
Augmenting Code Pattern Detection

with Software Verification and

Examining How Teaching Assistants

Interact with Student Code

Structure

Matthew Hooper

University of Utah

UUCS-21-014

School of Computing

University of Utah

Salt Lake City, UT 84112 USA

10 May 2021

Abstract

Expert programmers expect certain commonly-used patterns in code. However,

novice coding patterns often deviate from these expectations, even if they’re still func-

tionally correct. University instructors recognize the need to educate their students to

use more advanced patterns, but giving personalized feedback is time-consuming, and

teaching good coding style and structure doesn’t have an obvious home in a 4-year

curriculum. It may be possible to employ software that can automatically identify

novice coding patterns, or even to instruct students about their style without using the

limited time and resources of course instructors. Since teaching assistants are viewing

and giving feedback about student code more often than instructors, it may be pos-

sible to use their experiences to design effective feedback for an automated pattern

detector. How teaching assistants interact with students specifically about their code

structure appears not to be studied previously. Through several interviews with teach-

ing assistants I’ve found that teaching assistants don’t always agree with expert coding

patterns, and their reasons for whether or not they agree may be vague or poorly artic-

ulated - demonstrating a lack of mastery over certain programming topics. In addition,

by applying techniques from software verification, I’ve been able to expand the kinds

of novice patterns that can be detected by existing pattern detection tools.

Acknowledgements

To my parents Bob and Nancy, who always knew I’d one day amount to some-
thing, even when I didn’t.

To my brother James, for suggesting I go to school and check out this program-
ming thing, and making this suggestion at least once a year, for nearly a decade.

To Joe and Josh, for separately telling me that the world is my oyster, if only
I’d get over my aversion to seafood.

To Serena, for finding my comma splices only for me to splice some new ones.

To Astro and Nebula, whose walks were always a welcome break from my desk.

To Dr. Wiese, for whom this never would have happened without her particular
brand of encouragement.

2

Abstract

Expert programmers expect certain commonly-used patterns in code. However,
novice coding patterns often deviate from these expectations, even if they’re
still functionally correct. University instructors recognize the need to educate
their students to use more advanced patterns, but giving personalized feedback
is time-consuming, and teaching good coding style and structure doesn’t have
an obvious home in a 4-year curriculum. It may be possible to employ software
that can automatically identify novice coding patterns, or even to instruct stu-
dents about their style without using the limited time and resources of course
instructors. Since teaching assistants are viewing and giving feedback about
student code more often than instructors, it may be possible to use their ex-
periences to design effective feedback for an automated pattern detector. How
teaching assistants interact with students specifically about their code structure
appears not to be studied previously. Through several interviews with teach-
ing assistants I’ve found that teaching assistants don’t always agree with expert
coding patterns, and their reasons for whether or not they agree may be vague or
poorly articulated - demonstrating a lack of mastery over certain programming
topics. In addition, by applying techniques from software verification, I’ve been
able to expand the kinds of novice patterns that can be detected by existing
pattern detection tools.

3

Contents

1 Introduction 6

2 Background and Related Work 8

3 Pattern Detector 13
3.1 Methods . 13

3.1.1 Identifying if statements to test 15
3.1.2 The Dynamic Approach 21
3.1.3 The Static Approach . 29

3.2 Discussion . 33

4 Teaching Assistant Interviews 34
4.1 Methods . 34
4.2 Results . 35

4.2.1 Participant Profiles . 35
4.2.2 Code Sample 1 . 37

4.3 Discussion . 46

5 Conclusions 48

List of Figures

1 Novice and Expert examples of the Boolean Return pattern. . . . 8
2 Novice and Expert examples of the loop pattern. 9
3 Novice example of the Exclusive Ifs pattern. 9
4 Expert example of the Exclusive Ifs pattern. 9
5 AST for the novice Boolean return pattern. Detecting the subtree

starting at if (condition) is sufficient to identify the pattern. . 14
6 Non-exclusive if statements with AST. 14
7 Exclusive if statements with AST. 15
8 Consecutive if statements. The if statements for condition1

and condition2 form a consecutive pair, as do condition2 and
condition3. 15

9 A simple example with AST. 16
10 Even though condition2 has an else statement, we still want

to test for exclusivity with condition1. 16
11 ‘Siblings in the AST’ is not the same as ‘Consecutive in the source

code.’ . 17
12 There can be any number of else if statements between condition2

and conditionN-1. 18
13 Any statement between two if statements means they aren’t

consecutive. 18
14 The else statement comes between the two if statements. . . . 19

4

15 Since condition1 will always return from the method, using an
else statement for condition2 doesn’t change how this program
will execute. 19

16 AST for the branchingControlFlow method. 20
17 The if statements for condition1 and condition4 are consecu-

tive in the source code, since condition2 and condition3 lie in
a child scope. 20

18 It’s still necessary to test condition1 and condition3 for ex-
clusivity, since condition1 only returns from the method under
condition2. 21

