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Abstract

Structural rounding is a framework for approximating NP-hard optimization prob-
lems on graphs near structured classes [10]. It has previously been empirically shown
to outperform standard 2-approximations for VERTEX COVER on near-bipartite graphs
[21]. Though promising, it is unclear if these findings are representative of structural
rounding in general since the remainder of the framework’s theoretical results have
yet to be tested in practice. In this thesis, we consider the problem of DOMINATING
SET on near-bounded treewidth graphs. We engineer structural rounding in this setting
and test its performance against a log D-approximation algorithm. We implement two
treewidth heuristics to improve runtime during editing, at the cost of theoretical guar-
antees on solution quality. We show that for both methods editing to smaller target
treewidth increases edit set sizes but improves overall solution quality, which con-
tradicts structural rounding’s previous evaluation. We also present a synthetic graph
generator that allows us to produce tunable random graphs with bounded distance to a
target treewidth.
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ABSTRACT

Structural rounding is a framework for approximating NP-hard optimization problems

on graphs near structured classes [10]. It has previously been empirically shown to outper-

form standard 2-approximations for VERTEX COVER on near-bipartite graphs [21]. Though

promising, it is unclear if these findings are representative of structural rounding in general

since the remainder of the framework’s theoretical results have yet to be tested in practice.

In this thesis, we consider the problem of DOMINATING SET on near-bounded treewidth

graphs. We engineer structural rounding in this setting and test its performance against a

log ∆-approximation algorithm. We implement two treewidth heuristics to improve run-

time during editing, at the cost of theoretical guarantees on solution quality. We show that

for both methods editing to smaller target treewidth increases edit set sizes but improves

overall solution quality, which contradicts structural rounding’s previous evaluation. We

also present a synthetic graph generator that allows us to produce tunable random graphs

with bounded distance to a target treewidth.
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CHAPTER 1

INTRODUCTION

Finding exact solutions to many optimization problems on graphs is often computa-

tionally intractable, especially as datasets scale. However, in many real-world scenarios

(social, biological, etc.) optimal solutions are not always necessary [13][24][25]. Approxi-

mation algorithms offer an approach to solving these problems with a reasonable trade-off

between runtime and guaranteed solution quality. In graphs, many existing approxi-

mations require rigid structural properties of the domain data, preventing their use on

noisy real-world networks. Structural rounding [10] is a framework which extends ap-

proximation algorithms for restricted classes to graphs “near” those classes. Theoretically,

structural rounding can be applied to a broad set of optimization problems and structural

classes [10]. Extending the practical evaluation of the structural rounding framework to a

parameterized class (bounded treewidth) will be the primary focus of this work.

Roughly, the steps of structural rounding are to edit an input graph into a desired struc-

tural class, efficiently solve the problem on this class, then lift the solution onto the original

graph. The framework, formally defined in Chapter 2, was previously evaluated in [21]

for approximating VERTEX COVER on near-bipartite graphs. It showed that structural

rounding’s solution quality was consistently better than traditional 2-approximations, per-

forming best when the distance to bipartite was a small fraction of the instance size. Fur-

ther, the authors showed that editing strategies which produced the smallest edit sets also

produced the best (smallest) solutions. It is unclear, however, if these results are represen-

tative of structural rounding in general, or whether they are specific to this problem/class

combination. Our work aims to answer this question in part.

In this thesis, we explore the effects of editing heuristically within structural round-

ing which removes our solution quality guarantees in pursuit of smaller edit sets and

runtimes. We do so by studying structural rounding for solving DOMINATING SET on
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near-bounded treewidth graphs. Detailed in Chapter 3, this setting was selected because

DOMINATING SET is a harder problem to solve than VERTEX COVER [11] and, in fact, has

no constant-factor approximation algorithms on general graphs [12][19]. Further, bounded

treewidth is a parameterized class which measures how close a given graph is to being a

tree. This relaxation of structural requirements expands our set of feasible edited graphs,

but also necessitates another parameter choice, treewidth. To that end, we also investigate

how to select a target treewidth for editing to balance solution quality with runtime.

Our primary engineering contribution, described in Chapter 4, is comprised of two

endeavors. First, to perform our experiments, we needed graphs with tunable structure.

To achieve this, we present a synthetic graph generator that allows us to produce graphs

with a bounded distance to a target treewidth. Second, we augment the existing graph

library [16] which implements structural rounding for VERTEX COVER on near-bipartite

graphs [21] to include greedy editing heuristics for treewidth from [6].

Ultimately, we were surprised to find that larger edit sets produced better overall ap-

proximations which contradicts the results of [21]. As a direct result, there was found to be

no trade-off when editing to smaller treewidth values; smaller target treewidths produced

better overall approximations, in less time, for both heuristic methods tested. Our data

and figures to support these findings are contained in Chapter 5.

Questions still remain with respect to how our results will generalize to other prob-

lem/class combinations amenable to structural rounding. Chapter 6 concludes our thesis

by proposing future practical evaluations which might strengthen our empirical results.



CHAPTER 2

BACKGROUND AND PRELIMINARIES

In this work, we assume that graphs are simple, i.e., unweighted and undirected,

containing no loops or multiple edges. We denote a graph G = (V, E) and let the number

of vertices or nodes n = |V| and the number of edges m = |E|. Edges are denoted by (u, v),

or simply uv, for vertices u, v ∈ V. Further, we say v is adjacent to u if (u, v) ∈ E and say v

is incident to an edge if v is one of the two vertices the edge connects. We denote the set of

neighbors of a given vertex v to be N(v) = {u : (u, v) ∈ E} with deg(v) = |N(v)| being the

degree of v. Finally, we denote the maximum degree of G to be ∆(G), or simply ∆, and ignore

isolated vertices v where deg(v) = 0. Given some V ′ ⊆ V in G, we define G[V ′] to be the

subgraph of G induced on the vertices V ′.

2.1 Algorithms and Complexity
In this section, we cover key concepts from theoretical computer science including NP-

hardness, approximation, optimization problems on graphs, and parameterization.

