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Abstract

Topological data analysis (TDA) has recently grown in popularity for analyzing
and visualizing high-dimensional data. One of the most popular tools from TDA is
the mapper construction, known as the mapper graph in the 1-dimensional setting. An
obstacle in the applications of the mapper graph is parameter selection, specically the
choice of a cover. In this thesis, we explore strategies for computing an adaptive cover
for the mapper graph using information theoretic measures, namly the Akaike informa-
tion criterion and Bayesian information criterion. We develop a new strategy inspired
by X-means, called multi-pass X-means, for adaptively splitting cover elements. We
demonstrate that multi-pass X-means produces mapper graphs that approximate the
topology of hand-tuned mapper graphs via experimental results on synthetic and real-
world datasets. Our preliminary results show that the usage of information theoretic
measures is a promising direction for parameter selection. Finally, we study a variant
of the mapper graph, called the enhanced mapper graph, introduced by Brown et al.
[3]. We provide an open-source library with both our adaptive cover strategies and one
of the rst implementations of the enhanced mapper graph.
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ABSTRACT

Topological data analysis (TDA) has recently grown in popularity for analyzing and
visualizing high-dimensional data. One of the most popular tools from TDA is the mapper
construction, known as the mapper graph in the 1-dimensional setting. An obstacle in the
applications of the mapper graph is parameter selection, specifically the choice of a cover.
In this thesis, we explore strategies for computing an adaptive cover for the mapper graph
using information theoretic measures, namly the Akaike information criterion and Bayesian
information criterion. We develop a new strategy inspired by X-means, called multi-pass
X-means, for adaptively splitting cover elements. We demonstrate that multi-pass X-means
produces mapper graphs that approximate the topology of hand-tuned mapper graphs via
experimental results on synthetic and real-world datasets. Our preliminary results show
that the usage of information theoretic measures is a promising direction for parameter
selection. Finally, we study a variant of the mapper graph, called the enhanced mapper
graph, introduced by Brown et al. [3]. We provide an open-source library with both our
adaptive cover strategies and one of the first implementations of the enhanced mapper

graph.
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CHAPTER 1

INTRODUCTION

Over the last two decades, the amount of unlabeled high-dimensional data has increased
at an unprecedented rate, as has the demand for data science tools to explore such data,
particularly by domain scientists. Topological data analysis (TDA) offers a rich set of tools
for the exploratory data analysis of high-dimensional data. TDA aims to find structure
within the data, particularly for datasets that are not easy to visualize and understand. As a
field, TDA encompasses a wide variety of approaches, including persistent homology [23] and
manifold learning [37]. One successful tool has been the mapper construction, a summary
of the data in the form of a simplicial complex.

First introduced by Singh et al. [33], the mapper construction is a way to visualize
high-dimensional point clouds. At its core, the mapper construction is a function-induced
soft-clustering method that captures topological information about the data (e.g., branches
or loops in high dimensions). The mapper construction has seen success in a variety
of fields, including network visualization [12], cancer research [20, 22|, neuroscience [10],
and more [25]. In recent years, the ecosystem for developers and users alike has rapidly
developed in the form of Python libraries (e.g., KeplerMapper [35] and giotto-tda [34]) and
robust visualization tools for interactive data analysis (e.g., Mapper Interactive [39] and
TDAview [36]).

One major obstacle encountered by applications of the mapper construction is parameter
selection, specifically the creation of a cover. We focus solely on the 1-dimensional skeleton
of the mapper construction, referred to as the mapper graph. In this thesis, we explore how
information theoretic measures used in hard clustering can inform and generate adaptive

covers for mapper graphs. Our main contributions are as follows:

e We explore three strategies to apply the Akaike information criterion (AIC) and

Bayesian information criterion (BIC) to the problem of cover selection. We then
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demonstrate a specific strategy, referred to as the multi-pass X-means, on several

synthetic and real-world datasets; see Chapter 3.
e We provide an open-source library with all three adaptive cover strategies.

e We provide, to the best of our knowledge, the first implementation of the enhanced
mapper graph [3]. Our library includes GPU computation support, first introduced
by Zhou et al. [39], and the ability to export graphs to Mapper Interactive, a state-

of-the-art visualization tool for mapper graphs; see Chapter 4.

The rest of this thesis has the following structure. Chapter 2 details the necessary
technical background and related works. Chapter 3 outlines our three strategies for an
adaptive cover and provides results. Chapter 4 articulates the enhanced mapper graph and

discusses our implementation. Finally, we conclude in Chapter 5 with some closing remarks.

Manuscript Relevant to the Thesis:

e Generating Adaptive Covers for Mapper Graphs using Information Theory. Nithin
Chalapathi, Bei Wang. In preparation. 2021.

Other Publications:

e Mapper interactive: A scalable, extendable, and interactive toolbox for the visual ex-
ploration of high-dimensional data. Youjia Zhou, Nithin Chalapathi, Archit Rathore,
Yaodong Zhao, Bei Wang. IEEE Pacific Visualization Symposium, 2021.

o TopoAct: Visually Exploring the Shape of Activations in Deep Learming. Archit
Rathore, Nithin Chalapathi, Sourabh Palande, Bei Wang. Computer Graphics Forum,
40(1), pages 382-397, 2021.

e (Correctness-Preserving Compression of Datasets and Neural Network Models. Vinu
Joseph, Nithin Chalapathi, Aditya Bhaskara, Ganesh Gopalakrishnan, Pavel Panchekha,
Mu Zhang. 4th International Workshop on Software Correctness for HPC Applications
Archive Listing, 2021.

o Interactive Visualization of Interdependent Power and Water Infrastructure Opera-
tion. Han Han, Konstantinos Oikonomou, Nithin Chalapathi, Masood Parvania, Bei
Wang. IEEE Power & Energy Society Innovative Smart Grid Technologies Conference
(ISGT), 2020.



CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we describe the technical background of the mapper graph and infor-
mation theoretic clustering measures. We end this chapter by describing the datasets used

in our experiments.

2.1 Mapper Graphs
2.1.1 Construction of a Mapper Graph

We lay out the formal definition of the mapper construction as introduced by [33]. We
focus on the 1-dimensional mapper construction. For the rest of this thesis, the mapper
construction refers to the process of generating a mapper graph.

Suppose we have some high-dimensional point cloud X C R™. A cover V = {V;}ies
of X is an indexed set of open sets of R™ endowed with the standard topology such that
X C Ujer Vi Given V, we can construct a 1-dimensional nerve N of V. In general, N is
a simplicial complex. However, N1, the 1-dimensional skeleton of A/, is a graph capturing
the intersections between elements of V. There are |I| vertices in N;(V), each representing
one of the cover elements. N7()) contains an edge between vertices i and j if and only if
Vi N'V; is nonempty (for Vi, V; € V).

Although the construction of N given V is straightforward, finding V for X is nontrivial
and that is where the mapper construction comes in. The mapper construction begins with
a high-dimensional point cloud X C R" as well as a continuous function f : X — R" where
typically n >> m and m =1 or m = 2. Suppose we can create a cover U = {U;};cs (J
is an index set) of f(X). Then we can create V by considering the connected components
f~HU). That is, for each U; € U, we treat the connected components of f~(U;) as cover
elements that make up V. The mapper graph is then defined as the 1-dimensional nerve of
V, M(X, f) =N (V).

