
Using Domain Compilation to add

Belief to Narrative Planners

Matthew Christensen

University of Utah

UUCS-20-006

School of Computing

University of Utah

Salt Lake City, UT 84112 USA

1 May 2020

Abstract

Using domain compilation, we present a narrative planning system that is capable

of creating narrative plans that use both character intention and character beliefs. We

introduce a model capable of representing character beliefs in PDDL domains. This

model allows characers to fail at actions when their beliefs about the world differ from

the actual world state. Domains of this type can be compiled into purely intentional

domains, and fed as input to intentional planners. The resulting stories feature charac-

ters that pursue their own intentions based on their own knowledge of the world, learn

from mistakes to update their beliefs, and communicate information to each other.

These types of stories are not possible with purely intentional domains.

1

Using Domain Compilation to add Belief to
Narrative Planners

by
Matthew Christensen

A Senior Honors Thesis Submitted to the Faculty of
The University of Utah

In Partial Fulfillment of the Requirements for the

Honors Degree in Bachelor of Science

In

The School of Computing

Approved:

Rogelio E. Cardona Rivera Ross Whitaker
Thesis Faculty Supervisor Director, School of Computing

Erin Parker Sylvia D. Torti
Honors Faculty Advisor Dean, Honors College

April 2020
Copyright c� 2020

All Rights Reserved

ABSTRACT

Using domain compilation, we present a narrative planning system that is capable of cre-

ating narrative plans that use both character intention and character beliefs. We introduce

a model capable of representing character beliefs in PDDL domains. This model allows

characers to fail at actions when their beliefs about the world differ from the actual world

state. Domains of this type can be compiled into purely intentional domains, and fed as

input to intentional planners. The resulting stories feature characters that pursue their own

intentions based on their own knowledge of the world, learn from mistakes to update their

beliefs, and communicate information to each other. These types of stories are not possible

with purely intentional domains. 1

1Our implementation can be found at https://github.com/qed-lab/belief-intention-
compilation

ii

TABLE OF CONTENTS

ABSTRACT ii

1 Introduction 1

2 Background 2

2.1 Planning Background . 2

2.2 Intentional Planning . 3

3 Previous Work 4

4 Model of Belief 5

5 Belief Domain Formulation 6

5.1 Formal Definition . 7

5.2 PDDL Encoding . 9

5.3 Negative Preconditions, Belief, and the Closed World Assumption 10

6 Belief-Intention Compilation 10

6.1 Overview . 10

6.2 Compilation . 11

6.2.1 State Compilation . 11

iii

6.2.2 Predicate Compilation . 12

6.2.3 Action Compilation . 13

6.2.4 Expression Parameters . 15

6.3 Decompilation . 15

7 Evaluation 16

7.1 Domain size . 16

7.2 Sample Domains . 16

7.2.1 Rooms . 17

7.2.2 Hubris . 17

7.2.3 Journey . 18

8 Future Work 19

9 Conclusion 20

References 21

Appendices 22

Appendix A Examples 22

A.1 Action Compilation Example . 22

iv

A.2 Expression Parameter Grounding . 26

A.3 Rooms Domain . 27

v

1

1 Introduction

Narrative planning is the problem of automatically creating compelling narrative struc-

tures using planning systems. It is primarily concerned with creating the plot structure (or

fabula) of stories, rather than the prose used to tell them. One of the challenges of nar-

rative planning is developing tools to allow planning systems to reason about conflict[13]

and character[8] when crafting stories. Modern narrative planners such as Glaive can use

models of intention that enable characters to pursue, achieve, and change their goals[14].

However, there does not yet exist a narrative planning system that allows for characters to

have their own knowledge states about the world[10].

In stories, characters often have differing beliefs about what is true in the world, and

those beliefs play a role in determining what actions those characters take. A villain, for

instance, could not steal a valuable artifact unless they knew where that artifact was hid-

den. Likewise, a hero would not attempt to open a door if they already believed it was

locked. Not only do these beliefs affect what choices a character makes, but they also can

cause characters to take actions that fail. Perhaps the hero initially believed the door was

unlocked, but upon trying to open it, it would not budge. These failures occur when a

character’s beliefs are different from the actual state of the world.

We present a model that is capable of representing character beliefs in PDDL[5] domains.

We will then demonstrate how this model can be compiled to a domain which only uses

intentionality. This compilation can be used in conjunction with an intentional planner

to produce narrative plans which reason about both character beliefs and intentions. This

system expands the space of stories that can be generated at a cost of greater domain size

during the planning phase.

