0% 57 6 7.60 ± 1.14 8.17 ± 6.28 17.16 ± 2.67 20.00 ± 15.12 2.50 ± 0.88 1.67 ± 0.54 0.17 ± 0.01 0.20 ± 0.03

50% 25% 39 21 3.95 ± 0.81 4.52 ± 1.12 16.21 ± 3.14 20.62 ± 5.36 2.86 ± 0.52 1.19 ± 0.18 0.16 ± 0.01 0.19 ± 0.01

L
og

is
tic

s

0% 0% 55 5 10.13 ± 0.43 8.60 ± 0.68 19.25 ± 0.20 19.80 ± 0.56 2.00 ± 0.00 1.80 ± 0.56 895.50 ± 22.44 913.19 ± 21.46

0% 25% 35 25 5.71 ± 0.54 4.68 ± 0.70 19.23 ± 0.24 19.40 ± 0.32 2.60 ± 0.46 1.32 ± 0.26 862.35 ± 27.86 901.43 ± 26.05

25% 0% 52 8 9.10 ± 0.41 10.25 ± 1.72 19.25 ± 0.20 19.62 ± 0.62 2.00 ± 0.00 1.75 ± 0.39 891.18 ± 22.76 910.72 ± 22.88

50% 0% 47 13 7.94 ± 0.37 8.00 ± 0.55 19.26 ± 0.22 19.46 ± 0.31 2.08 ± 0.17 1.54 ± 0.31 890.45 ± 23.33 933.17 ± 23.85

50% 25% 37 23 4.89 ± 0.37 4.26 ± 0.68 19.30 ± 0.23 19.30 ± 0.33 2.48 ± 0.45 1.22 ± 0.29 866.39 ± 32.33 930.81 ± 22.57

U% is percent of observations placed in an unordered set. D% is percent of ‘ambiguated’
observations. We distinguish between samples perfectly solved by the ignore strategy (Opt)
and samples with room for improvement (Imp). |Θ| is the observation set size for the
specified method and sample group. |G∗| is the size of the solution set over the improvable
(Imp) samples. Bold indicates a t-test significant difference (α <.05). Underlines indicate
the smaller of two means. Values with error rates are means with a 95% confidence interval.

case were we less accurate, empirically confirming Theorem 3.

This considered, our method is consistently slower across domains, regardless of im-
provement. We hypothesize that this is due to a larger search space. Using more observa-
tions means including more actions in the planning domain, which usually takes longer to
compute. This time is highly domain-dependent. For instance, Logistics takes hundreds of
seconds while Ipc-Grid takes under a second.

For all domains except Block-Words, the number of instances where we could improve
(i.e.,|G∗ign| 6= 1) was too small to make significant conclusions. This brings up the concept

16

Figure 3: Comparison of solution set sizes |G∗ign| and |G∗cpx|, from samples where improve-
ment was possible. A solution set size of 1 is optimal.

of goal recognition difficulty. What makes Block-Words more difficult than the other do-
mains? The other domains have, on average, larger observation sets to work with, derived
from longer plans. Is it the number of observations available? Are the possible goals in its
G more similar? If so, what makes them similar? Goal Recognition difficulty is not neces-
sarily tied to planning difficulty. The Logistics domain took extraordinarily long compared
to the Ipc-Grid and Navigation domains, yet all found the optimal solution set most of the
time.

In future work, we wish to reevaluate with more coverage over more settings to pinpoint
those settings where a domain becomes ‘easy’, as measured by how often the optimal
solution set is found.

7 Conclusion

In applications with plentiful information or few complex observations, ignoring complex-
ity may be preferred for faster results with little loss of answer quality. However, in areas
with sparse information, more complex observations, or in domains known to be difficult,
using complex information is vital, even if it takes longer to compute.

Our definitions for new observation types can be used for any goal recognition approach,
and our compilation can be adapted for other planning-based approaches. In particular, we
are interested in adapting this compilation for probabilistic plan recognition and multi-
agent plan recognition.

17

For goal recognition to be used broadly, it needs to handle all types of information
handed to it. From detective robots to ambiguous words in natural language, complex ob-
servations can come from many real-world scenarios, and this method lays the groundwork
for leveraging them. We provide crisp definitions for partial-order ambiguous observations
of both fluents and actions, then prove that our compilation produces satisfactory plans.
While this work deals only with optimal solutions, this work can be extended to work with
probabilistic goal recognition.

18

References

[1] Sandra Carberry. Plan recognition in natural language dialogue. MIT press, Cam-
bridge, MA, 1990.