2.1.1 NP-hardness

The output to any decision problem is Boolean, i.e., yes or no. In computational com-

plexity theory, P (polynomial-time) and NP (non-deterministic polynomial time) are two

classes of decision problems with restrictions on how fast solutions can be achieved, where

P ⊆ NP. While problems from class P are solvable in polynomial time, it is widely believed

that there are no polynomial-time algorithms for some NP problems, that is, P 6= NP. In

this work, we assume the P 6= NP conjecture holds [9].

NP-hard problems are the class of problems that are at least as ”hard” as the hardest

problems in NP, i.e., given an algorithm for an NP-hard problem, you could solve any

problem in NP in polynomially more time. Problems which are in both NP and NP-hard

are called NP-complete, i.e., NP-complete = NP ∩NP-hard. These relationships are illus-
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trated in Figure 2.1 on this page. Both decision problems we discuss in this thesis (VERTEX

COVER, and DOMINATING SET) are known to be NP-complete.

NP

NP-hard

P

NP-complete

Figure 2.1. Euler diagram for P, NP, NP-complete, and NP-hard sets of problems under the
assumption that P 6= NP.

2.1.2 Optimization Problems

In contrast to decision problems, optimization problems no longer ask whether a solution

of a given problem exists, but rather for you to find one which minimizes or maximizes

an objective function. Here, we define the optimization problems from [10][21] needed for

our work in Chapter 3.

We begin with the VERTEX COVER problem which, as one of Karp’s 21 NP-complete

problems [20], is an example of a classical decision problem. A vertex cover of a graph is

a set of vertices which is incident to every edge. It’s easy to see that finding such a set is

trivial: the set of all vertices from a graph is also a vertex cover for the graph. Finding a

cover with a minimum amount of vertices is much more interesting and is an example of

an optimization problem; we formally define it below.

Input: A graph G = (V, E).
Problem: Find a set of vertices X ⊆ V such that for every (u, v) in E either u ∈ X

or v ∈ X.
Objective: Minimize |X|.

VERTEX COVER (VC)
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For example, a business interested in employing the fewest amount of security guards

to cover all hallways (edges) would need to solve VERTEX COVER as described. If instead

they wanted to cover all rooms (vertices) they would need to solve a similar problem,

DOMINATING SET.

Input: A graph G = (V, E).
Problem: Find a set of vertices X ⊆ V such that every vertex in V is either in X or

is adjacent to a vertex in X.
Objective: Minimize |X|.

DOMINATING SET

Optimization problems stemming from DOMINATING SET have broad practical appli-

cations in the analysis of social networks [31], biological networks [25], and other domains.

Although both problems are of practical interest, they remain challenging to solve on

general graphs because they are NP-hard [28].

2.1.3 Approximation Algorithms

A natural approach to reducing runtime when solving an optimization problem is to

allow suboptimal solutions. Approximation algorithms do this by achieving polynomial

runtime while still providing a solution quality guarantee. For minimization problems,

such methods provide an upper-bound on the multiplicative factor of deviation from

optimal, known as the approximation ratio. For example, an approximation algorithm which

produces a solution that is guaranteed to be at-worst twice as big as an optimal solution is

known as a 2-approximation.

The best known 2-approximation was discovered by Gavril and Yannakis in [27] for

approximating VERTEX COVER. The algorithm repeatedly picks an arbitrary edge (u, v)

in G, places both u, v in X (the cover), then repeats on G = G[V \ {u, v}] until no edges

remain. Figure 2.2 on the next page provides a visualization of an exact solution and an ap-

proximation (using this approach) to solve VERTEX COVER. Although the 2-approximation

from [27] always produces solutions twice larger than optimal in this example, that is not

true in the general case.

Approximation algorithms, while often a preferred approach for applications that don’t
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Optimal (OPT)

v2

v3

v4

v5

v1

2-approximations (2-apx.)

v2

v3

v4

v5

v1

Figure 2.2. VERTEX COVER is both solved and approximated for a given graph G,
with solution vertices colored green. An optimal solution is given on the left where
|XOPT(G)| = 2, and a 2-approximation produced by Gavril et al. on the right, with selected
edges in brown, where |X2-apx.(G)| = 4.

require optimal solutions, are not feasible for every optimization problem. Like NP-hardness,

problems also exhibit an approximation hardness which determines their best possible the-

oretical approximation ratio. Some problems can even be shown to be non-approximable,

meaning they will never have approximation algorithms. In fact, many NP-hard problems

are non-approximable.

Furthermore, approximation algorithm runtimes, though required to be polynomial,

are still not always fast enough in practice. Non-approximability and/or runtime infea-

sibility can therefore prevent the use of approximation algorithms. When this is the case,

heuristics are often implemented. Heuristics depart from approximations by providing no

provable limits on their worst-case solution quality in the hope that their typical solutions

will still have reasonably good quality while running much faster.

2.1.4 Parameterized Algorithms

Parameterized algorithms offer another approach to tackling hard optimization problems

by exploiting extra information about an instance (bounded as an integer k) to produce

an optimal solution in time which depends on both n and k. For example, if we restrict

the maximum size of a vertex cover to be k ≤ n (denoted k-VERTEX COVER), there is an

O(1.2738k + kn)-time exact solution [7]. Parameterized problems like k-VERTEX COVER

which have solutions that are exponential only in the size of a fixed parameter (k) are

known as fixed-parameter tractable and belong to the parameterized complexity class FPT.

In this way, parameterized algorithms are best employed in domains which are known to

possess small optimal solutions to a problem that is in FPT.
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2.2 Graph Theory
In this section, we look at some of the fundamentals of graph theory.

2.2.1 Density

Graph density is defined to be the ratio of the number of edges m with respect to the

maximum number of edges possible, denoted den(G). Alternatively, average degree
(m

n

)
can often be used as a measure of “density.” Sparse graphs, where m ≈ n, in turn possess

small densities. Conversely, dense graphs are known to have larger densities.