2

2 Background

2.1 Planning Background

This paper relies on the formulation of classical planning. Classical planning is a model

of problem solving, wherein agent actions are fully observable and deterministic. Clas-

sical problems are typically represented in the STRIPS formalism[2]. A STRIPS plan-

ning problem is a tuple P=hF, I, A,Gi where F is the set of fluents, I✓F is the initial

state, G✓F is the set of goal conditions, and A is a set of actions. Each action is a triple

a=hPRE(a), ADD(a), DEL(a)i that represents the precondition, add, and delete lists respec-

tively, all of which are subsets of F . A state is a conjunction of fluents. An action a is

applicable in a state s if PRE(a)✓s; applying said applicable action in the state results in a

new state s0=(s\DEL(a))[ADD(a).

The solution to a planning problem P is a plan ⇡=[a1, ..., am], a sequence of actions

ai2A that transforms the problem’s initial state I to a state sm that satisfies the goal; i.e.,

G✓sm.

Planning is an attractive avenue to pursue storytelling. Most stories follow a logical chain

of events that carry the plot from an initial state to an end state. Since a plan is simply a

logical ordering of actions, a planner can be used to generate that chain of events, referred

to as the fabula. This is distinct from the discourse, which interprets the fabula to tell the

story through some medium (text, images, sounds, etc.).

The compilation process we describe is designed to read and output planning problems

written using PDDL[5], one of the most common languages used to write planning domains

and problems.

3

2.2 Intentional Planning

Classical planners are built to solve problems with efficient plans. This is a desirable prop-

erty, but often the most efficient way to solve a problem is the least interesting from a

narrative perspective. Narrative planners combat this by introducing preferences and re-

strictions on the types of plans that can be generated.

Our system builds on the methods established by intentional planners. In an intentional

domain, an action a2A can have one or more consenting agents (i.e., actors). Intentional

planners add the following restriction: action a is only applicable if all of it’s precondi-

tions are met (as described above) and a is a step towards achieving a goal of each of its

consenting agents[8, 12, 14].

An agent’s goals are represented using the modal intends literal. For instance, a villain

may intend to have the artifact, and that intention is represented in PDDL as (intends

villain (has villain artifact)).

It is important to make a distinction between a character’s goals, and goals in a classical

planning sense. A character’s goals are not necessarily the same as the goal state of a

planning problem. A problem’s goal state can be thought of as the author’s goals for the

end of the story. Intentional planners will search for a sequence of events that results in the

author’s goals, all the while ensuring that every action taken by a character is a step toward

that character’s goals.

We target the intentional planner Glaive[14] as the final step of our belief-intention plan-

ning system, but the output of our compilation is compatible with any intentional planner.

4

3 Previous Work

The compilation we describe is based in part on a compilation by Haslum[3] designed

to compile intentional PDDL into a form that could be processed by a classical plan-

ner. Haslum’s compilation was originally designed to operate on domains built for the

IPOCL[8] planning system, and offered significant speedup thanks to fast, generalized

heuristics for classical planners[4]. Since that time, intentional planners have incorporated

those heuristics, and added their own[14]. Initially, we had planned on combining our com-

pilation process with Haslum’s to skip intentional planning altogether, but concerns about

domain size made it a less appealing option.

Haslum’s compilation drew influence from Palacios and Geffner’s work on compiling

conformant planning problems[6]. Conformant planning problems present the world state

with a degree of uncertainty; meaning a planner may have an imperfect representation of

the state of the world when making decisions. An important distinction to make between

their work and the compilation we present here is that in Palacios and Geffner’s work, it

was the planner itself with imperfect knowledge. In ours, it is the characters that may be

mistaken about the world. The planner will always have perfect knowledge of the world

state.

One of the motivations for this work is to make a step towards the BDI (Beliefs, Desires,

and Intentions) agent model[7] for narrative planners. Thus far, narrative planners have

focused on intention by giving characters the ability to make and pursue goals. This work

addresses belief by representing each character’s belief about the world and what actions

are available to them. Modelling desire in narrative plans is still relatively unexplored,

though some models have been proposed[11].

Recent work by Shirvani et al. demonstrated the importance of reasoning about belief

in addition to intention when it comes to generating believable stories[10, 9]. Their paper

5

proposed another model for character beliefs, and found that plans that followed this model

were generally perceived to be more believable by readers. The model we present here

draws from the one put forward by Shirvani et al.[9], but has significant differences such

as prohibiting beliefs about beliefs, and adding the potential for failed actions.

4 Model of Belief

The term belief as it relates to narrative and planning has a specific meaning. In the BDI

model, a character’s belief state is their current knowledge of the world state[7]. As such,

it is sensible that a character shouldn’t act against their best knowledge. To a reader, it is

jarring when a character in any story behaves in a way that contradicts what they know.

In general, this knowledge is not limited to simple facts of the world: a character can

have beliefs about another character’s intentions or beliefs. This can quickly lead to very

complex situations, as can be seen in the work by Shirvani et al., where characters can have

beliefs about others’ beliefs to arbitrary depth[9]. For the sake of clarity and feasibility,

we will restrict our model to only allow for beliefs of simple statements about the world

(non-modal literals). While this places a limitation on the complexity of narratives that we

can generate with this system, we will demonstrate that this model is expressive enough to

capture many stories that could not be created using a purely intentional planning system.