At first glance, it is not apparent that using a cover of f(X) alleviates the issue of
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constructing V since we still need to define U, the cover of f(X). However, in practice, f
is a scalar valued function with known meaning, and the cover U is a set of open intervals
in R. The most common choices for f fall into two categories. First, f may be a known
data attribute. For example, if X is a set of high-dimensional points representing basketball
players in the National Basketball League, f could be a function mapping players to their
average number of points scored per game. Second, f may be derived from the data, for
example, the Lo-norm and eccentricity.

Assuming that f is a scalar function, the de facto method of constructing U is by
splitting the range of f(X) into [ equally sized intervals, each with p percentage overlap
between adjacent intervals. We require the intervals to overlap in order to capture relations
among the cover elements. This method of creating U is called the uniform cover. A second,
but less widely used, method is the balanced cover. Again, the range of f(X) is split into [
intervals, but each interval contains an equal number of points, which ensures that denser
regions of f(X) are covered by more intervals and are a finer representation. Once again,
each adjacent interval has p percent overlap.

To illustrate the process of computing a mapper graph, we provide an example in Fig. 2.1.

In (a), we have the original point cloud X with the points in black. In (b) we have an example

Ui
U, |
Us

U, |
Us
Us
Uz
Us

11

Figure 2.1. Example mapper graph computation. (a) The point cloud X. (b) The filter
function along with a cover. (c) The resulting mappar graph.
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filter function. For each point in X, f provides a corresponding value. Fig. 2.1(b) has a
uniform cover U with eight elements. In (a), we overlay the connected components of each
F~1U;) in (b). Vi, Vo, and Vi; are the first, second, and eleventh elements of V, an open
cover on X. Each V; becomes a vertex in the mapper graph shown in (c). Edges in (c) are

added when there are overlapping elements between two V;.

2.1.2 Mapper Construction Parameters

In practice, the above construction has a number of parameters a practitioner must
specify. First, a filter function f, sometimes called a “lens”; [, the number of intervals
to cover f(X); and p, the percent overlap. Finally, a clustering algorithm must be used
to find the connected components of f~1(U;). Although any clustering algorithm works,
most common applications use an algorithm without a fixed number of clusters. DBSCAN
(Density-based spatial clustering of applications with noise [9]) is a common choice. How-
ever, DBSCAN introduces two new parameters: € and minPts. DBSCAN clusters points
by density; clusters are formed if there are minPts within € distance of each other. During

the clustering step, X must also be endowed with a metric, such as the Fuclidean distance.

2.1.3 Related Works

Parameter selection has long been a challenge faced by users of the mapper framework.
Carriere et al. [5] proved that under certain assumptions about the input point cloud,
the mapper graph is an optimal estimator for the Reeb graph. They also introduced
a procedure for selecting the most stable parameters. Stability in this setting means
that under parameter perturbations, the resulting mapper graph does not change. Their
procedure involves repeatedly computing the mapper graph over a sample of the data while
comparing the extended persistence [24] between the mapper graph and a ground truth.

Brown et al. [3] studied the convergence between the Reeb graph and the mapper graph,
extending the work of Munch and Wang [21]. In [3], the authors introduced a theoretical
object called the enhanced mapper graph. This variant captures more geometric information
about the point cloud than the classic mapper graph. The construction process of the

enhanced mapper graph can be found in Chapter 4.



2.2 Information Theoretic Clustering Measures

Within the field of clustering, there are many measures for assessing the quality of a
clustering. Broadly speaking, the question of clustering quality is a question of model
selection. Given some set of models M, ..., M,,, how does one select the best model? In
the supervised setting where the data have labels and our goal is to group points with
similar labels together, we can use external validation (e.g., cross validation). However, the
mapper graph is primarily used as a data exploration tool and well-defined labels are rare.
In situations like this, we use internal evaluation, the process of deriving some score based
on the internal properties of the clustering. Information theoretic measures are one class of
internal evaluation methods.
AIC and BIC. At the core of information theoretic measures is the idea of minimizing the
Kullback-Leibler (KL) divergence, also known as relative entropy [6]. The KL divergence is
a way of informally describing the distance between two probability distributions. Note that
the KL divergence is not a metric since it is not symmetric nor does it satisfy the triangle
inequality. Nonetheless, it still provides a way to compare two probability distributions. If
P and @ are discrete probability functions defined on the same probability space X', then

the KL divergence is:

P(x)
D (PllQ) = Y P(a)log ( 54 (2.1)
Kt ZX © (Q(zc))

Suppose we have a dataset X. We assume that there is an underlying generative process
from which X is sampled. Let the associated probability function of the generative process
be P. Miy,... M, is a set of parameterized probability models with parameters 60 ...6,,
and denote the probability functions as P(x; M;) for model i. The best model will be the
one that minimizes the KL divergence.

One measure derived from this idea is the Akaike information criterion (AIC) [1, 4]. For

a given model M;, the AIC is:

AIC(M;) = 2 - 1(My; X) — 2 (2.2)

where [ is the maximum log likelihood estimation of M; given dataset X and p; is the number

of parameters estimated in M; (i.e., |0;]).
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Another commonly used information theoretic measure is the Bayesian information
criterion (BIC) [15, 26, 32]. If we assume that P(x;M;) has a prior distribution, the KL

divergences gives rise to the following formulation of the BIC:

BIC(M;) = (M X) — % log |X| (2.3)

The model with the highest AIC or BIC score is the selected model. In some of the
literature, there is a factor of -1. In this case, the process for the computation is the
same but the model with the smallest score is instead selected. In this thesis, we use
the maximization variant. Neither formulation directly gives a quality assessment for a
particular model. Their main usage is in comparing a set of models and selecting the best
one. In other words, the magnitude of a single AIC or BIC score is not relevant. Similarly,
all the models must operate on the same probability space.

Both methods balance the trade-off between fit and complexity. The log likelihood term
measures how likely a model is given the observed data whereas the p; term penalizes models

with more parameters, and hence discourages overfitting.

2.2.1 X-Means

One of the most popular clustering algorithms is k-means [2]. In k-means, the selection
of the parameter k is a widely discussed topic with multiple established approaches such as
cross validation [29], the silhouette score [31], and various indices [28]. One clustering algo-
rithm that heavily uses the BIC is X-means [26], a variant of k-means. X-means attempts
to solve three large issues that plague k-means: poor computational scaling, parameter
selection, and getting stuck in local minima. For our purposes, parameter selection is most
relevant.

At its core, X-means consists of two alternating steps. First, given a k, the method
finds the best k-means clustering. In most implementations, this is done using Lloyd’s
algorithm [14, 18] or its variants. Given the best k clustering, X-means then runs an
Improve Structure step. Improve Structure determines if and where new clusters should be
added by splitting a particular cluster. For the i-th cluster, there is a subset of the data D;
assigned to cluster i. Treating D; as the whole dataset, X-means computes its BIC score.

It then runs a 2-means clustering and again computes the BIC score. If the 2-means BIC
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score is larger than the 1-means BIC score, the original centroid is replaced with the two
new centroids computed. The 2-means clustering is initialized by splitting the i-th centroid
in two. The two new centroids are moved along a random direction with the distance
proportional to the size of the region D;. Note that when running the 2-means, only points

in D; contribute to the location of the new centroids.

2.3 Datasets

Here we outline the three datasets used in Chapter 3, one synthetic dataset and two
real-world datasets: Circles, COVID-19, and CIFAR-10. For each, we also define the filter
function. All three datasets have either a known mapper graph or have been studied by
prior work. Thus, they provide a collection of known datasets to compare our new cover
selection schemes.
Circles The circles dataset is comprised of two concentric 2D circles with a total of
2000 points. The filter function is the second dimension of each point (i.e., the y-axis).