For simple graphs, the maximum number of edges is (n− 1) + (n− 2) + . . . + 1 + 0 =

n(n−1)
2 . This value is obtained by noticing that a node can be connected to at most n − 1

other nodes, hence, n(n − 1). However, we must divide this amount by 2, because we

are effectively counting every edge twice. We call a graph with m = n(n−1)
2 a clique or

a complete graph. Note that cliques have density 1.0. We illustrate density and cliques in

Figure 2.3 on this page.

G1

v1

v2

v3

v4

v5

v6

G2

v1

v2

v3

v4

v5

v6

Figure 2.3. Two graphs, G1 = (V, E1) and G2 = (V, E2). Notice that in this example,
den(G1) = 6/15 = 0.4 and den(G2) = 15/15 = 1.0. Hence, G2 is a clique.

2.2.2 Structural Classes

A structural class is a set of graphs which share common restrictions. Such rules often

influence the density of the graphs in the class and present potential algorithmic advan-

tages. In this subsection, we’ll introduce the classes of trees, bipartite graphs, and bounded

treewidth graphs.

Starting simply, the class of trees is all connected graphs which have exactly one path

between any two vertices. For instance, consider a graph created by ordering vertices in a

row with an edge connecting each vertex to the next. Notice that this graph is an example
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of a tree and that it will always have exactly one less edge than vertex. This is a necessary

condition, and all trees have m = n − 1. An example tree is shown in Figure 2.4 on the

current page.

Definition: A graph G = (V, E) in which any two vertices v1, v2 ∈ V are connected
by exactly one path.

Tree

Trees are one of the most structurally restrictive classes and inspire many others. They

also have small densities, i.e., den(T) = (n−1)
max(m)

= (n−1)
n(n−1)

2

= 2
n for any tree T. The density

of a tree with just 10, 000 vertices is 2
10,000 = 0.0002, or only 0.02%. Approximation algo-

rithms often benefit from the sparsity that comes with certain structured classes. However,

structure does not necessarily imply sparsity; consider cliques. Certain classes permit the

use of faster approximation algorithms altogether—some even admit fast exact solutions.

One such structured class that has a polynomial time exact solve [17] for VERTEX COVER

is bipartite graphs which are a superset of trees (i.e., every tree is also a bipartite graph).

Definition: A graph G = (V, E) whose vertices can be partitioned into two disjoint
sets (L, R) where, for every edge (u, v) ∈ E, u ∈ L ⇐⇒ v ∈ R.

Bipartite

v1

v2

v3 v4

v5

v6

v7

v8

v2

v5

v7

v1

v3

v4

v6

v8

Figure 2.4. An example of a bipartite graph colored black and white. The representation
on the right illustrates our graph rearranged to be partitioned with L = {v2, v5, v7} and
R = {v1, v3, v4, v6, v8}.

Structured classes such as trees and bipartite graphs present good opportunities for
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better approximations and solutions to some hard optimization problems. However, re-

quiring graphs to have a rigid structure is often untenable in practice. Like parameter-

ized algorithms, there also exist parameterized structural classes which possess an integer

variable bounding how much of a certain structure is required. Treewidth, for example, is

a heavily studied parameterized class which intuitively measures how “close” an input

graph is to being a tree. To find this measure, we utilize tree decompositions which (non-

exclusively) join vertices to form trees.

Definition: Given a graph G = (V, E), a tree decomposition is a pair (X, T) where
X = {X1, . . . , Xn} is a set of (potentially overlapping) subsets of V,
called bags, and T is a tree with nodes X, satisfying the following
properties:

1. X1 ∪ X2 ∪ . . . ∪ Xn = V, i.e., the union of all bags Xi is V.
2. For every edge (u, v) ∈ E, there exists a bag Xi such that u, v ∈ Xi.
3. If v ∈ Xi, Xj, then all Xk of the tree in the (unique) path from Xi to

Xj has v ∈ Xk.

Tree Decomposition

Definition: The minimum width over all tree decompositions of a graph G, de-
noted tw(G).

Treewidth

Treewidth is defined on all graphs, and smaller treewidth implies sparser graphs. More-

over, the class of graphs with treewidth at most k admits FPT algorithms parameterized

by k (in contrast to solution size) for many NP-hard optimization problems. For example,

if we restrict the maximum treewidth of the graph to k ≤ n, there is an exact solution to

DOMINATING SET in O(4kn)-time [2].

2.3 Structural Rounding
Network science has empirically shown that many real-world networks are sparse.

There is also some evidence they are “close” to structured classes, implying they can

be converted to a graph from a structural class with few edits. Structural rounding is

a framework by Demaine et al. [10] which offers a method for approximating NP-hard
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optimization problems on graphs that don’t fall into a nice structural class. The idea is that

structural rounding extends algorithms from restricted classes to general graphs while

maintaining an approximation guarantee.

Earlier work from Magen and Moharrami [22] imagined something similar to this

where a desired structure within the original graph is the “true” version of the graph and

that all edits, (i.e., vertex- or edge-deletions), required to obtain it are considered “noise”

and thus, can be ignored in the solution. The direct consequence of this approach is that it

does not produce valid solutions on the original graph, only the edited network. Structural

rounding differs from this model by lifting the solution found on the edited graph via

carefully reincorporating the edit set (“noise”), to produce provably approximate solutions

on the original graph.

2.3.1 General Framework

The three steps of the structural rounding framework are editing, solving, and lift-

ing. Each step can be performed either exactly or approximately and is amenable to both

minimization and maximization problems. We restrict our attention to the minimization

setting throughout the rest of our discussion. We start by illustrating structural rounding

in Figure 2.5 on this page and give the relevant definitions from [10].

G G′ G

Edit Solve Lift

Figure 2.5. Structural rounding is demonstrated by editing the graph G to bipartite G′ with
vertex-deletions (in red), solving VERTEX COVER exactly on G′ (in green) using [17], then
greedily lifting edited vertices (in violet) to form a solution to the original graph, G.