Of particular interest to us are the situations in which a character attempts to take an

action which they believe is possible, but in reality is impossible. Such a situation can

only arise when an agent has at least one belief about the world state that isn’t true. In

classical and intentional planning, if an action is impossible (i.e., when its preconditions

aren’t met), it is deemed non-applicable, and thus cannot be taken. However, it should be

possible for a character to attempt an action they cannot complete. Such an attempt results

6

in failure. Failing any action has consequences that can affect both the state of the world

and the beliefs of the character.

In a compelling story, it is often necessary for a character to fail in order for them to

learn something important about the world. Or perhaps the consequences of their failure

will later open up new opportunities for them to achieve their (or the author’s) goals (see

the hubris domain below in Figure 5).

In general, characters do not act unless they believe their action will succeed. Our model

of belief encodes this by requiring characters to believe all preconditions of an action before

they attempt to take it.

Lastly, any model of character knowledge has to deal with changes to a character’s be-

liefs. There are any number of microtheories that could be applied to update character

beliefs when an action succeeds or fails. One such microtheory may be that a character

knows all consequences of the actions that they perform or fail. Another microtheory may

be that a character knows about the effects of all actions that occur in the same location

they are in. As a matter of flexibility, we choose not to commit to any microtheory of

knowledge, and instead leave it to domain authors to explicitly list out what changes need

to happen to character beliefs for each action individually.

5 Belief Domain Formulation

In order to satisfy our model, we must create a mathematical definition that meets the

following requirements:

• A character can have beliefs about the world that differ from the actual world state.

• A character may only have beliefs about simple statements about the world.

7

• An action can only be taken if all of its consenting agents believe that all of its

preconditions are met.

• An action with consenting agents can be taken both if its preconditions are met, and

if its preconditions aren’t met.

• If an action is taken when its preconditions are not met, the action is said to fail, and

the consequences of that failure will be applied to the world.

We present our model first in a mathematical STRIPS-like format, then more practically

in PDDL.

5.1 Formal Definition

Definition 1. A belief-intention planning problem is a tuple P=hF, S,A,G,Ci, where F

is the set of fluents, S is the initial state, G✓F is the set of goal conditions, C is the set of

characters, and A is the set of actions.

Definition 2. A state in a belief-intention planning problem is a tuple s=hW,B, Ii where

W✓F represents the state of the world, B is a set of belief states bc✓F for each character

c 2 C, and I is a set of intentions ic✓F for each character c 2 C.

Each belief state bc represents the set of all fluents that character c believes in the current

state. An action a2A is now represented as a 5-tuple:

a = hPRE(a), ADDs(a), DELs(a), ADDf (a), DELf (a)i

Here, PRE(a) is a set of fluents like in classical planning. The add and delete lists of a

are triples
⌦
WADD/DEL, BADD/DEL, IADD/DEL

↵
, that represent changes to be made to the world

8

state, character belief states, and character intentions respectively. In order to apply add

and delete lists to state s to obtain s’, apply the respective lists as in classical planning (e.g.

W 0=(W\WDEL)[WADD)

Action a is applicable in a state s in two cases:

• If a has no consenting characters, then PRE(a)✓W

• If a has at least one consenting character, then for each consenting character c,

PRE(a)✓bc

Actions that meet the first condition are actions taken only by the planning agent, and not

by any of the characters. It is common to refer to such actions as acts of fate in the story.

Such actions can only be taken if the world state meets their preconditions. The second

condition does not require the preconditions of a to be met in the state of the world. This

means that if a character believes the preconditions for an action are met, that action is

applicable whether or not it is ”possible.”

The effect of applying a to some state s is as follows:

• If a has no consenting characters, then ADDs(a) and DELs(a) are both applied to state

s to obtain s0.

• If a has consenting characters, and PRE(a)✓W , then ADDs(a) and DELs(a) are ap-

plied to s.

• If a has consenting characters, but PRE(a) 6✓W , then ADDf (a) and DELf (a) are ap-

plied to s.

The third case represents an action failing. All consenting characters believed that the

preconditions were met, but those beliefs were incorrect. ADDf (a) and DELf (a) represent

9

Figure 1: A simplified sample action from a belief domain

the consequences that get applied to the world and belief states because of that failure.

5.2 PDDL Encoding

To represent belief domains and problems in PDDL, we introduce the requirement belief-

preconditions. This requirement allows us to use the modal (believes c l) predi-

cate, where c is a character and l is some non-modal literal. The belief state for a character

c is represented by all believes predicates in the current state with c as the first parameter.

Figure 1 demonstrates an example of an action in the rooms belief domain. This action

represents a character attempting to leave one room and enter another. In addition to the

normal fields, there is a :fail heading. This contains the effects that should take place

when the action fails (in this case, the character now believes the room is locked).