See Fig. 2.2 for an image of the two circles.

Figure 2.2. Visualization of the Circles dataset.

COVID-19 Within the United States, various states are affected by the COVID-19 pan-
demic differently. The second dataset consists of statistics for different states from April 12,

2020 to September 18, 2020'. We specifically look at Arizona, California, Florida, Georgia,

1COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins
University: https://github.com/CSSEGISandData/COVID-19
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Illinois, New Jersey, New York, North Carolina, and Texas. There are 1431 data points,
each corresponding to a daily snapshot of a state with respect to seven measures: confirmed
cases, deaths, active cases, people tested, testing rate, mortality rate, and incidence rate. All
rate values are per 100k individuals. The filter function we use is the number of days since
April 12, 2020. Zhou et al. [39] applied the Mapper framework and found that particular
states form branching structures, suggesting that they have different epidemic trends.

CIFAR-10. The final dataset comes from deep learning, following the procedure outlined
by Rathore et al. [30]. One of the main challenges in deep learning is interpretability.
That is, given a neural network, how do we explain its behavior? In our case, we use
ResNet-18 [13], a popular image classification neural network with 18 layers and 8 residual
blocks, trained on CIFAR-10 [16]. CIFAR-10 is an image classification dataset with 60,000
28x28 images spread across 10 classes (e.g., dog, cat, airplane). To collect the activations, we
run a forward pass of a trained neural network using all images and extract the intermediate
representations between layers. We use a sample of the activation vectors from the third
residual block. Each activation vector has 256 dimensions, and we sample 50,000 of the
possible 1 million activations. We ensure each class has 5,000 activation vectors so that
each class is represented. Similar to [30], we use the Lo norm as the filter function. In [30],
the authors note that the classes start to separate in the form of bifurcations within the

mapper graphs.



CHAPTER 3

COVER SELECTION

3.1 Methodology

In order to explain the three strategies for generating an adaptive cover, we first artic-

ulate how to compute the AIC and BIC for mapper graphs.

3.1.1 AIC and BIC on Mapper Graphs
Let X be a point cloud with a lens function f : X — R and z; denote the i-th point of
X. We assume that X is equipped with the standard Euclidean metric. Given a mapper
graph M, we can create a hard clustering. Let V be the vertices of M and k = |V|. We can
generate k centroids, each representing a vertex of the mapper graph by taking the mean
of the corresponding points. If X; represents the points belonging to vertex v;, then the

location of the j-th centroid is:
1
o, = = > i (3.1)
X5l =,

For points that belong to only one vertex, we assign their membership to the corresponding
cluster. However, for each point that exists in two or more vertices, we assign it to the
nearest center. Suppose point z; belongs to a set of vertices V(;) in M. Then the assignment
of z; is argmin, cy; || — o, ||*. Points that do not belong to any vertex are assigned to
the vertex with the nearest centroid. In Fig. 3.1, we use the point cloud and mapper
graph from Fig. 2.1 to compute a hard clustering. The colors of the mapper graph vertices
correspond to the clusters, and the center of each cluster is a red dot.

We now have k centroids and a unique assignment for each point ;. We treat the set of
centroids fiy, ... fby, as the means for £ identically spherical Gaussian distributions. Under

this assumption, the set of centroids acts as the centroids for k-means clustering. To derive

the likelihood function, we first start with the probability of point x;:
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Figure 3.1. Hard clustering of the point cloud from Fig. 2.1. (a) The original point cloud.
(b) The mapper graph. (c) The resulting hard clustering with cluster centroids marked by
red dots.

k
P(z;) =Y P(z; € X;) - Plxslz; € X;) (3.2)
j=1
In the maximum likelihood case, the first term P(z; € X;) becomes % [15, 26]. The

second term is the standard definition of a Gaussian distribution:

1 —||zi — oo, ||?

Pladei € X5) = o oayim &P — 552

(3.3)

where d is the dimension of the points. We can then take the log likelihood of equation

(3.2).

~ X1\ d 1
= |Xj|.<1og <®> 2.log(27r-02)> ~ 5 > i — 7] (3.4)

J)iEXj
We have yet to compute the variance. Since cluster j is a Gaussian distribution at p,;,

the unbiased estimator of the variance is:
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AJZ |X |— Z ||@; — ,U«vJH2 (3.5)

a:EX

The identically spherical Gaussian distributions assumption presumes that each cluster

has the same variance. Thus, for any cluster j,

7= =D S (3.6)

xeX

Now consider the sum of all distances:

k
oMz nllP =)0 D e — p,l?

z; €EX J=0 z;€X;
= -(IXI— k)- 6
= 42 = |X| anz 1yl (3.7)

z;€X
where fi(;) is the centroid z; is assigned to. Putting everything together, we now have the

following likelihood estimate:

k
X|-d d-(X| -k
= 3 (% og %)) — Kl 1og K| — P D 1og(2. 762 - IR g
7j=1
Recall that the AIC and BIC are defined as:
AIC(M) =2 [(M;X) — 2 paq (3.9)
BIC(M) = {(M;X) — %M log X (3.10)

We have shown how to find Z(M;X), but we have yet to compute pas, the number of
free parameters in the probability distribution generated by k Guassian centroids. The hard
clustering of M contains k centroids, each of dimension d. Hence, there are k - d parameters
representing the centroids. Since all clusters have the same variance, one variance estimate,

2

6, needs to be computed. Finally, during the derivation of P(z;), P(z; € X;) is an empirical

estimate of the number of points in cluster j. Note that if we are given P(z; € X;) for all j
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except j = k, we automatically know P(z; € Xj) since P(z; € X;) =1— Zf;ll P(z; € Xj).
Computing each P(z; € X;) for k clusters yields an additional k —1 parameters. Therefore,
pm=(k-d)+1+(k—1)=k-(d+1). Putting this all together, we have the following
equations for the AIC and BIC:

k
ATOM) = 37 (2 1% Tog [%]) — 2 [X|log %] — ] - dlog(2- 7 6%) — d (%] — k)
7=1
—2-(k-(d+1)) (3.11)
k
X|-d . d-(|X| -k
BIC(M) = 3 (1% log %) — [Xlog x| — -0 1og(2. 7 52) - =1
j=1

2

3.1.2 Strategy 1: Grid Search
In this strategy, we aim to maximize the overall value of the information criterion by
selecting the mapper graph whose AIC or BIC value is maximal. Suppose we have a fixed
percent overlap and a set of the number of intervals to select from {l;...l,}. For each [;,
we construct a uniform cover with p overlap and [; intervals. The mapper graph M;, is
computed along with its AIC and BIC values using the formulas from section 3.1.1. We

then select the cover with the largest AIC or BIC score.

3.1.3 Strategy 2: Single-Pass X-Means

Our second strategy is to treat the mapper graph as an initialization for X-means [26].
After running X-means until completion, we convert the resulting clustering to a mapper
graph by constructing a new cover based on the centroids returned by X-means.

First we create a hard clustering from a given mapper graph M using the process
outlined in section 3.1.1. After the hard clustering step, we have k centroids and each point
has a unique assignment. We then run X-means till convergence or reaching a maximum
number of clusters, and we receive &’ centroids where k' > k.