[2] Rogelio E. Cardona-Rivera and R. Michael Young. Symbolic plan recognition in in-
teractive narrative environments. In Proceedings of the Joint Workshop on Intelligent
Narrative Technologies and Social Believability in Games at the 11th AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Entertainment, pages 16–22,
Santa Cruz, CA, USA, November 2015.

[3] Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of
theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

[4] Neal Lesh, Charles Rich, and Candace L Sidner. Using plan recognition in human-
computer collaboration. In UM99 User Modeling, pages 23–32. Springer Science,
Berlin, Germany, 1999.

[5] William Pentney, Ana-Maria Popescu, Shiaokai Wang, Henry Kautz, and Matthai
Philipose. Sensor-based understanding of daily life via large-scale use of common
sense. In Proceedings of the 21st national conference on Artificial intelligence-
Volume 1, pages 906–912, Boston, MA, USA, July 2006.

[6] Miguel Ramı́rez and Hector Geffner. Probabilistic plan recognition using off-the-
shelf classical planners. In Twenty-Fourth AAAI Conference on Artificial Intelligence,
Atlanta, GA, USA, July 2010.

[7] Miquel Ramı́rez and Hector Geffner. Plan recognition as planning. In Twenty-First
International Joint Conference on Artificial Intelligence, Pasadena, CA, USA, July
2009.

[8] Shirin Sohrabi, Octavian Udrea, and Anton Riabov. Hypothesis exploration for mal-
ware detection using planning. In Twenty-Seventh AAAI Conference on Artificial In-
telligence, Bellevue, WA, USA, July 2013.

[9] Shirin Sohrabi, Anton V Riabov, and Octavian Udrea. Plan recognition as planning
revisited. In Proceedings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI), volume 63, New York, NY, USA, July 2016.

[10] Gita Sukthankar, Christopher Geib, Hung Hai Bui, David Pynadath, and Robert P.
Goldman. Plan, Activity, and Intent Recognition: Theory and Practice. Morgan
Kaufmann, Burlington, MA, 2014.

[11] Kartik Talamadupula, Gordon Briggs, Tathagata Chakraborti, Matthias Scheutz, and
Subbarao Kambhampati. Coordination in human-robot teams using mental model-
ing and plan recognition. In 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2957–2962, Chicago, IL, USA, September 2014. IEEE.

19

[12] Ingrid Zukerman and Diane Litman. Natural language processing and user modeling:
Synergies and limitations. User modeling and user-adapted interaction, 11(1-2):129–
158, March 2001.

Appendix A
Sample PDDL

A.1 Original DetectiveBot Domain

1 (define (domain detectiveBot)
2 (:requirements
3 :negative-preconditions
4)
5 (:predicates
6 (outside)
7 (in-office)
8 (in-backroom)
9 (money-in-drawer)

10 (key-in-drawer)
11 (chest-empty)
12 (holding-money)
13 (holding-key)
14 (holding-contents)
15 (chest-unlocked)
16 (contents-destroyed)
17 (window-opened)
18)
19

20 (:action enter-building
21 :parameters ()
22 :precondition
23 (and
24 (outside)
25)
26 :effect
27 (and
28 (not (outside))
29 (in-office)
30)
31)
32

33 (:action enter-backroom
34 :parameters ()
35 :precondition
36 (and
37 (not (outside))
38 (in-office)
39)
40 :effect

20

41 (and
42 (in-backroom)
43 (not (in-office))
44)
45)
46

47 (:action enter-office
48 :parameters ()
49 :precondition
50 (and
51 (not (outside))
52 (in-backroom)
53)
54 :effect
55 (and
56 (in-office)
57 (not (in-backroom))
58)
59)
60 (:action exit-building
61 :parameters ()
62 :precondition
63 (and
64 (not (outside))
65 (in-backroom)
66)
67 :effect
68 (and
69 (not (in-backroom))
70 (outside)
71)
72)
73

74 (:action take-money
75 :parameters ()
76 :precondition
77 (and
78 (not (outside))
79 (in-office)
80 (money-in-drawer)
81)
82 :effect
83 (and
84 (not (money-in-drawer))
85 (holding-money)
86)
87)
88 (:action take-key
89 :parameters ()
90 :precondition
91 (and
92 (not (outside))
93 (in-office)
94 (key-in-drawer)

21

95)
96 :effect
97 (and
98 (not (key-in-drawer))
99 (holding-key)

100)
101)
102

103 (:action unlock-chest
104 :parameters ()
105 :precondition
106 (and
107 (not (outside))
108 (in-backroom)
109 (holding-key)
110)
111 :effect
112 (and
113 (chest-unlocked)
114)
115)
116