Our first step, editing, starts with an input graph G that is γ-close (see Definition 2.1)

to a structural class C.
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Definition 2.1. A graph G′ is γ-editable from a graph G under edit operation ψ if there is a

sequence of k ≤ γ edits ψ1, ψ2, . . . , ψk of type ψ such that G′ = ψk(ψk−1(· · ·ψ2(ψ1(G)) · · · )).

A graph G is γ-close to a graph class C under ψ if some G′ ∈ C is γ-editable from G under

ψ.

In other words, at most γ edits of type ψ are needed to convert G to a graph G′ in C,

where ψ is an edit operation (e.g., vertex deletion, edge deletion, or edge contraction). We

approximate the minimum number of edit operations needed to get to C using the general

optimization framework (C, ψ)-EDIT.

Input: An input graph G = (V, E), family C of graphs, edit operation ψ.
Problem: Find k edits ψ1, ψ2, . . . , ψk such that ψk(ψk−1(· · ·ψ2(ψ1(G)) · · · )) ∈ C.
Objective: Minimize k.

(C, ψ)-EDIT

If the desired structural class is parameterized, such as with treewidth, we denote it as

Cλ where λ represents the desired parameter value. The optimization framework (Cλ, ψ)-

EDIT is similarly defined.

Input: An input graph G = (V, E), parameterized family Cλ of graphs, a target
parameter value λ∗, edit operation ψ.

Problem: Find k edits ψ1, ψ2 . . . , ψk such that ψk(ψk−1(· · ·ψ2(ψ1(G)) · · · )) ∈ Cλ

where λ ≥ λ∗.
Objective: Minimize k.

(Cλ, ψ)-EDIT

Notice Cλ ⊆ Cλ+1. Thus, (Cλ, ψ)-EDIT can also approximate λ by broadening the graph

class we are aiming for to achieve membership in a super-class of the original target λ∗.

By approximating both ψ and λ, (Cλ, ψ)-EDIT is an example of a bicriteria problem (see

Definition 2.2).

Definition 2.2. An algorithm for (Cλ, ψ)-EDIT is a (bicriteria) (α, β)-approximation if it

guarantees that the number of edits is at most α times the optimal number of edits into Cλ

and that λ ≤ β · λ∗.
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In either framework, the editing operation is chosen with respect to the optimization

problem. For structural rounding to work for a specific problem, the amount a solution to

the problem on the edited graph can increase for each edit operation must be measurable

and bounded. To that end, we define a property called stability (see Definition 2.3) which

we denote with constant c′. We follow [10] and use OPTΠ(G) for the value of the optimal

solution to the problem Π on graph G.

Definition 2.3. A graph minimization problem Π is stable under an edit operation ψ with

constant c′ if OPTΠ(G′) ≤ OPTΠ(G)+ c′γ for any graph G′ that is γ-editable from G under

ψ. In the special case where c′ = 0, we call Π closed under ψ.

For example, VERTEX COVER is closed under vertex deletion, meaning removing a

vertex will not increase the optimal solution on the edited graph G′. In contrast, DOMI-

NATING SET is not stable under vertex deletion, meaning removing a vertex could increase

the optimal solution on G′ by an unbounded amount. Consider removing the center vertex

from a star, for instance.

Once G has been edited into G′, the next step is to solve Π on the edited graph G′ using

a polynomial-time exact or approximate algorithm designed specifically for graphs in the

class. The final step is to extend this partial solution found on G′ to a full solution on the

input graph G. In addition to stability, we now need to bound the amount the full solution

on G can increase for every element in the edit set. To do this, we define another property

called lifting (see Definition 2.4) which we denote with constant c. We follow [10] again

and use CostΠ to represent the cost function for a problem Π.

Definition 2.4. A minimization problem Π can be structurally lifted with respect to an

edit operation ψ with constant c if, given any graph G′ that is γ-editable from G under ψ

and the corresponding edit sequence ψ1, ψ2, . . . , ψk with k ≤ γ, a solution S′ for G′ can be

converted in polynomial time to a solution S for G such that CostΠ(S) ≤ CostΠ(S′) + c · k.

We now state the main result of structural rounding (Theorem 4.1) in [10].

Theorem 2.1 (Structural Rounding Approximation). Let Π be a minimization problem

that is stable under the edit operation ψ with constant c′ and that can be structurally lifted
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with respect to ψ with constant c. If Π has a polynomial-time ρ(λ)-approximation algo-

rithm in the graph class Cλ, and (Cλ, ψ)-EDIT has a polynomial-time (α, β)-approximation

algorithm, there is a polynomial-time ((1 + c′αδ) · ρ(βλ) + cαδ)-approximation algorithm

for Π on any graph that is (δ ·OPTΠ(G))-close to the class Cλ.

Stability and lifting results from [10] for problems on near-bounded treewidth graphs

amenable to structural rounding are shown in Table 2.1 below.

Problem Edit type ψ c′ c
INDEPENDENT SET (IS) vertex deletion 1 0
ANNOTATED DOMINATING SET (ADS) vertex∗ deletion 0 1
CONNECTED DOMINATING SET (CDS) vertex∗ deletion 0 3
VERTEX COVER (VC) vertex deletion 0 1
FEEDBACK VERTEX SET (FVS) vertex deletion 0 1
MINIMUM MAXIMAL MATCHING (MMM) vertex deletion 0 1
CHROMATIC NUMBER (CRN) vertex deletion 0 1
DOMINATING SET (DS) edge deletion 1 0
MAX-CUT (MC) edge deletion 1 0

Table 2.1. A condensed version of Table 2 from [10] showing problems for which struc-
tural rounding results in approximation algorithms for graphs near the parameterized
structural class treewidth w where the problem has a ρ(w) algorithm. We also give the
associated stability (c′) and lifting (c) constants which are class-independent. We remark
that vertex∗ is used to emphasize the rounding process has to pick the set of annotated
vertices in the edited set carefully to achieve the associated stability and lifting constants.