To reconstruct a mapper graph, we first create a suitable cover of the image of the lens

function f. We start with a naive cover:
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U = {(min f(X;), max f(X;))[i=1...k} (3.13)

We note two problems with the naive cover of f(X), U, based on equation (3.13). First,
two cover elements U;, U; € U may exist such that U; C U;. Second, an overlap between
cover elements is not guaranteed. These two issues lead us to algorithm 1 for computing
a new cover U’ based on U. Given the new cover U’ of f, we can generate a new mapper
graph M/, the final result. We evaluate the final graph using the AIC and BIC formulas

from section 3.1.1

Algorithm 1 Algorithm used in strategy 2 to generate a new cover U’
procedure GENERATE COVER(U, min_overlap) > Start with / and returns U’.
U + sort(U) > Sort intervals based on the start of each interval
Break ties by prioritizing longer intervals

1:

2

3

4 fori=0...]U'|—1do

5: forj=i+1...|U'|—-1do
6 iijQUz-then

7 Remove U; from U'.
8
9

fori=0...|U'|—2do > Ensure a minimum overlap
if U; NU;1+1 < min_overlap - min(|U;|, |U;+1|) then
10: Extend U; and U;j equally till minimum overlap is achieved.

11: Return U’

3.1.4 Strategy 3: Multi-Pass X-Means

Strategy 3 is based on X-means’s Improve Structure step. In X-means’s Improve Structure
phase, each cluster is treated independently, and the associated points are treated as the
dataset. The BIC score is then computed for £ = 1 and k& = 2 representing the option to
keep the current clustering or splitting it into two clusters. In our strategy, we compute an
AIC or BIC value for each interval. We then split the interval and compare the AIC or BIC
values, opting to keep a split if it increases the information criterion.

First, we define what it means to “split an interval” with overlap p. Let (a,b) be an
open interval. If we want two equal length intervals (a,a+d) and (b—6,b) as a result of the
splitting operation, we need to compute § that respects the overlap. Since b—a =2-6—6-p,
d=(b—a)/(2—p), we now have two new intervals (a,a + 0) and (b — d,b). Analogously,
merging two overlapping intervals (a, b) and (¢, d) is done by replacing both with (a,d). We

illustrate this in Fig. 3.2
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Figure 3.2. An illustration of splitting an interval that belongs to the cover of f(X).

Now we can describe the entire process. Consider a mapper graph M on point cloud
X, with filter function f, m cover elements, and p percent overlap. For cover element
Uj, we consider the set of vertices V; of M that correspond to connected components of
F~HU;). We compute the AIC or BIC score as outlined in section 3.1.1 on the subgraph
induced by connected components V; of f~1(U;). We then split U; into two overlapping

/ /
|7

intervals: U 41 We compute a mapper graph M’ using the new cover that contains

J
m + 1 elements. The subgraph from U} and U}, is used to compute another AIC or BIC
score. If the new score is larger than before splitting the cover element, we retain the split.
We provide pseudocode for one iteration of the procedure in algorithm 2.

We detail the steps of algorithm 2. First, we iterate through each interval of the cover
of f(X) and compute the AIC or BIC of the induced subgraph. Then, we split the interval
and compute a new mapper graph M’. If the AIC or BIC value of the induced subgraph of
M’ from the two new intervals is larger than the subgraph prior to splitting, we mark the
interval as a candidate for splitting. After iterating through all of the cover elements, we
split the cover element with the largest increase in the AIC or BIC value. This concludes
the one iteration detailed in algorithm 2. Algorithm 2 shows one iteration when using the

BIC. In the AIC version, the process is the same except that on lines 6 and 13, we compute

the AIC value of the subgraphs instead of the BIC.
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Algorithm 2 One iteration of multi-pass X-means (BIC Version)

1: procedure MULTI-PASS X-MEANS(X, f, U) > U is the initial cover
2 mark_for_splitting « {}

3 M < GenerateMapper(X, f, U)

4 fori=0...m—1do

5: subgraph < M.subgraph(U;)

6 original-BIC-value +— BIC(subgraph)

7 U —u

8 U’ split_element(U)) > New cover by splitting element 4
9: M’ + GenerateMapper(X, f, U")

10:

11: // Since U; was split, the adjacent cover element U,y is the new cover element
12: subgraph<«— M’.subgraph(U;, U; 1)

13: new-BIC-value <— BIC(subgraph)

14: if original-BIC-value < new-BIC-value then

15: mark_for_splitting.add(U;)

16: // Construct a new cover with the best split

17: Return U .split_element(mark_for_splitting)

Since algorithm 2 is only one iteration, we can repeat the process until convergence.
One consistent obstacle with this approach is selecting the initial cover. Because intervals
are only split in two, the initialization plays a significant role. For our results, we use

parameters that are near the hand-tuned parameters for each dataset.

3.2 Results

In this section, we include the relevant results of our strategies and focus on the results of
multi-pass X-means. We also provide classic mapper graphs generated from the hand-tuned
parameters of prior works [30, 39]. The number of intervals passed to the classic mapper
graph and to initialize multi-pass X-means is denoted by [. The nodes in the mapper
graphs for the Circles dataset are colored by function value. For COVID-19 and CIFAR-10,
the nodes are represented by pie charts showing the composition of states and classes,
respectively.

Circles. In the circles dataset, we use a DBSCAN ¢ value of 0.1, minPts of 5, and 20%
overlap. In this case, the hand-tuned number of intervals for the classic mapper graph is 7.
By visual inspection, we know the classic mapper graph at [ = 7 captures the ground-truth,
visualized in Fig. 3.3 with two concentric circles. At [ = 6, the classic mapper graph

in Fig. 3.4(a) disconnects the inner circle. Multi-pass X-means using the AIC, Fig. 3.4(b),
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is able to recover the inner circle and converges to the ground truth.

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Figure 3.3. Circles: Ground truth mapper graph (I = 7)

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Figure 3.4. Circles: Generated mapper graphs when [ = 6. (a) Classic mapper graph (b)
Multi-pass AIC (c) Multi-pass BIC.
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In Fig. 3.5, we use a parameter setting of [ = 2. The classic mapper graph in (a)
shows neither circle. However, both multi-pass X-means using the AIC (b) and the BIC
(c) recover one of the two circles. Neither converges directly to the ground-truth but are
significantly closer than the classic mapper graph in (a). In addition to demonstrating
that multi-pass X-means progresses towards the hand-tuned topological configuration, it

suggests that multi-pass X-means is able to discover some loop structures.

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Figure 3.5. Circles: Generated mapper graphs when [ = 2. (a) Classic mapper graph (b)
Multi-pass AIC (c¢) Multi-pass BIC.

Finally, in Fig. 3.6, we include a plot of the AIC (a) and BIC (b) before and after
running multi-pass X-means. For most choices of [, the local maxima found by multi-pass
X-means is the same as the global AIC or BIC value of the classic mapper graph. However,
the resulting mapper graphs are significantly improved.

COVID-19. The next dataset is the COVID-19 dataset. We use a DBSCAN ¢ of 0.15,
minPts of 5, and an overlap of 50%. In Fig. 3.7, we show the hand-tuned configuration
of I = 20 discovered by Zhou et al. [39]. In the hand-tuned classic mapper graph, we can
see clear branching structures for each state. In particular, Texas (light green) vs Florida

(dark green) as well as Georgia (red) vs Arizona (blue) form two interesting branches due
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Circles AIC Circles BIC
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Figure 3.6. Circles: (a) AIC before and after multi-pass. (b) BIC before and after
multi-pass.
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Figure 3.7. COVID: Hand-tuned mapper graph (I = 20)

to their epidemic trend; the branching points for both are pointed out by arrows.
For I = 10 and above, the classic mapper graph already shows clear branching structures.