117 (:action take-contents-from-chest
118 :parameters ()
119 :precondition
120 (and
121 (not (outside))
122 (in-backroom)
123 (chest-unlocked)
124 (not (chest-empty))
125)
126 :effect
127 (and
128 (holding-contents)
129 (chest-empty)
130)
131)
132

133 (:action throw-out-window
134 :parameters ()
135 :precondition
136 (and
137 (not (outside))
138 (in-backroom)
139 (holding-contents)
140)
141 :effect
142 (and
143 (not (holding-contents))
144 (contents-destroyed)
145 (window-opened)
146)
147)
148)

22

A.2 Compiled DetectiveBot Domain

1 (define
2 (domain grounded-DETECTIVEBOT)
3 (:requirements :strips :action-costs)
4 (:predicates
5 (NOT-OUTSIDE)
6 (IN-OFFICE)
7 (IN-BACKROOM)
8 (HOLDING-MONEY)
9 (HOLDING-KEY)

10 (CHEST-UNLOCKED)
11 (HOLDING-CONTENTS)
12 (CHEST-EMPTY)
13 (CONTENTS-DESTROYED)
14 (WINDOW-OPENED)
15 (NOT-CHEST-EMPTY)
16 (KEY-IN-DRAWER)
17 (MONEY-IN-DRAWER)
18 (OUTSIDE)
19 (OBSERVATION_0)
20 (MUTEX_1)
21 (OBSERVATION_2)
22 (OBSERVATION_3)
23 (OBSERVATION_4)
24 (OBSERVATION_5)
25)
26 (:functions (total-cost))
27 (:action EXPLAIN_OBS_ENTER-BUILDING
28 :parameters ()
29 :precondition
30 (and
31 (not (OBSERVATION_0))
32 (OUTSIDE)
33)
34 :effect
35 (and
36 (increase (total-cost) 1)
37 (NOT-OUTSIDE)
38 (IN-OFFICE)
39 (not (OUTSIDE))
40 (OBSERVATION_0)
41)
42)
43 (:action EXPLAIN_OBS_TAKE-KEY
44 :parameters ()
45 :precondition
46 (and
47 (not (MUTEX_1))
48 (KEY-IN-DRAWER)
49 (IN-OFFICE)
50 (NOT-OUTSIDE)
51 (OBSERVATION_0)
52)

23

53 :effect
54 (and
55 (increase (total-cost) 1)
56 (HOLDING-KEY)
57 (not (KEY-IN-DRAWER))
58 (MUTEX_1)
59)
60)
61 (:action EXPLAIN_OBS_TAKE-MONEY
62 :parameters ()
63 :precondition
64 (and
65 (not (MUTEX_1))
66 (MONEY-IN-DRAWER)
67 (IN-OFFICE)
68 (NOT-OUTSIDE)
69 (OBSERVATION_0)
70)
71 :effect
72 (and
73 (increase (total-cost) 1)
74 (HOLDING-MONEY)
75 (not (MONEY-IN-DRAWER))
76 (MUTEX_1)
77)
78)
79 (:action EXPLAIN_OBS_ENTER-BACKROOM
80 :parameters ()
81 :precondition
82 (and
83 (not (OBSERVATION_2))
84 (IN-OFFICE)
85 (NOT-OUTSIDE)
86 (MUTEX_1)
87)
88 :effect
89 (and
90 (increase (total-cost) 1)
91 (IN-BACKROOM)
92 (not (IN-OFFICE))
93 (OBSERVATION_2)
94)
95)
96 (:action EXPLAIN_OBSERVATION_3
97 :parameters ()
98 :precondition
99 (and

100 (not (OBSERVATION_3))
101 (WINDOW-OPENED)
102 (OBSERVATION_2)
103)
104 :effect
105 (and
106 (increase (total-cost) 0)