2.3.2 Prior Work

Structural rounding has previously been practically evaluated only once, in [21]. This

paper used structural rounding to approximate VERTEX COVER on near-bipartite graphs

under the edit operation of vertex deletion. The authors edit heuristically using a greedy

method, solve VERTEX COVER exactly using the Hopcroft-Karp algorithm [17], then lift

using a range of novel strategies. Although its worst-case solution quality guarantee was

a 2-approximation, structural rounding was shown to consistently give better approxima-

tions than VERTEX COVER’s best performing traditional 2-approximations [27] [29] on a

significantly sparse real-world corpus of 130 graphs [1]. This performance is depicted in

Figure 2.61 on the following page.

1This figure was used with permission from the original authors.
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Figure 2.6. Figure 7 from [21] comparing the best approximation ratios achieved by
2-approximations (in red) versus structural rounding (in blue) on graphs from a real-world
corpus [1] from various domains including networks, physical infrastructure, and more.

Figure 2.6 shows that for near-bipartite graphs with small edit sets, structural rounding

greatly outperformed 2-approximations for VERTEX COVER. What’s surprising to us is that

structural rounding also worked well with larger edit sets, roughly converging to the so-

lution quality of the best 2-approximations after edit set sizes went above 60%. In terms of

runtime, however, structural rounding was about 3.5x slower than the 2-approximations.

Intuitively, this is possibly the result of structural rounding making three passes over the

vertices, one for each step, compared to the 2-approximation algorithms which make only

a single pass.

Initially, a couple of different heuristic editing approaches were tried as shown in Fig-

ure 2.72. It was found that greedily constructing two maximal independent sets (Greedy

IS) generally outperformed using breadth-first search (BFS) to find an edit set. Omitting

the details of these methods, what’s important to us is that this showed using the editing

strategy which produced the smallest edit sets correlated with producing the best overall

approximations.

2Figure created by Brian Lavallee.
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Figure 2.7. Data from [21] comparing the solution quality of structural rounding when
used with two competing heuristic editing methods: Breadth-first search (BFS) and a
greedy maximal independent set approach (Greedy IS). The 100K edge corpus was gener-
ated to have edit set sizes of 20%. Found edit set sizes differ as a result that heuristics
provide no guarantees on producing the same edit set as the one prescribed by the
generator.

These results were promising and highlighted the importance of empirical evaluation.

There were drawbacks, however. Bipartite is a very structured class, meaning it’s less

likely that general real-world networks will be close; though this may not be an issue,

considering structural rounding’s shown solution quality on graphs with larger edit sets.

As a final test in [21], structural rounding was compared against a simple greedy heuristic

for VERTEX COVER which creates a cover by repeatedly adding the vertex that covers

the most uncovered edges until every edge is covered. Disappointingly, this heuristic

produced similar approximation ratios to structural rounding with runtimes comparable

to the 2-approximations.

As structural rounding’s first (and only other) evaluation, this paper left a myriad

of unanswered questions and unexplored directions. Principally, we wanted to know

whether these findings on edit set sizes are specific to VERTEX COVER on near-bipartite

graphs or if they are representative of structural rounding in general.



CHAPTER 3

METHODS

To flesh out the practical evaluation of structural rounding, we consider approximating

DOMINATING SET on near-bounded treewidth graphs. In this chapter, we define our

primary research questions and outline our experiment design and data.

3.1 Problem Statement
This thesis poses and evaluates two hypotheses. Prior work [21] showed that using the

editing method which produces the smallest edit sets leads to better overall approxima-

tions when using the structural rounding framework. We evaluate whether this still holds

for a different problem/structural class as a step towards resolving this claim.

Hypothesis 1. Smaller edit sets will always produce better solution quality for structural

rounding.

By working with near-bounded treewidth graphs, our work is the first application of

structural rounding using a parameterized class. This necessitates choosing a treewidth

value to edit to. We note that, for DOMINATING SET, the solve step has runtime exponential

in the edited graph’s treewidth (see Subsection 3.2.2) while the edit step is polynomial

(see Subsection 3.2.1). Further, editing to smaller treewidth will produce larger edit sets

regardless of the editing method used (and thus more of the solution will come from

lifting). If Hypothesis 1 is true, then selecting a target treewidth will be a trade-off between

runtime and solution quality. Our second hypothesis below outlines our expectations for

this predicted trade-off.

Hypothesis 2. Editing to the minimum allowed target treewidth results in the fastest

runtimes for structural rounding whilst editing to the largest target treewidth feasible

(given imposed runtime constraints) produces the best solution quality.
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3.2 Our Approach
DOMINATING SET is in FPT when parameterized by treewidth, making bounded treewidth

a natural selection for our structured class. Further, bounded treewidth has an editing

algorithm defined in [10]. In this section, we detail each step of the structural rounding

pipeline used in our experiments.

3.2.1 Editing

We edit to treewidth w using the vertex deletion algorithm (Algorithm 3) from [10]

shown in Algorithm 1 below. This algorithm gives a bicriteria (O(log1.5 n), O(
√

log w))-

approximation, meaning the number of edits is at most O(log1.5 n) times the optimum, and

the edited graph has treewidth at most O(w
√

log w). For small w, this algorithm produces

unacceptably wide decompositions due to a built-in constant factor. In order to produce

practical results, we remove it from the early-out criteria (on line 2 from Algorithm 1). This

destroys the approximation guarantee for treewidth. We further depart from the original

algorithm by modifying it using one of two heuristic approaches: greedy degree and

balanced separator. These are employed to improve runtime, since the original algorithm

was impractically slow even with the change to early-out criteria in place. We consider two

approaches to compare how their edit set sizes relate to overall solution quality.