In order to properly test multi-pass X-means, we first start with [ = 2 in Fig. 3.8. In the
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classic mapper graph (a), the connected component with 4 vertices is entirely mixed; there is
no clear separation between the states. Both multi-pass X-means with the AIC (b) and BIC
(c) generate mapper graphs that are significantly closer to the hand-tuned graph in Fig. 3.7.
(b) and (c) show the Arizona vs Georgia bifurcation starting from a node that contains only
Arizona and Georgia data points. The results of multi-pass X-means recover the Florida
vs Texas branch but fail to include a root node containing only Florida and Texas points.
The branching points are indicated by black arrows. Examining the distribution of intervals
shown next to the graphs of (b) and (c), we can see that multi-pass X-means focuses on
subdividing intervals with higher filter function values (i.e., after COVID-19 starts to spread
in a state). This supports multi-pass X-means converging towards the hand-tuned mapper
graph (treated as the “ground truth”) since the branching of states occurs during higher
filter function values. The results of multi-pass X-means reflects the fact that most states
start with the same initial epidemic trends, but quickly branch based on the state’s response
and unique attributes (e.g., population density).

If we start with a more generous initialization of [ = 5, shown in Fig. 3.9, the classic
mapper graph (a) shows some branching structure. However, most states are still mixed.
While better than | = 2, the classic mapper graph (a) is still far from the hand-tuned
mapper graph in Fig. 3.7. Multi-pass X-means using the AIC (b) and the BIC (c) converge
to mapper graphs that look similar to the hand-tuned graph. In particular, multi-pass
X-means is able to recover the bifurcation of Arizona vs Georgia as well as Florida vs Texas
(see Fig. 3.9 black arrows). Both structures branch from the main connected component
and bifurcate from a node that contains only Arizona and Georgia or Florida and Texas
data points. As with [ = 2, multi-pass X-means focuses on subdividing intervals with higher
filter function.

Finally, Fig. 3.10 shows the AIC (a) and BIC (b) values after performing multi-pass
X-means. Quantitatively, both methods decrease the AIC and BIC values for choices of [
less than 40. However, as discussed above, qualitatively, the local maxima that multi-pass
X-means finds are significantly closer to the hand-tuned graph.

CIFAR-10. Our last set of results comes from neural network activations on CIFAR-10.
The DBSCAN e parameter is set to 8.71, minPts as 5, and an overlap of 20%. Fig. 3.11

contains the hand-tuned parameter of [ = 40 from Zhou et al. and Rathore et al. [30, 39].
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Figure 3.8. COVID: Generated mapper graphs when | = 2. (a) Classic mapper graph (b)
Multi-pass AIC (¢) Multi-pass BIC. The multi-pass figures also include the distribution of
cover elements.
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Figure 3.9. COVID: Generated mapper graphs when [ = 5. (a) Classic mapper graph
(b) Multi-pass AIC with the distribution of cover elements (c¢) Multi-pass BIC with the
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For the distribution of cover elements, black represents

unmodified cover elements and green represents new cover elements after splitting.
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Figure 3.10. COVID: (a) AIC before and after multi-pass. (b) BIC before and after
multi-pass.

The key branches we expect to see with multi-pass X-means are the Truck (light blue) vs
Automobile (orange) branch and the Deer (purple) vs Horse (gray) branch. The branches
split from the main connected component into a node that contains only the two classes.
They then further bifurcate into branches that only contain one class. In Fig. 3.11, the
branching points are indicated with black arrows.

We show the results of [ = 2 in Fig. 3.12. The classic mapper graph (a) shows no
clear branching structure. Multi-pass X-means using the AIC (b) and BIC (c) are able
to uncover the main branching structure from the ground truth. Compared to (a), both
(b) and (c) are closer to the hand-tuned mapper graph. Multi-pass X-means is also able
to recover the bifurcation between Horse and Deer starting at a Horse and Deer mixed
node, similar to the hand-tuned mapper graph. However, neither method is able to recreate
the branch of Automobile and Truck, grouping both into one branch. It may be the case
that [ = 2 is too far from the hand-tuned parameter for multi-pass X-means to completely
recover the hand-tuned graph. Examining the covers before and after multi-pass X-means,
it is clear that both methods focus on activations with low to mid-range Ls-norms. This is
indicative of multi-pass X-means focusing on the correct cover elements; activations with
high Lo-norm are naturally separated in the high-dimensional space.

Using [ = 5, Fig. 3.13, the classic mapper graph (a) begins to show small branching
structures; Airplane (dark blue) and Bird (dark green) are both in their own branches.
Similar to the | = 2 case, multi-pass X-means (b,c) separates most classes and forms a

Horse vs Deer branch that is similar to the hand-tuned mapper graph. Both multi-pass
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X-means graphs start the Automobile vs Truck branch but do not expand it further. We
also include the results of using [ = 10 in Fig. 3.14 to see how multi-pass X-means performs
with a finer cover. Both versions of multi-pass X-means, Fig. 3.14(b,c), preserve the start
of the Automobile vs Truck branch as well as consistently generating the Horse vs Deer
bifurcation.

Fig. 3.15 and Fig. 3.16 include the classic mapper graph and the resulting mapper graph
of multi-pass X-means for [ = 15 and | = 20, respectively. When [ = 15, the Automobile vs
Truck branch start to form. Increasing the resolution of the initial uniform cover to [ = 20
in Fig. 3.16, multi-pass X-means using the AIC (b) expands the branch found in the classic
mapper graph (a); multi-pass X-means using the BIC (c) is similar. At this initialization,
there is a clear branching node for both the Truck vs Automobile branch and the Deer vs
Horse branch.

For the final set of mapper graphs, we examine behavior of multi-pass X-means when
given the hand-tuned parameter of [ = 40, shown in Fig. 3.17. Both multi-pass variants
preserve the primary branching structures but are able to further refine the cover to create
loops in the graph. The largest loops are pointed out with blue arrows. Similar to the Circles
dataset, multi-pass X-means using the AIC (b) or BIC (c) is able to discover loops that are
not detected in the classic mapper graph. As noted by Rathore et al. [30], the meaning of
loops in the space of neural network activations is slightly harder to interpret. Nevertheless,
our strategy demonstrates that there are non-trivial loops in the high-dimensional activa-
tion space. If we examine the differences between the uniform cover and adaptive cover
in Fig. 3.17(b, c), it is clear that multi-pass X-means refines the cover in the middle of the
filter function. This aligns with Rathore et al. where they point out that the majority of
activations have an Lp-norm in the middle of the filter function [30]. Multi-pass X-means is
able to recognize this and refines the cover to provide a more detailed mapper graph.

In addition to the four values of [ we’ve shown, we also tested our method across a range
of parameters from 3 to 200 and plotted the respective AIC and BIC values in Fig. 3.18. For
most parameter settings, mutlipass X-means improves the AIC (a) or BIC (b) value. This
is especially true for smaller values of [. The plots in Fig. 3.18 align with our qualitative
findings since multi-pass X-means changes the structure of the classic mapper graph the

most for small [.
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Figure 3.15. CIFAR: Generated mapper graphs when [ = 15. (a) Classic mapper graph
(b) Multi-pass AIC (c¢) Multi-pass BIC.
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3.3 Discussion
3.3.1 Overall Evaluation

While omitted in the main results section, we find that single-pass X-means converges
to a set of isolated connected components with no significant branching or loops. Multi-pass
X-means, as demonstrated on three datasets, converges to the hand-tuned mapper graph in
a number of cases. On the real-world datasets, we tested aggressively small parameters to see
how multi-pass X-means performs. We found that, even parameters far from the hand-tuned
value, the resulting multi-pass X-means mapper graphs converge to the hand-tuned graphs.
We also observe that multi-pass X-means is able to uncover some loop structures. This is
first noticeable on the circles dataset and is further illustrated by CIFAR-10 by running
multi-pass X-means on the hand-tuned mapper graph. For both Circles and CIFAR-10,
the AIC and BIC local maxima found by multi-pass X-means is higher than the classic
mapper graph’s AIC or BIC value. On the COVID-19 dataset, the AIC and BIC local
maxima is smaller than classic mapper graph’s AIC or BIC. However, qualitatively, multi-
pass X-means, provides a mapper graph that is a refinement of the classic mapper graph

generated from the initial parameters.