Besides failure, actions are written in much the same way as they would be in an in-

tentional or classical domain. However, each action with consenting agents will only be

applicable if each of the consenting agents believes the preconditions are met (i.e., there

should be a literal (believes c p) for each consenting character c and each precon-

10

dition p). In the example above, the consenting agent would have to believe both that they

are in room r1 and that room r2 is not locked.

5.3 Negative Preconditions, Belief, and the Closed World Assumption

In our implementation, we allowed for actions to have negative preconditions. Under the

closed world assumption of classical planning[2], preconditions of the form (not p) for

some predicate p are considered met if p is not in the current state. However, in belief plan-

ning, such a precondition would only be met if there is a literal of the form (believes

c (not p)) for each consenting character c. This statement is different from(not

(believes c p)). The former explicitly means that c believes that p is false. The

latter implies that c does not have a belief that p is true. In other words, c could be am-

bivalent as to whether or not p is true.

Thus, while the closed world assumption still applies for the planner itself, the same

is not true for the characters in the plans it creates. For instance, in the rooms domain

(Figure 3), the main character does not have any belief about the key. We believe this more

accurately reflects how characters learn and behave in stories.

6 Belief-Intention Compilation

6.1 Overview

In order to create a plan for a belief-intention domain, we first compile it into an intentional

domain. From there, the compiled domain is supplied as an input to an intentional planner

(See Figure 2). This paper uses Glaive[14], although any system that can create plans from

11

Figure 2: An overview of the belief planning process.

intentional domains could be used (e.g. Haslum’s intention compilation[3] followed by a

classical planner).

6.2 Compilation

The PDDL representation of a belief domain can be represented by its predicates and

operators, Domb=hP,Oi. A problem is represented by its initial state, and goal state,

Probb=hI,Gi. These are the only fields that we alter to obtain an intentional domain

Domi=hP 0, O0i and problem Probi=hI 0, G0i.

Other PDDL fields, such as types: and objects: are not changed. The requirements:

field in the Domain is updated to remove belief-preconditions, and add negative-preconditions,

disjunctive-preconditions and intentionality. The domain/problem names are also changed

to avoid conflict with the original domain and problem files.

6.2.1 State Compilation

The initial state of the problem is comprised of grounded literals. For each literal l2I:

• If l is of the form (believes c (m x1 x2 ...)) for some character c and

12

some non-modal predicate m, we create a new flattened literal (believes m c

x1 x2 ...) and add it to I 0.

• If l is of the form (believes c (not (m x1 x2 ...))) for some character

c and some non-modal predicate m, we create a new flattened literal (believes not m

c x1 x2 ...) and add it to I 0.

• Otherwise, we add l to I 0.

The first two conditions have the effect that all believes literals are flattened into non-

modal literals, with the believing character appended as the first parameter. For exam-

ple, (believes villain (not(at artifact cave))) would be compiled to

(believes not at villain artifact cave). In essence, each character be-

lief is treated as being part of the world state itself.

In PDDL, G is not a set, but a logical sentence. We replace every belief term in G with

its flattened version as above to obtain G0.

6.2.2 Predicate Compilation

Every predicate p2P is a non-modal 2 statement (p ?x1 - t1 ?x2 - t2 ...). For

every p we create a new predicate pb of the form (believes p ?c - character

?x1 - t1 ?x2 - t2 ...) and another predicate p¬b of the form (believes not p

?c - character ?x1 - t1 ?x2 - t2 ...). We add each p, pb, and p¬b to P 0.
2The believes and intends predicates are implicit in belief and intentional domains respectively.

13

6.2.3 Action Compilation

In Belief Domains, an Action a2O is represented as a tuple

a = hParam, Pre, Eff, Fail, Agentsi

These are the parameters, preconditions, effects, failure effects, and consenting agents re-

spectively. Preconditions, effects, and failure effects are each logical sentences.

If a has no consenting agents, we create a single new action a0. The parameters, precon-

ditions, effects and agents fields are identical to those found in a. If any of the preconditions

or effects of a are believes predicates, we flatten them into their non-modal believes p (or

believes not p) forms as in the goal compilation. We add a0 to O0.

If a has consenting agents, we create two actions as and af .

• The parameters and agents of as and af are the same as those in a.

Params/f = Param

Agentss/f = Agents

• The effects of as and af are the effects and failure effects of a respectively (where

each term is flattened using the goal compilation as before).

Effs = Eff

Efff = Fail

• For each consenting agent ?c2Agents, we create a new logical sentence PreBc ,

14

which is a simplified 3 copy of Pre. We replace each term p2PreBc , with a new predi-

cate pBc of the form (believes p ?c ?x1 ?x2 ...) (or (believes not p)

if it is negated). If p is already a believes predicate, we replace it with its flattened

version.

The preconditions for as are:

Pres = Pre ^
"

^

c2Agents

PreBc

#

In other words, the preconditions for as are all of the preconditions of a, plus every

consenting character must believe those preconditions are met.