Algorithm 1 TreeWidthNodeEdit (G = (V, E), w)
1: t← compute tw(G) by invoking the algorithm of [5] together with [14]
2: if t ≤ w then /* In [10] this is t ≤ 32 · w

√
log w */

3: return ∅
4: else
5: S← compute a ( 3

4 )-vertex separator of G by invoking the algorithm of [14]
6: let G[V1], · · · , G[Vl ] be the connected components of G[V\S]
7: return (∪i≤l TreeWidthNodeEdit (G[Vi], w)) ∪ S

Greedy degree replaces the original component used to find approximate tree decom-

positions [5] (on line 1 from Algorithm 1) with the fastest heuristic available from [6],

detailed in Chapter 4. To better describe what changes in the second heuristic, we define

a vertex separator as a set of vertices which, if removed, separate the graph into disjoint

components. We follow [5] and formally describe this structure on the next page.
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Definition: Given a graph G = (V, E) and a set of vertices W ⊆ V, a set S ⊆ V is
an α-vertex separator of G if at most α · |W| vertices from W are in each
connected component of G[V\S].

α-Vertex Separator

Our balanced separator1 approach simply replaces the vertex separator algorithm from

[14] (on lines 1 and 5 from Algorithm 1) with a heuristic to find balanced separators based

on [3]. Balanced means that the disjoint subgraphs produced by removing the separators

have similar size. To further save time and memory, we implement1 [5] iteratively.

Greedy degree also employs this separator based on [3], and is thus a modified version

of balanced separator which employs a different tree decomposition. We note that even

in the absence of our change to the early-out criteria (on line 2 from Algorithm 1), using

either of these heuristics to improve runtime still removes the approximation guarantees.

3.2.2 Solving

Recall from Subsection 2.3.1 that DOMINATING SET is not stable for structural rounding

with respect to vertex deletions. We instead approximate ANNOTATED DOMINATING SET,

which is shown in [10] to work with structural rounding under vertex∗ deletions (see Table

2.1). We follow [10] and refer to graph optimization problems where the input consists of

both a graph and a subset of annotated vertices/edges as annotated problems. Such subsets

are carefully chosen (in the edited graph) to guarantee small stability and lifting constants.

Input: A graph G = (V, E) and a subset of vertices B ⊆ V.
Problem: Find a set of vertices X ⊆ V such that every vertex in B is either in X or

is adjacent to a vertex in X.
Objective: Minimize |X|.

ANNOTATED DOMINATING SET (ADS)

ANNOTATED DOMINATING SET, synonymous with SUBSET DOMINATING SET in [15]

and others, is equivalent to DOMINATING SET when B = V. Many approaches to exactly

solving ANNOTATED DOMINATING SET use dynamic programming [2] [4] [30]. We im-

1Implementation primarily developed by Brian Lavallee.
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plement2 a dynamic programming algorithm based on [2] which achieves a relatively fast

runtime of O(4kn) when G has treewidth at most k.

3.2.3 Lifting

To lift our partial ANNOTATED DOMINATING SET from the edited graph, we initialize

our annotated subset B as the vertices not dominated by the partial solution. We then

use a greedy heuristic to select additional dominators. Since B is comprised of exactly

the vertices not dominated by the partial solution, the union of the partial solution and

the dominators chosen by the greedy lifting algorithm produce our overall solution to

DOMINATING SET.

3.3 Experiments
We perform structural rounding on a synthetic corpus of 8,100 sparse graphs created

by permuting the following sets of parameters from Table 4.1, shown in Table 3.1 below.

Note that we restrict our attention to graphs with n = 10, 000, and produce 5 graphs for

each configuration via seeding. That’s 1,620 unique configurations.

Parameter Values
n {10, 000}
k {2, 3, 4, 5, 6, 7}
dropout {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}
editset {100, 500, 1K, 2.5K, 4K}
editset density {0.001, 0.005, 0.01}
bipartite density {0.001, 0.005, 0.01}
seed {0, 1, 2, 5, 6}

Table 3.1. The input parameters used in the generation of our synthetic 8,100 graph corpus.

We generate 1, 350 graphs for treewidth values k ∈ {2, 3, . . . , 7}. For each k, we tested

editing to target treewidth values w ∈ {k, k − 1, . . . , 2} using both greedy degree and

balanced separator methods. This results in 56, 700 total runs of structural rounding.

Notice we sparsify the structural class up to 60% and that our editsets contain up to 40%

of the overall graph. Notice also that our editset density and bipartite density settings

2Implementation primarily developed by Brian Lavallee.
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are considerably sparse. These parameters have been selected to mimic the behavior of

real-world networks.

DOMINATING SET admits an O(log ∆)-approximation3 [8] which is our competitor for

structural rounding in this setting. Similar to lifting, this approximation greedily selects

maximum degree vertices as dominators. We use this approximation as a benchmark to

measure structural rounding’s relative performance, in terms of both solution quality and

runtime, since it is a traditional choice for solving DOMINATING SET on general graphs.

3Implementation primarily developed by Brian Lavallee.



CHAPTER 4

IMPLEMENTATION AND ENGINEERING

We now describe two major engineering contributions made in support of answering

the questions outlined in Chapter 3. We begin by describing the existing implementation

of structural rounding for VERTEX COVER on near-bipartite graphs in an open-source C++

library. We then present a new synthetic graph generator, necessitated by our choice of

bounded treewidth as the target class. Finally, we describe selection and implementation

of several greedy heuristic strategies from [6] for finding tree decompositions. We denote

software classes and functions using monospace font; functions are postfixed with (),

regardless of parameters.

4.1 Structural Rounding Graph Library
Structural rounding is implemented in the publicly available open-source library at

https://github.com/TheoryInPractice/structural-rounding. All work in this thesis

was built on top of version 2.0 [16]. This section describes the existing structures and

classes available in this version.