3.3.2 Parameter Selection Recommendations
If a user is met with an unknown dataset and would like to employ the mapper frame-
work, how should they proceed? With no knowledge of the ideal parameters, we recommend

users to try multi-pass X-means across various overlap parameters with small values for the
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number of intervals. By doing this, the user will gain some intuition and knowledge on what
the hand-tuned “ideal” mapper graph might be. With this knowledge, the user may opt to
hand tune parameters, using the number of intervals in the multi-pass X-means adaptive
cover as a starting point for a new uniform cover. If the user has a vague idea of the
hand-tuned parameters, we recommend running multi-pass X-means on those parameters
to study how the hand-tuned graph may be improved. With these guidelines, it is easier

for a practitioner to refine a hand-tuned classic mapper graph.

3.3.3 Future Work

Some researchers have applied topological concepts to information theory [19]. Numer-
ous concepts of entropy for graphs and simplicial complexes have also been proposed [7, 8].
Because of the strong connection between entropy and the KL divergence, it may be
possible to derive a topologically informed score for mapper graphs. Our strategy tries
to minimize the KL divergence between the underlying true probability distribution and a
set of identically spherical Gaussians; there may be a way codify topological structures into
probability functions.

In the future, we would also like to explore the possibility of merging cover elements.
Suppose that there is an extremely refined cover. We would like to work backwards by
merging rather than splitting cover elements. In terms of the existing theory, the mapper
construction has been proven to recover the underlying Reeb graph. In some sense, this
avenue of work would entail computing as close of an approximation to the Reeb graph as

possible with refinement as necessary via an adaptive cover.



CHAPTER 4

ENHANCED MAPPER

The second contribution of this thesis is an open source Python library that computes
the enhanced mapper graph. We first outline an algorithmic description of the enhanced
mapper graph and then introduce our library’s features. We end with some examples of how
the enhanced mapper graph might be used to derive new insights about both the COVID-19
and CIFAR-10 datsets.

4.1 Enhanced Mapper Graph Description

We give an algorithmic description of the enhanced mapper graph and discuss the
differences to the classic mapper graph. For a mathematical description of the enhanced
mapper graph, we refer the reader to [3].

Let X be a point cloud with filter function f. Suppose that U is a cover of the image
of f, constructed the same way as the classic mapper graph. Now construct a set of
closed sets O by considering cover elements in I/ with a nonempty intersection. That is,
O={U;nU;|U;nU; £ 0,U;,U; € U}. Because U is a list of adjacent intervals on R, O is
the region of overlap between two consecutive intervals. Note that |O] = |U/|—1. In Fig. 4.1,
we show how to construct O (b) for the point cloud and cover in (a) coming from Fig. 2.1.

Similar to the classic mapper graph, we compute the connected components of f~1(U;)
for U; € U. We also consider the connected components of f~1(0;) for O; € O. For
convenience, define 7 to be a function that returns the connected components.

We can now construct the enhanced mapper graph M. The enhanced mapper graph
is defined by three objects: the vertex set V, the edge set E, and a function g : V. — R.
Consider one interval U; in U and one connected component of f~(U;), cj. Let O™ and
O™ be the intersections with U; 1 and U;;q respectively. We define two vertices in the
mapper graph, v;f and v; with an edge between them. g(vf) is defined by comparing the

maximum value of f(c;) with connected components of OF. Formally:
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Figure 4.1. An example construction of @ and f~1(0). (a) The point cloud from Fig. 2.1
with connected components of f~(U) in the boxes. (b) The filter function f with &/ and
overlaps O. (c) The connected components of f~1(O).

mi(nﬂ(min f(ox)) if there exists o € 7(O™) such that ¢; Nog € 0
opeT(O
gkﬂcj‘g@) (41)

max f(c;) otherwise

g(v) =

Similarly, we can define the value of g(v;” ) by examining O~:

max (max f(og)) if there exists o, € 7(O~) such that ¢; Nog € 0
opem(07)
g(UJ ) = OkﬁCjZ@ (42)
min f(c;) otherwise
At this stage, M consists only of vertices with one edge between them. Before proceeding
further, we provide an example of where in the pipeline we are. In Fig. 4.2, (¢) contains
the connected components of f~!(U). For each connected component, we split it into a
positive and negative node in (d). Notice that there are no edges between nodes coming
from different connected components of f~1 (). We now explain how to compute the pink
edges in (e), the final enhanced mapper graph.
Consider two connected components ¢; and ¢; coming from two overlapping cover ele-
ments in U. Suppose that the intersection between ¢; and ¢; is nonempty. Let vf ,v; be

vertices from ¢; and v;-r and v; be vertices from ¢;. If g(vi) < g(v; ), we add an edge between
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Figure 4.2. The enhanced mapper graph construction of the point cloud in Fig. 4.1. We
include lines across to denote the filter function value. (a) The classic mapper graph. (b)
The filter function with cover elements & and overlaps O. (c) The connected components
of f~1(U). (d) The generation of individual vertices in the enhanced mapper graph with
“+” and “-” denoting the positive and negative vertices. (e) The final enhanced mapper
graph. The added edges, in comparison to (d), are in pink.

vf and vy Otherwise, we add an edge between v;” and v;r. We have now constructed the
enhanced mapper graph. Returning to Fig. 4.2, (e) contains the final enhanced mapper

graph. Each of the pink edges are added by this process.

4.1.1 Comparison to the Classic Mapper Graph
The enhanced mapper graph provides more geometric information about the point cloud.
In particular, the function g gives a more refined understanding of the topological structure.
For each interesting feature in the enhanced mapper graph, there is an associated filter
function value where the feature occurs. Moreover, each of the edges in the enhanced
mapper graph has an associated length. We demonstrate how to use this information in

section 4.3.
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4.2 Implementation and Features