Pref = (¬Pre) ^
"

^

c2Agents

PreBc

#

The preconditions for af are similar: Every consenting character must believe the

preconditions for a are met, but the negation of the preconditions for a must be true

4.

After which, both as and af are added to O0. In our implementation, we differentiate

between these actions from the original action by appending the suffixes success and

fail to the action names.

An example of a compiled action is given in Appendix A.
3To simplify a logical sentence, we use DeMorgan’s laws to push negations as far inward as possible.

At the end of the simplification, every not statement should contain a single term (i.e., a not cannot contain
an and or an or). This is so negative preconditions are treated as believes not as opposed to not believes

statements, preserving the open world for character belief states.
4During simplification, the negation of any and statements become or statements of the negative terms.

This is why the belief compilation adds the requirement for both disjunctive and negative preconditions.

15

6.2.4 Expression Parameters

The requirement :expression-parameters allows for PDDL actions to be defined

with predicates as parameters. Such actions may be useful for adding variable beliefs or

intentions to world state. For example, Figure 3 features an action read, where one of the

parameters is an expression representing the info present in a letter.

To compile an action a with an expression parameter ?exp, it must first be grounded

such that no more expression parameters appear. For each possible and relevant 5 predicate

p create a new action ap, with all of the parameters of a as well as the parameters of p.

Params(ap) = Params(a)\?exp [Params(p)

In addition, all occurrences of ?exp in the effects and preconditions of a should be replaced

with p. A full PDDL example of this process can be found in Appendix A.

Since grounding an expression parameter requires creating a new action for every pred-

icate, this process will quickly increase the size of the search space. Including too many

expression parameters in a domain can result in compiled problems that take hours to plan.

6.3 Decompilation

A plan produced using a compiled belief domain consists of compiled actions, which may

have the success or fail suffixes. If an action in the plan ends with one of these suffixes,

we trim off the suffix to obtain the name of the action in the original domain. An action

without either suffix does not require any further changing, as it already appeared in the

domain.
5This terminology comes from a similar process in Haslum’s compilation[3]. We take possible and rele-

vant to mean every predicate that appears as a literal in the initial state or in the effects of an action.

16

When Glaive outputs an intentional plan, it also reports some actions as being not-taken.

These actions were part of an intentional frame for some character, but weren’t part of the

final plan. These actions are also decompiled to obtain what characters intended to do, but

didn’t have a chance during the story.

7 Evaluation

7.1 Domain size

The primary metric we use to analyze the cost of this compilation process is the size of the

compiled domain relative to the uncompiled domain. It is difficult to precisely quantify the

effect that the size of a domain will have on the running time of the planning process, but a

larger search space will generally increase the time it takes to plan[1].

For every predicate in a belief problem, the compilation adds two more predicates repre-

senting the believes and believes not versions of it. Therefore, the compilation multiplies

the number of predicates in the domain by a factor of 3.

Actions in the domain with consenting agents are split into their success and failure

versions. This effectively doubles the number of actions in the domain. Discounting the

exponential growth caused by actions with many expression variables, this results in linear

growth of the domain with respect to the size of the input domain.

7.2 Sample Domains

We created three domains to demonstrate the types of stories that are enabled by our model

of belief.

17

Figure 3: The rooms domain created with our belief model. (See Appendix A for full
domain.)

7.2.1 Rooms

The rooms domain in Figure 3 is built to demonstrate how belief can facilitate the spread

of information. The main character, Alice, wants to obtain the star. However, she doesn’t

know which room the star is in, nor does she know that the room is locked. There are letters

in rooms 2 and 6 that have information about where the key and star are.

In an intentional domain, the optimal plan solution would have Alice first enter the room

where the key is, then use it to unlock the door and obtain the star. However, in the belief

domain, it doesn’t make sense for her to take those actions because she wouldn’t even know

she needs to search for a key yet. First, she must learn that the door is locked by attempting

to open it and failing. Then, by traveling to other rooms, she can find letters that tell her

where the key is. (See Figure 4.)

7.2.2 Hubris

The hubris domain (Figure 5) was created to demonstrate how failure can add drama to a

situation. Here, a villain has obtained the ultimate artifact, and intends to use it to destroy

the hero and take over the world. However, they lack the arcane knowledge necessary to

18

Figure 4: Comparison of solutions to the rooms domain

Figure 5: The hubris domain created to demonstrate importance of failure.

wield the artifact. Thus, when they attempt to use it, they fail, alerting the hero in the

process. Our hero, who can wield the artifact, takes this opportunity to steal it from the

villain and use it against them. In an intentional domain, the villain wouldn’t attempt to

use the artifact, because they could not do so successfully. It is only the villain’s mistaken

belief that allows the story to progress to the author’s goal.

7.2.3 Journey

We created the journey domain (Figure 6) to show how belief can add obstacles to a charac-

ter’s journey. Here, we’ve given Alice the power to turn away a calamity facing her village.