Initially developed for approximating VERTEX COVER in [21], the library includes im-

plementations of several approximate and exact solvers for VERTEX COVER as well as a

variety of lifting strategies. The codebase also includes multiple algorithms for vertex

deletion to bipartite. The underlying data structures provided here that are relevant to us

are Graph, Set, and Map. Dealing with typically sparse data, Graph uses adjacency lists, i.e.,

Map<Set> adjlist, to store its connections. Graph natively supports common operations

such as: adding and removing edges, removing vertices, getting the degree of a vertex,

determining if a vertex is contained in a graph, determining if two vertices are adjacent,

and getting the neighbors of a vertex.
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4.2 Synthetic Graph Generator
In order to assess the impact of target treewidth w on solution quality and runtime, we

needed to produce graphs with a bounded distance to treewidth k. To meet this demand,

we present a new synthetic graph generator which allows tuning of the parameters shown

in Table 4.1 below.

Parameter Variable Type Description
n n int Number of vertices in the partial k-tree.
k k int Upper bound of k in the partial k-tree.
dropout spar float Sparsity of the partial k-tree.
editset ess int Size of the edit set.
editset density esd float Density of the edit set.
bipartite density esdbw float Density between the edit set and partial k-tree.
seed seed int Seed for the random number generator.

Table 4.1. Variable names, types, and descriptions of the graph generator parameters.

The first step of the graph generator is to create the partial k-tree which will serve as

our underlying structure within the overall graph. A k-tree is a maximal graph for a

given treewidth k, meaning not another edge can be added without increasing the graph’s

treewidth [26]. Partial k-trees are simply subgraphs of k-trees and also have treewidth at

most k, since treewidth is subgraph-closed.

We start this process by first generating a tree T of size n, using the random tree gen-

erator igraph tree game() from igraph [18]. We define a method tree to directed(),

shown in Algorithm 2 below, which converts undirected trees to directed trees with a

user-specified root node in O(n∆)-time and O(n)-space.

Algorithm 2 tree to directed (T, root)
1: Td ← empty tree
2: stack S← {root}
3: while S 6= ∅ do
4: u = S.pop()
5: for each v ∈ NT(u) do
6: if first time seeing v then
7: add directed edge (u, v) to Td
8: S.push(v)
9: return Td
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Letting Td = tree to directed(T, root), we initialize G to be a directed clique of size k.

We initialize list to be the vertices in G. We then define a recursive method make ktree(),

shown in Algorithm 3 below, which alters these two data structures to convert the input

clique G into a directed k-tree in O(n(n + ∆))-time.

Algorithm 3 make ktree (Td, G, list, root)
1: add a new vertex x to G
2: for each u ∈ list do
3: add directed edge (u, x) to G
4: remove random item from list
5: add x to list
6: children← outgoing NTd(n)
7: for each c ∈ children do
8: make ktree(Td, G, list, c)

Once we’ve transformed our k-clique G into a k-tree, we “sparsify” G uniformly to

transform it into a partial k-tree. We define a method sparsify(), which removes every

edge with a given probability in O(mn)-time. Using igraph’s random graph generator

required the use of their data structures. The pitfall of this engineering decision is that

igraph’s graph class does not provide an easy way to access edge lists. We initialize G

as directed solely to optimize this method to loop over vertices and visit every edge only

once, rather than n times. After we sparsify G, we convert it to undirected, trivially, using

igraph to undirected(). Our partial k-tree, now simple, is complete.

The second step of the graph generator is to create the prescribed edit set to be re-

moved exactly from the overall graph in order to obtain structure. We define a method

add edit set()1 which creates a random graph ER using the Erdös-Renyi Random Graph

Model defined below, and attaches it to our now partial k-tree G.

Definition: A random graph is constructed by adding each potential edge of an
n-vertex graph uniformly at random with probability p.

Erdös-Renyi Random Graph Model G(n, p)

1Implementation primarily developed by Madison Cooley.
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We determine the size and density of ER using our input editset size and density

parameters, respectively. To attach ER to G, a random bipartite graph B is made by adding

edges uniformly at random between ER and G such that B’s density is roughly equivalent

to the input bipartite density parameter, and B’s vertices have coefficient of variation 0.5,

or about even. Thus, we have connected our partial k-tree and our edit set to create a graph

which is a known distance from treewidth k.

4.3 Greedy Elimination Ordering Algorithms
Treewidth can be found via “elimination orderings” of vertices that can be used to

form tree decompositions. Here, we discuss some heuristics for finding orderings for

giving small treewidth. We list the relevant algorithm from [6] below (see Algorithm 4)

used to created orderings of vertices. For our implementation, each iteration of the loop

in Algorithm 4 also creates a bag containing N(vi) which is added to the resulting tree

decomposition.

Algorithm 4 GreedyDegree (G = (V, E))
1: H = G
2: for i = 1 to n do
3: Choose a vertex v of minimum degree in H
4: Let v be the ith vertex in ordering π
5: H ← H[V\v]
6: return ordering π.

This algorithm represents the greedy heuristic we defined in Subsection 3.2.1 (greedy

degree). Originally designed by Markowitz [23], this was the fastest performing heuristic

from the suite Bodlaender et al. introduced in [6]. This method was selected in an effort to

improve the runtime of our editing step.

We initially tried an additional heuristic from [6], GreedyFillIn, where line 3 of Al-

gorithm 4 instead selected a vertex that has the smallest number of pairs of non-adjacent

neighbors. Though GreedyFillIn was shown in [6] to return slightly lower treewidth

bounds on average, computationally finding these pairs proved to have untenable run-

times on larger graphs. Since all other heuristics provided from [6] are slower than this

method, we did not evaluate them in this work.
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4.4 Evaluation Hardware Specifications
All experiments were performed on identical hardware; each server had two over-

clocked 20-core Intel Xeon Gold 6230 CPUs (2.10 GHz) and 192 GB DDDR4 memory.

The servers ran Linux kernel 3.10.0-957.27.2.el7.x86 64 and were hosted on the Center for

High Performance Computing’s (CHPC) Notchpeak cluster. The code and experiments are

written entirely in C++11 and run using GNU compiler version 10.2.0 on CentOS Linux

7.6.1810 AMD64. We plan to release all code open source under a BSD 3-clause license.



CHAPTER 5

RESULTS

In this chapter, we describe the results of both experiments outlined in Chapter 3.