24

107 (OBSERVATION_3)
108)
109)
110 (:action EXPLAIN_OBSERVATION_4
111 :parameters ()
112 :precondition
113 (and
114 (not (OBSERVATION_4))
115 (CHEST-EMPTY)
116 (OBSERVATION_2)
117)
118 :effect
119 (and
120 (increase (total-cost) 0)
121 (OBSERVATION_4)
122)
123)
124 (:action EXPLAIN_OBS_EXIT-BUILDING
125 :parameters ()
126 :precondition
127 (and
128 (not (OBSERVATION_5))
129 (IN-BACKROOM)
130 (NOT-OUTSIDE)
131 (OBSERVATION_2)
132)
133 :effect
134 (and
135 (increase (total-cost) 1)
136 (OUTSIDE)
137 (not (IN-BACKROOM))
138 (not (NOT-OUTSIDE))
139 (OBSERVATION_5)
140)
141)
142 (:action THROW-OUT-WINDOW
143 :parameters ()
144 :precondition
145 (and
146 (HOLDING-CONTENTS)
147 (IN-BACKROOM)
148 (NOT-OUTSIDE)
149)
150 :effect
151 (and
152 (increase (total-cost) 1)
153 (CONTENTS-DESTROYED)
154 (WINDOW-OPENED)
155 (not (HOLDING-CONTENTS))
156)
157)
158 (:action TAKE-CONTENTS-FROM-CHEST
159 :parameters ()
160 :precondition

25

161 (and
162 (NOT-CHEST-EMPTY)
163 (CHEST-UNLOCKED)
164 (IN-BACKROOM)
165 (NOT-OUTSIDE)
166)
167 :effect
168 (and
169 (increase (total-cost) 1)
170 (HOLDING-CONTENTS)
171 (CHEST-EMPTY)
172 (not (NOT-CHEST-EMPTY))
173)
174)
175 (:action UNLOCK-CHEST
176 :parameters ()
177 :precondition
178 (and
179 (HOLDING-KEY)
180 (IN-BACKROOM)
181 (NOT-OUTSIDE)
182)
183 :effect
184 (and
185 (increase (total-cost) 1)
186 (CHEST-UNLOCKED)
187)
188)
189 (:action TAKE-KEY
190 :parameters ()
191 :precondition
192 (and
193 (KEY-IN-DRAWER)
194 (IN-OFFICE)
195 (NOT-OUTSIDE)
196)
197 :effect
198 (and
199 (increase (total-cost) 1)
200 (HOLDING-KEY)
201 (not (KEY-IN-DRAWER))
202)
203)
204 (:action TAKE-MONEY
205 :parameters ()
206 :precondition
207 (and
208 (MONEY-IN-DRAWER)
209 (IN-OFFICE)
210 (NOT-OUTSIDE)
211)
212 :effect
213 (and
214 (increase (total-cost) 1)

26

215 (HOLDING-MONEY)
216 (not (MONEY-IN-DRAWER))
217)
218)
219 (:action EXIT-BUILDING
220 :parameters ()
221 :precondition
222 (and
223 (IN-BACKROOM)
224 (NOT-OUTSIDE)
225)
226 :effect
227 (and
228 (increase (total-cost) 1)
229 (OUTSIDE)
230 (not (IN-BACKROOM))
231 (not (NOT-OUTSIDE))
232)
233)
234 (:action ENTER-OFFICE
235 :parameters ()
236 :precondition
237 (and
238 (IN-BACKROOM)
239 (NOT-OUTSIDE)
240)
241 :effect
242 (and
243 (increase (total-cost) 1)
244 (IN-OFFICE)
245 (not (IN-BACKROOM))
246)
247)
248 (:action ENTER-BACKROOM
249 :parameters ()
250 :precondition
251 (and
252 (IN-OFFICE)
253 (NOT-OUTSIDE)
254)
255 :effect
256 (and
257 (increase (total-cost) 1)
258 (IN-BACKROOM)
259 (not (IN-OFFICE))
260)
261)
262 (:action ENTER-BUILDING
263 :parameters ()
264 :precondition
265 (and
266 (OUTSIDE)
267)
268 :effect

27

269 (and
270 (increase (total-cost) 1)
271 (NOT-OUTSIDE)
272 (IN-OFFICE)
273 (not (OUTSIDE))
274)
275)
276

277)

A.3 Compiled DetectiveBot Problem

Compiled assuming contents-destroyed ∧ outside is the culprit’s goal.
1 (define
2 (problem grounded-DESTROY_AND_LEAVE)
3 (:domain grounded-DETECTIVEBOT)
4 (:init
5 (= (total-cost) 0)
6 (NOT-CHEST-EMPTY)
7 (OUTSIDE)
8 (MONEY-IN-DRAWER)
9 (KEY-IN-DRAWER)

10)
11 (:goal
12 (and
13 (CONTENTS-DESTROYED)
14 (OUTSIDE)
15 (MUTEX_1)
16 (OBSERVATION_0)
17 (OBSERVATION_2)
18 (OBSERVATION_3)
19 (OBSERVATION_4)
20 (OBSERVATION_5)
21)
22)
23 (:metric minimize (total-cost))
24)