However, she doesn’t yet know that she has this power. She must take a journey to a far

off land before she learns that she had the power the whole time. Like the rooms domain,

19

Figure 6: The journey domain created to demonstrate how knowledge can add interest and
length to a story.

the optimal intentional plan for the story is much shorter, but allowing characters to have

incorrect or incomplete beliefs adds interest to the story.

8 Future Work

The restriction that believes literals may not contain other modal literals like intends or

believes places a limit on the complexity of stories that can be achieved with this model.

Using an approach similar to the one in this paper, it is possible to compile beliefs of

beliefs. However, as the depth of the model grows (beliefs of beliefs of ...), the number

of predicates in the compiled domain would grow exponentially, to say nothing of the

difficulty of manually authoring such a domain. However, comprehensible stories likely

only need to reason about beliefs of depth two or three.

A next potential step is finding a similar compilation for a simplified model of desire.

Combining belief and desire compilations with intentional planners could lead to good

approximations of BDI agents[7] for narrative planning.

While we chose not to commit to a particular microtheory of how to update beliefs, our

model requires all consenting agents to explicitly believe all preconditions to perform an

20

action. However, as was noted earlier, agents are allowed to be ambivalent about facts in

the world. Therefore, a different model of belief might restrict characters not to the actions

that they believe are possible, but rather, the actions that they don’t believe are impossible.

It is an open question as to how such a restriction would be represented.

Future work can be done to better understand the interaction of belief and intention. For

instance, what does it mean to intend to believe something? How should a character’s belief

about another character’s intents affect the way they behave?

Our model and compilation lay a groundwork to pursue each of these questions. We

hope to continue building on this work in these directions.

9 Conclusion

Using our model of belief, it is possible to compile belief domains into intentional do-

mains, with a linear increase to domain size. Intentional planners can then create stories

where characters have different knowledge states and act according to their beliefs. These

characters can fail, learn from their mistakes, and share information with each other. In

general, they act more closely to how a reader would expect them to behave. We exemplify

this with three domains, each of which rely on belief. With this, narrative planning has one

more tool to create more interesting and believable stories.

21

References

[1] Tom Bylander. Complexity results for planning. In IJCAI, volume 10, pages 274–279,

1991.

[2] Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of

theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

[3] Patrik Haslum. Narrative planning: Compilations to classical planning. Journal of

Artificial Intelligence Research, 44:383–395, 2012.

[4] Jörg Hoffmann. Ff: The fast-forward planning system. AI magazine, 22(3):57–57,

2001.

[5] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,

Manuela Veloso, Daniel Weld, and David Wilkins. Pddl-the planning domain def-

inition language, 1998.

[6] Héctor Palacios and Héctor Geffner. Compiling uncertainty away: Solving confor-

mant planning problems using a classical planner (sometimes). In AAAI, pages 900–

905, 2006.

[7] Anand S Rao, Michael P Georgeff, et al. Bdi agents: from theory to practice. In

ICMAS, volume 95, pages 312–319, 1995.

[8] Mark O Riedl and Robert Michael Young. Narrative planning: Balancing plot and

character. Journal of Artificial Intelligence Research, 39:217–268, 2010.

[9] Alireza Shirvani, Stephen G Ware, and Rachelyn Farrell. A possible worlds model

of belief for state-space narrative planning. In Thirteenth Artificial Intelligence and

Interactive Digital Entertainment Conference, 2017.

22

[10] Alireza Shirvani, Rachelyn Farrell, and Stephen G Ware. Combining intentionality

and belief: Revisiting believable character plans. In Fourteenth Artificial Intelligence

and Interactive Digital Entertainment Conference, 2018.

[11] Theo Wadsley and Malcolm Ryan. A belief-desire-intention model for narrative gen-

eration. In Ninth Artificial Intelligence and Interactive Digital Entertainment Confer-

ence, 2013.

[12] Stephen G Ware. The intentional fast-forward narrative planner. In Eighth Artificial

Intelligence and Interactive Digital Entertainment Conference, 2012.

[13] Stephen G Ware and R Michael Young. Cpocl: A narrative planner supporting con-

flict. In Seventh artificial intelligence and interactive digital entertainment confer-

ence, 2011.

[14] Stephen G Ware and R Michael Young. Glaive: a state-space narrative planner sup-

porting intentionality and conflict. In Tenth Artificial Intelligence and Interactive

Digital Entertainment Conference, 2014.