To improve readability, we denote balanced separator as Sep and greedy degree as Deg

throughout. Input values from the synthetic graph generator are abbreviated to match

their associated parameter names from Table 4.1.

5.1 Editing Heuristics
We first evaluated our editing heuristics to test Hypothesis 1. From our runs, we

observe that Deg consistently found smaller edit sets than Sep on all graphs from our

corpus as shown in Figure 5.1 on the next page. We note that prescribed editsets are only

valid when target treewidth is equal to generated treewidth (i.e., w = k), since the editset is

generated to complement a partial k-tree. We observe that the difference between procured

edit set sizes was largest when target treewidth was equal to generated treewidth. This

indicated to us that Deg was more proficient at identifying the editset prescribed by the

generator.

Despite the difference in edit set sizes, the heuristics had similar solution qualities. To

measure their performance, we define performance ratio (PR) to be the size of the DOMINAT-

ING SET found using a structural rounding solution relative to the size of the DOMINATING

SET found using the competing log ∆-approximation (i.e., PRDeg = |XDeg|/|Xlog ∆|). For

example, a PR < 1.0 implies that the structural rounding method used found a smaller

DOMINATING SET than the log ∆-approximation (thus, lower PR is better). Figure 5.1

shows us that both methods had similar performance ratios and that Deg performs poorly

in only a small number of graphs.

Hypothesis 1 conjectured that smaller edit sets lead to better overall solution quality

for structural rounding in any setting. From our testing, we see that this is false and that

larger edit sets from Sep performed equally as well—even better in certain situations. This
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Figure 5.1. At left (orange) we plot the distribution of the reduction in procured edit
set size using Deg instead of Sep (i.e., (|Sep edit set| − |Deg edit set|)/|Sep edit set|). We
normalize by the size of Sep, so the difference represents how much of Sep has been
removed using Deg. This indicates all edit sets found by Sep were larger than those
found by Deg. At right (blue) we plot the distribution of performance ratio differences
(i.e., PRSep − PRDeg). Graphs where Deg found better solutions are to the right of 0, and
graphs where Sep found better solutions are to the left of 0.

is in direct opposition with the results of [21].

5.2 Target Treewidth Manipulation
To test Hypothesis 2, we needed to evaluate how Deg and Sep performed in terms

of both runtime and solution quality when editing to vary the target treewidth w. We

observe that, for both methods, lowering w increased average edit set size but improved

average solution quality. An increase in edit set size is consistent with our intuition that

achieving smaller treewidth would require removing more vertices from the graph. What’s

surprising is that larger edit sets lead to better solution quality. Using Deg1 we show how

edit set sizes and solution qualities are affected as w varies in Figure 5.2 on the following

page.

We also considered the effect of w on runtime. As we predicted, runtimes for the

solve step dramatically improved as we lowered the target treewidth w as shown in Table

5.1. Since solving DOMINATING SET was the most costly step in both methods, editing to

smaller w decreased our average total runtimes. Since, smaller target treewidth also led

1Similar results held for Sep; these are omitted in the interest of clarity of presentation.
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Figure 5.2. At left (green) we plot the average edit set size increase when editing from
generated treewidth k to target treewidth w using Deg. We observe edit set size increases
as w decreases. At right (purple) we plot the average solution quality improvement in the
same setting. We observe solution quality improves as w decreases.

to better average solution quality (Figure 5.2), there was no observed trade-off between

runtime and solution quality. This partially contradicts Hypothesis 2.

w Deg Sep

7 12.23s 4.92s
6 1.00s 0.59s
5 0.20s 0.15s
4 0.06s 0.05s
3 0.03s 0.03s
2 0.02s 0.01s

Table 5.1. Average runtimes for the solve step of structural rounding on DOMINATING SET

using Deg and Sep for all graphs with generated treewidth k = 7.

To directly compare the solution qualities of each method against their found edit set

sizes, we plot the raw data from our runs in Figure 5.3 on the next page. Notice the

“spikes” in performance ratio that Deg admits for a few graphs. These graphs correspond

to the bars in the right-hand panel of Figure 5.1 on the preceding page where the per-

formance ratio difference was significantly negative. They occur in some situations when

both w ≈ k and the prescribed editset is high (i.e., 25-40%). Notice that runs in which w

is smaller are displayed over their larger {w + 1, w + 2, . . . , 7} counterparts. In this way,
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Figure 5.3. Procured edit set sizes compared against performance ratios for all graphs with
generated treewidth k = 7, using Deg in the left plot (red) and Sep in the right (blue). We
observe that Deg performed especially poorly in configurations where both the generated
treewidth and prescribed editset were large.

Figure 5.3 provides a crude visualization of the observation lowering target treewidth w

improves the worst case bounds on solution quality and increases edit set sizes.
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CONCLUSION

Our results demonstrated a setting in which structural rounding performed better as

procured edit set sizes grew. This went against our intuition that solving DOMINATING

SET exactly on a larger portion of the graph would result in smaller overall solution sizes.

We believe this may be explained in part by the necessity of solving ANNOTATED DOM-

INATING SET. Since annotated vertices are optional to dominate in the partial solution,

it’s conceivable that this has a greater effect on solution quality than edit set size. Most

significantly, these results give credence to the claim that smaller edit sets do not always

lead to better solution quality for structural rounding. These results contrast sharply with

those from the framework’s first practical evaluation in [21].

In the future, we wish to see how these results scale to corpuses of larger graphs,

including real-world networks. If a domain exists in which there is a natural trade-off

between runtime and solution quality as we vary the target parameterized class, it would

be interesting to explore the ideal target treewidth to optimize for both. Further, we note

that all configurations of structural rounding we present have solution quality similar to

the log ∆-approximation, but have considerably longer runtime. Identifying parameter-

ized settings in which structural rounding decisively improves solution quality or is more

competitive with respect to runtime would be of significant practical interest.
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