Our library is written in Python and supports Numba, a high-performance “just-in-time”
Python compiler [17]. In addition to implementing the enhanced mapper graph, our library
has three features that make it appealing to practitioners wanting to leverage the mapper
framework: programmatic GPU acceleration, easy exportation, and quality of life features.
Programmatic GPU acceleration. Zhou et al. [39] showed that using a GPU provides a
speed-up between 6x to 12x for 1 million data points of 256 dimensions. They also provide
a command line interface (Bash) for accessing the GPU computation. However, we take it a
step further and provide a programmatic way to access the GPU computation. By making
the GPU acceleration available as a library, users with existing Python code can use our
library to speed up their existing pipelines. For our GPU computations, we use PyTorch
and include the ability to parallelize across multiple GPUs. As noted by Zhou et al. [39],
the slowest component of the mapper pipeline is the DBSCAN subroutine, specifically the
pairwise distance computation. We can instead run this on a GPU.
Easy exportation. Our library includes the ability to take computed mapper graphs and
export them to other libraries and tools. We provide converters to NetworkX [11], a graph
and network analysis library, PyVis [27], a Python based network visualization library, and
Mapper Interactive [39], a state-of-the-art visualization tool for mapper graphs. This feature
allows users to quickly prototype and try new ideas without worrying about implementing
a new visualization.
Quality of life features. We have a variety of features to streamline the development
experience of users. We provide built-in methods for computing the distribution of the k-th
nearest neighbor to aid users when selecting € when using DBSCAN. Moreover, our mapper
graph object is treated as a Python dictionary with additional methods for indexing and
analysis. Our analysis tools include computing connected components, shortest paths, and
the Fowlkes Mallows Index with another clustering of the data. Because our mapper graph
is also a Python dictionary, it can access all of Python’s existing libraries that operate on

dictionaries.
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4.3 Results

To illustrate the power of the enhanced mapper graph, we show a few examples using
the COVID-19 and CIFAR-10 real-world datasets. For the COVID-19 examples, we set
DBSCAN’s € to 0.15 and minPts to 5. For CIFAR-10, ¢ is 8.71 and minPts is 5.
COVID-19. In Fig. 4.3, we have the classic mapper graph (a) and the enhanced mapper
graph (b) when the number of cover elements is 5 with 50% overlap. This is one of the
first parameter choices to show the Texas (light green) and Florida (dark green) branching
structure. In (a), the branching node is indicated by a black arrow. If we examine the
corresponding positive and negative vertices of the branching node in the enhanced mapper
graph, again denoted by a black arrow in Fig. 4.3(b), we can find a corresponding function
value for when the branch forms. The negative branching node has a function value of 106
days and the positive branching node has a function value of 132.5 days. This result implies
that Texas and Florida branch from the other states at around July 27, 2020. On August
22, 2021, Texas and Florida bifurcate from each other.

We can perform similar analysis on the branch containing Arizona (blue) and Georgia
(red). In Fig. 4.4, (a) contains the classic mapper graph computed with 20 intervals and
50% overlap, and the enhanced mapper graph is shown in (b). The classic mapper graph has
two nodes before Arizona and Georgia completely bifurcate. The function value of the node
closest to the mixed node is 90 and the function value of the node right before the bifurcation
is 106. Analogously, Arizona and Georgia break away from other states around July 11,
2020 and closely resemble each other’s epidemic trends. Arizona and Georgia continue on
the same trend until July 26, 2020 when the two states follow different epidemic trajectories.

Fig. 4.5 contains the classic mapper graph (a) and the enhanced mapper graph (b) for
22 intervals and 50% overlap. 22 intervals is the largest number of cover elements where
the classic mapper graph connects New Jersey to the rest of the states. This suggests that
New Jersey quickly diverged from the epidemic trends of other states. Using the enhanced
mapper graph, we can gain a better understanding of when New Jersey branches from
the other states. Looking at the branching node, denoted by a black arrow, the enhanced
mapper graph tells us the function value of the negative branching node is 6.9. That is,
within one week of data collection (April 19, 2020), New Jersey starts along its own epidemic

trend. The New York connected component in Fig. 4.5(b, pink) appears as an isolated island
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under a number of parameters. To investigate further, we examine the filter function value
of the two endpoint nodes. Each node has a value of 0 and 160. During the entire data
collection window, New York had a different epidemic trend from all states.

CIFAR-10. Our final example in Fig. 4.6 comes from the CIFAR-10 dataset. The classic
mapper graph (a) and the enhanced mapper graph (b) are generated using 70 intervals
with 20% overlap. Suppose that we wish to investigate the loop in (a) at the end of the
black arrow. We can examine the corresponding function values of the two vertices that
link the loop to the rest of the graph in (b). In particular, one vertex has a function value
(La-norm) of 15.4 and another with 16.0. That is, the loop is created at an La-norm of
15.4 and disappears at 16.0. While the meaning of loops is slightly harder to interpret than
branches in the space of neural network activations, it is still informative to know the filter

function values when the loops first appear.

4.4 Discussion

Our four examples show cases where the enhanced mapper graph uniquely informs our

understanding of the underlying topology of the data. While the classic mapper graph
allows us to study the general structure and interesting topological features of a point
cloud, the enhanced mapper graph allow us to make pointed statements about the data
(e.g., when New Jersey’s epidemic trends deviate from other states). More broadly, the
edge lengths given by the enhanced mapper graph gives us geometric information about
interesting topological features.
Future work. Future work along this line includes first exploring existing datasets that
have known mapper graph results [10, 20, 22, 25]. In all the referenced examples, the classic
mapper graph has shown interpretable results. We can then use the enhanced mapper graph
to further explore these known results.

We would also like to explore the usage of machine learning with the enhanced mapper
graph. Graph neural networks have seen increasingly promising results [38]. Using the
recent advances in graph neural networks and the geometric information the enhanced
mapper graph provides, we can attempt to use the mapper graph as input to graph
neural networks. This presents both implementation and research challenges. In terms

of implementation, our library needs to be extended to work with existing deep learning
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Figure 4.6. CIFAR-10: (a) Classic mapper graph with 70 intervals and 20% overlap.

The corresponding enhanced mapper graph.
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libraries, like PyTorch. On the research side, it would be nontrivial to demonstrate that the
enhanced mapper graph with graph neural networks leads to an improvement over existing

methods.



CHAPTER 5

CONCLUSION

The mapper construction is a popular data exploration and visualization tool from
topological data analysis. In this thesis, we explored the question of parameter selection
and released an open source library for computing the enhanced mapper graph.

We explored three strategies for tuning the parameters based on the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC) in Chapter 3. We show that,
experimentally, multi-pass X-means converges to the hand-tuned or “ground-truth” mapper
graph. Our testing indicates that, under a range of parameters, multi-pass X-means is able
to recover significant branching and some loop structures even when the classic mapper
graph at the initialization parameters does not exhibit these features. These results point to
information theoretic measure being a very promising direction for adaptive cover selection.
For future work, we would like to explore the merging of cover elements and various notions
of entropy on simplicial complexes to derive a new information criterion for the mapper
graph.

In chapter 4, we articulate the algorithmic description of the enhanced mapper graph,
detail features of our open source library, and provide four examples of the type of analysis
the enhanced mapper graph supports. By using information from the enhanced mapper
graph, we can relate interesting topological features with specific filter function values. In
the COVID-19 dataset, for example, we can pinpoint the number of days since April 12,
2020 when states start experiencing different epidemic trends. We hope to use the enhanced
mapper graph to provide interpretable results on new and known datasets in the future.
Another potential direction for the enhanced mapper graph is to integrate with graph neural
networks. We would like to explore how the extra information provided by the enhanced
mapper graph can inform machine learning. We hope that users of the mapper graph will

be able to use the results of this thesis to enhance their analysis and visualization pipeline.



1]

[2]

[10]

[12]

REFERENCES

AKAIKE, H. A new look at the statistical model identification. IEEE Transactions on
Automatic Control 19, 6 (1974), 716-723.

ARTHUR, D., AND VASSILVITSKII, S. K-Means++: The advantages of careful seeding.
In Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms
(USA, 2007), SODA ’07, Society for Industrial and Applied Mathematics, pp. 1027—
1035.

BrOwWN, A., BoBROWSKI, O., MUNCH, E., AND WANG, B. Probabilistic convergence
and stability of random mapper graphs. Journal of Applied and Computational
Topology 5, 1 (Mar. 2021), 99-140.