Appendix A Examples

A.1 Action Compilation Example

An example of the action compilation described in section 6.2.3

Uncompiled Action

1 ;; A character moves from one room to another (via a hallway adjacent to

all rooms)

2 (:action enter

3 :parameters (?character - character ?roomfrom - room ?roomto - room)

23

4 :precondition

5 (and

6 (not (locked ?roomto))

7 (at ?character ?roomfrom)

8)

9 :effect

10 (and

11 (not (at ?character ?roomfrom))

12 (at ?character ?roomto)

13 (believes ?character (not (at ?character ?roomfrom)))

14 (believes ?character (at ?character ?roomto))

15 (not (believes ?character (at ?character ?roomfrom)))

16 (not (believes ?character (not (at ?character ?roomto))))

17

18 (forall (?char2 - character)

19 (when (at ?char2 ?roomto)

20 (and

21 (believes ?character (at ?char2 ?roomto))

22 (believes ?char2 (at ?character ?roomto))

23 (not (believes ?character (not (at ?char2 ?roomto))))

24 (not (believes ?char2 (not (at ?character ?roomto))))

25)

26)

27)

28)

29 :fail

30 (when (and (locked ?roomto) (at ?character ?roomfrom))

31 (and

32 (believes ?character (locked ?roomto))

33 (not (believes ?character (not (locked ?roomto))))

34)

35)

36 :agents

24

37 (?character)

38)

Compiled Actions

1 (:action enter_success

2 :parameters (?character - character ?roomfrom - room ?roomto - room)

3 :precondition

4 (and

5 (not

6 (locked ?roomto)

7)

8 (at ?character ?roomfrom)

9 (believes_not_locked ?character ?roomto)

10 (believes_at ?character ?character ?roomfrom)

11)

12 :effect

13 (and

14 (not

15 (at ?character ?roomfrom)

16)

17 (at ?character ?roomto)

18 (believes_not_at ?character ?character ?roomfrom)

19 (believes_at ?character ?character ?roomto)

20 (not

21 (believes_at ?character ?character ?roomfrom)

22)

23 (not

24 (believes_not_at ?character ?character ?roomto)

25)

26 (forall

27 (?char2 - character)

28 (when

25

29 (at ?char2 ?roomto)

30 (and

31 (believes_at ?character ?char2 ?roomto)

32 (believes_at ?char2 ?character ?roomto)

33 (not

34 (believes_not_at ?character ?char2 ?roomto)

35)

36 (not

37 (believes_not_at ?char2 ?character ?roomto)

38)

39)

40)

41)

42)

43 :agents (?character)

44)

45

46

47 (:action enter_fail

48 :parameters (?character - character ?roomfrom - room ?roomto - room)

49 :precondition

50 (and

51 (or

52 (locked ?roomto)

53 (not

54 (at ?character ?roomfrom)

55)

56)

57 (believes_not_locked ?character ?roomto)

58 (believes_at ?character ?character ?roomfrom)

59)

60 :effect

61 (when

26

62 (and

63 (locked ?roomto)

64 (at ?character ?roomfrom)

65)

66 (and

67 (believes_locked ?character ?roomto)

68 (not

69 (believes_not_locked ?character ?roomto)

70)

71)

72)

73 :agents (?character)

74)

A.2 Expression Parameter Grounding

The read action in the rooms domain has an expression parameter called ?info

1 (:action read

2 :parameters (?letter - character ?info - expression ?informed -

character ?room - room)

3 :precondition (and

4 (at ?letter ?room)

5 (at ?informed ?room)

6 (believes ?letter ?info)

7)

8 :effect (and

9 (believes ?informed ?info)

10 (not (believes ?informed (not ?info)))

11)

12)

27

In order to remove the expression parameter from this action, a new action must be created

for every predicate. We will demonstrate how to ground read with respect to the predicate

in:

1 (:action read_in

2 :parameters (?letter - character ?informed - character ?room - room ?

thing - thing ?room - room)

3 :precondition (and

4 (at ?letter ?room)

5 (at ?informed ?room)

6 (believes ?letter (in ?thing ?room))

7)

8 :effect (and

9 (believes ?informed (in ?thing ?room))

10 (not (believes ?informed (not (in ?thing ?room))))

11)

12)

In this example, the ?info parameter has been replaced by the in predicate in the effects

and preconditions. The parameters ?thing and ?room from in have been added as pa-

rameters of read. Lastly, the name has been changed to differentiate this new action from

the other actions that will be created.

In order to complete the process, a new action read p must be created for every possible

and relevant predicate p (thus making the search space much larger).

A.3 Rooms Domain

Domain

1 (define (domain rooms)

28

2 (:requirements :adl :universal-preconditions :expression-variables :

intentionality :belief)

3 (:types

4 letter key star - thing

5 character room thing

6)

7 (:predicates

8 (locked ?room - room)

9 (at ?character - character ?room - room)

10 (unlocked-by ?room - room ?key - key)

11 (in ?thing - thing ?room - room)

12 ;;(hidden ?thing - thing)

13 (has ?character - character ?thing - thing)

14)

15

16 ;; A character moves from one room to another (via a hallway adjacent

to all rooms)

17 (:action enter

18 :parameters (?character - character ?roomfrom - room ?roomto - room)

19 :precondition

20 (and

21 (not (locked ?roomto))