BurNHAM, K. P., AND ANDERSON, D. R. Model Selection and Multimodel Inference,
2nd edition ed. Springer-Verlag, 2002.

CARRIRE, M., MIcHEL, B., AND OuDOT, S. Statistical analysis and parameter
selection for mapper. Journal of Machine Learning Research 19, 12 (2018), 1-39.

COVER, T. M., AND THOMAS, J. A. Elements of information theory (wiley series in
telecommunications and signal processing). Wiley-Interscience, USA, 2006.

DANTCHEV, S., AND IVRISSIMTZIS, I. Simplicial complex entropy. In Mathematical
methods for curves and surfaces. MMCS 2016. Lecture notes in computer science,
M. Floater, T. Lyche, M. L. Mazure, K. Mrken, and L. Schumaker, FEds., vol. 10521.
Springer, 2017.

DEHMER, M., AND MOWSHOWITZ, A. A history of graph entropy measures. Infor-
mation Sciences 181, 1 (Jan. 2011), 57-78.

ESTER, M., KRIEGEL, H.-P., SANDER, J., AND XU, X. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of the second

international conference on knowledge discovery and data mining (1996), KDD’96,
AAAI Press, pp. 226-231.

GENIESSE, C., SPORNS, O., PETRI, G., AND SAGGAR, M. Generating dynamical
neuroimaging spatiotemporal representations (DyNeuSR) using topological data anal-
ysis. Network neuroscience (Cambridge, Mass.) 3, 3 (July 2019), 763-778. Publisher:
MIT Press.

HAGBERG, A. A., ScHULT, D. A., AND SWART, P. J. Exploring network structure,
dynamics, and function using NetworkX. In Proceedings of the 7Tth python in science
conference (Pasadena, CA USA, 2008), G. Varoquaux, T. Vaught, and J. Millman,
Eds., pp. 11 — 15.

Hauws, M., ROSEN, P., AND WANG, B. Mapper on graphs for network visualization.
Unpublished Manuscript (2019).



[13]

[14]

[18]

[19]

[20]

[21]

22]

47

He, K., ZHAaNG, X., REN, S., AND SUN, J. Deep residual learning for image
recognition. In 2016 IEEE conference on computer vision and pattern recognition

(CVPR) (2016), pp. 770-778.

Kanunco, T., MounNT, D., NETANYAHU, N., PiaTko, C., SILVERMAN, R., AND
Wu, A. An efficient k-means clustering algorithm: analysis and implementation.
IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 7 (July 2002),
881-892.

Kass, R. E., AND WASSERMAN, L. A reference bayesian test for nested hypotheses
and its relationship to the schwarz criterion. Journal of the American Statistical
Association 90, 431 (1995), 928-934.

KRrIZHEVSKY, A., AND HINTON, G. Learning multiple layers of features from tiny
images. Tech. Rep. TR-2009, University of Toronto, 2009.

Lawm, S. K., PITROU, A., AND SEIBERT, S. Numba: A llvm-based python jit compiler.
In Proceedings of the second workshop on the LLVM compiler infrastructure in HPC
(2015), pp. 1-6.

LroyD, S. Least squares quantization in PCM. IEEFE Transactions on Information
Theory 28, 2 (Mar. 1982), 129-137.

MAaRTIN, K. Topology in information theory in topology. Computational Structures
for Modelling Space, Time and Causality 405, 1 (Oct. 2008), 75-87.

MATHEWS, J. C., NADEEM, S., LEVINE, A. J., POURYAHYA, M., DEASY, J. O., AND
TANNENBAUM, A. Robust and interpretable PAM50 reclassification exhibits survival
advantage for myoepithelial and immune phenotypes. npj Breast Cancer 5, 1 (Sept.
2019), 30.

MuncH, E., AND WANG, B. Convergence between Categorical Representations
of Reeb Space and Mapper. International Symposium on Computational Geometry

(SOCG) (2016).

NicorLau, M., LEVINE, A. J., AND CARLSSON, G. Topology based data analysis

identifies a subgroup of breast cancers with a unique mutational profile and excellent
survival. Proceedings of the National Academy of Sciences 108, 17 (2011), 7265-7270.

OTTER, N., PORTER, M. A., TILLMANN, U., GRINDROD, P., AND HARRINGTON,

H. A. A roadmap for the computation of persistent homology. FPJ Data Science 6, 1
(Aug. 2017).

OupoTt, S. Persistence Theory: From Quiver Representations to Data Analysis,
vol. 209 of Mathematical Surveys and Monographs. American Mathematical Society,
2015.

PATANIA, A., VACCARINO, F., AND PETRI, G. Topological analysis of data. EPJ
Data Science 6, 1 (June 2017), 7.

PELLEG, D., AND MOORE, A. X-means: Extending k-means with efficient estimation
of the number of clusters. In In proceedings of the 17th international conf. on machine
learning (2000), Morgan Kaufmann, pp. 727-734.



[27]

[28]

[29]

[30]

48

PERRONE, G., UNPINGCO, J., AND HAwW-MINN LU. Network visualizations with
Pyvis and VisJS. In Proceedings of the 19th Python in Science Conference (2020),
M. Agarwal, C. Calloway, D. Niederhut, and David Shupe, Eds., pp. 58 — 62.

Puam, D. T., DimMov, S. S., AND NGUYEN, C. D. Selection of K in K-means

clustering. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of
Mechanical Engineering Science 219, 1 (Jan. 2005), 103-119. Publisher: IMECHE.

PHILLIPS, J. M. Mathematical Foundations for Data Analysis. Springer Series in the
Data Sciences. Springer-Verlag, 2021.

RATHORE, A., CHALAPATHI, N., PALANDE, S.;, AND WANG, B. TopoAct: Visually

exploring the shape of activations in deep learning. Computer Graphics Forum 40, 1
(2021), 382-397.

Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics 20 (Nov. 1987),
53-65.

SCcHWARZ, G. Estimating the dimension of a model. The Annals of Statistics 6, 2
(1978), 461 — 464.

SINGH, G., MEMoOLI, F., AND CARLSSON, G. Topological methods for the analysis of
high dimensional data sets and 3D object recognition. In Furographics symposium on
point-based graphics (2007), The Eurographics Association.

TavziN, G., Lupro, U., TunstALL, L., PrEz, J. B., CAORSI, M., MEDINA-
MARDONES, A., DASSATTI, A., AND HESS, K. giotto-tda: A topological data analysis
toolkit for machine learning and data exploration. Journal of Machine Learning
Research (2020).

VAN VEEN, H. J., SAuL, N., EARGLE, D., AND MANGHAM, S. W. Kepler mapper:

A flexible python implementation of the mapper algorithm. Journal of Open Source
Software 4, 42 (2019), 1315.

WaLsH, K., VOINEAGU, M. A., VAFAEE, F., AND VOINEAGU, I. TDAview: an
online visualization tool for topological data analysis. Bioinformatics 36, 18 (Sept.
2020), 4805-4809.

WASSERMAN, L. Topological data analysis. Annual Review of Statistics and Its
Application 5, 1 (2018), 501-532.

Z. 7ZHANG, P. Cul, AND W. ZHU. Deep Learning on Graphs: A Survey. I[FEE
Transactions on Knowledge and Data Engineering (2020), 1-1.

ZHOU, Y., CHALAPATHI, N., RATHORE, A., ZHAO, Y., AND WANG, B. Mapper
interactive: A scalable, extendable, and interactive toolbox for the visual exploration
of high-dimensional data. IEEE Pacific Visualization Symposium (2021).