22 (at ?character ?roomfrom)

23)

24 :effect

25 (and

26 (not (at ?character ?roomfrom))

27 (at ?character ?roomto)

28 (believes ?character (not (at ?character ?roomfrom)))

29 (believes ?character (at ?character ?roomto))

30 (not (believes ?character (at ?character ?roomfrom)))

31 (not (believes ?character (not (at ?character ?roomto))))

32

29

33 (forall (?char2 - character)

34 (when (at ?char2 ?roomto)

35 (and

36 (believes ?character (at ?char2 ?roomto))

37 (believes ?char2 (at ?character ?roomto))

38 (not (believes ?character (not (at ?char2 ?roomto))))

39 (not (believes ?char2 (not (at ?character ?roomto))))

40)

41)

42)

43)

44 :fail

45 (when (and (locked ?roomto) (at ?character ?roomfrom))

46 (and

47 (believes ?character (locked ?roomto))

48 (not (believes ?character (not (locked ?roomto))))

49)

50)

51 :agents

52 (?character)

53)

54

55 ; An letter tells the character something the letter believes.

56 (:action read-letter

57 :parameters (?letter - character ?info - expression ?informed -

character ?room - room)

58 :precondition

59 (and

60 (at ?letter ?room)

61 (at ?informed ?room)

62 (believes ?letter ?info) ;; For the informant to do this action,

need they believe that they believe?

63)

30

64 :effect

65 (and j

66 (believes ?informed ?info)

67 (not (believes ?informed (not ?info))) ;; Future versions may do

this differently, allowing lies, trust/mistrust

68)

69

70 :fail () ;; Possibly the informed disbelieves the info if the

informant disbelieves it

71 :agents (?informed)

72)

73

74 ;; A character searches the room for a specific thing

75 (:action search-for

76 :parameters (?character - character ?thing - thing ?room - room)

77 :precondition

78 (and

79 (at ?character ?room)

80 (in ?thing ?room)

81)

82 :effect

83 (and

84 (has ?character ?thing)

85 (not (in ?thing ?room))

86

87 (believes ?character (has ?character ?thing))

88 (believes ?character (not (in ?thing ?room)))

89 (not (believes ?character (not (has ?character ?thing))))

90 (not (believes ?character (in ?thing ?room)))

91)

92 :fail

93 (when (and (not (in ?thing ?room)) (at ?character ?room))

94 (and

31

95 (not (believes ?character (in ?thing ?room)))

96 (believes ?character (not (in ?thing ?room)))

97)

98)

99 :agents (?character)

100)

101

102 ;; A character unlocks a room with a key

103 (:action unlock

104 :parameters (?character - character ?key - key ?room - room)

105 :precondition

106 (and

107 (locked ?room)

108 (unlocked-by ?room ?key)

109 (has ?character ?key)

110)

111 :effect

112 (and

113 (not (locked ?room))

114 (believes ?character (not (locked ?room)))

115 (not (believes ?character (locked ?room)))

116)

117 :fail

118 (when (and (locked ?room) (has ?character ?key) (not (unlocked-by ?

room ?key)))

119 (and

120 (believes ?character (not (unlocked-by ?room ?key)))

121 (not (believes ?character (unlocked-by ?room ?key)))

122)

123)

124 :agents (?character)

125)

126)

32

Problem

1 (define (problem six-rooms)

2 (:domain rooms)

3 (:objects

4 alice - character

5 letter1 - character

6 letter2 - character

7 ;;;letter1 - letter

8 ;;;letter2 - letter

9 key - key

10 star - star

11 r1 - room

12 r2 - room

13 r3 - room

14 r4 - room

15 r5 - room

16 r6 - room

17)

18 (:init

19 (at letter1 r2)

20 (at letter2 r6)

21 (at alice r3)

22 (in key r4)

23 (in star r5)

24

25 (locked r5)

26 (unlocked-by r5 key)

27

28 ;; Alice (wrongly) believes no rooms are locked, and there are no keys

.

29 (believes alice (at alice r3))

30 (believes alice (not (locked r1)))

33

31 (believes alice (not (locked r2)))

32 (believes alice (not (locked r3)))

33 (believes alice (not (locked r4)))

34 (believes alice (not (locked r5)))

35 (believes alice (not (locked r6)))

36

37 (intends alice (has alice star))

38

39 ;; The informants hold crucial knowledge of where the star and key are

40 (believes letter1 (in star r5))

41 (believes letter2 (in key r4))

42 (believes letter2 (unlocked-by r5 key))

43 (believes letter1 (at letter1 r2))

44 (believes letter2 (at letter2 r6))

45)

46

47 (:goal

48 (and

49 ;;(has alice star)

50 ;;(at alice r6)

51 ;;(at alice r4)

52 (has alice star)

53)

54)

55)

Name of Candidate: Matthew Christensen
Address: 130 S. 900 E. #207

Salt Lake City, Utah, 84102