19 Algorithm to determine which pairs of if statements to test for
exclusivity. 22

20 One execution path reaches the assert false statement. 22
21 A simple program before and after transformation for the test. . 23
22 JDart output from the exampleTransformed program. 23
23 How to transform a program with more than two consecutive if

statements? . 24
24 Applying the näıve encoding to example2. 25
25 Simplified encoding using Boolean variables, rather than counters. 26
26 The first transformation under the final encoding scheme. 27
27 The second transformation under the final encoding scheme. . . . 27
28 Algorithm to modify the source code by inserting new variables

and assert statements. 28
29 A simple pair of if statements to test. 29
30 The Z3 query corresponding to the program in Figure 29. 29
31 Objects in Java are treated as Int in Z3. 30
32 In Z3 syntax the | characters denote symbol literals, so |a[4]|

and |foo.bar().baz()| are the names of Int variables. 30
33 PMD maintains the type of foo, but not any of its members. . . 31
34 Unknown types are assumed to be Int. 31
35 In some cases we can apply limited type inference. 32
36 Side-effects of foo() could modify the value of b. 32
37 The code sample shown to the interviewees. 37
38 While Gideon doesn’t necessarily prefer the single-line return

statement, they’d prefer to add this comment if it were used. . . 40
39 Jace’s preferred implementation. 45

5

1 Introduction

The topic of research is how novice structure [17] affects the ability of course

staff (professors, teaching assistants) to provide assistance with student code.

Novice coding structures are patterns of code that are easy for novice program-

mers to write to achieve a correct function, but are different from what a more

experienced programmer would expect to see to accomplish the same function.

Previous research shows us that novice code structure is prevalent, it’s unde-

sirable, and learning how to teach better structure is worth investigating [17].

Novice code structure is not just present in the first year courses, some of these

patterns are still prevalent into students’ second and third years [17].

University instructors are interested in addressing novice structure issues but

may lack class-time resources to teach, and may not realize the full extent of

usage of novice patterns among their students; this is in part because instructors

don’t see lots of student code [1]. Instead, its usually the teaching assistants that

see the most student code. While there is research about the use and education

of style in novice coders [6, 1], there does not appear to be research on how

teaching assistants help students with novice structure. While there is some

research about the kinds of help students receive during TA office hours [13],

existing research focuses on development and correctness issues, rather than

coding structure.

Having worked for the School of Computing as a teaching assistant for several

years, myself and other TA’s have experiences demonstrating the impact novice

structure can have on effective instruction. One colleague shared with me an

instance where poor coding structure among students was endemic enough to

change course policy [3]. In a 4000-level course TA’s were spending so much more

time trying to understand poorly structured code than they were on identifying

actual bugs, that it caused huge delays in students’ queue time waiting for a TA.

This eventually caused a change in policy for this course: If students brought

poorly structured code to office hours, they would be ineligible for TA assistance

until it was improved. After this policy was put in place, the TA’s noticed a

marked improvement in the quality of code that their students brought to them.

This suggests students are in fact capable of using good structure in their code,

however they may not yet be proficient with using expert structure, or require

incentive or motivation to do so.

I contributed to the development of an automated tool to detect the novice

code structures that we’re interested in. PMD [11] is an open-source static anal-

6

ysis tool for Java and other programming languages. Developing an extension

of PMD to target novice code structures has been an ongoing development ef-

fort under Dr. Eliane Wiese’s research. This project includes development of

a detector for the ‘exclusive ifs’ pattern using techniques other than the usual

AST analysis. The detector was used to identify code samples for use in the

teaching assistant interviews.

Second, I conducted a study with School of Computing teaching assistants

and interviewed them about their thoughts and opinions with novice code, and

how it relates to their experiences assisting their students. They were shown

samples of code that exhibited various forms of novice style. I asked them

for their evaluation of the sample, and what kinds of instruction they’d give

if the sample came from one of their students. This study was approved by

the IRB for Dr. Wiese, with additional amendments completed by myself for

recruiting TA’s. The interviews were analyzed using thematic analysis [2], a

qualitative analysis technique, to identify common ideas and experiences among

the interviewees.

7

2 Background and Related Work

Novice coding structures are patterns of code that are easy for novice program-

mers to write to achieve correct function, but are different from what a more

experienced programmer would use. Novice structure may be exhibited as poor

use of abstraction, such as classes, structs, and methods, failing to use language

features and syntax in an idiomatic manner, or näıve patterns that could be

more succinct or simplified. Experts expect a certain structure to code, and

code that does not conform to these expectations can be more challenging to

read and understand [14]. However, novices don’t necessarily perceive the expert

structures as more readable. [17]

The kinds of novice patters that we’re interested in studying are discussed by

Wiese et al. [17]. Three patterns of particular interest are shown here. Figure 1

shows the Boolean Return pattern, where a condition is tested and a Boolean

method returns a literal true or false, rather than returning the condition

itself. In the expert example, a more experienced programmer would under-

stand that the condition expression is being evaluated and returned, whereas

a novice programmer might prefer to have the logic “spelled-out” with the if-

else statement.

Figure 2 shows an example of a while loop that should be a for loop, since

the conventional wisdom is that a for loop should be used when the number of

iterations is always known at runtime [7, 16].

Finally, Figures 3 and 4 demonstrate the “exclusive ifs” pattern; a series of

consecutive if statements that should be using else if and else statements

instead. An in-depth discussion of this pattern follows in section 3.1.

boolean noviceBooleanReturn() {

boolean condition;

// some work

if (condition) {

return true;

}

else {

return false;

}

}

boolean expertBooleanReturn() {

boolean condition;

// some work

return condition;

}

Figure 1: Novice and Expert examples of the Boolean Return pattern.

8

void noviceLoop(int n) {

int count = 1;

while (count < n) {

// some work;

count++;

}

}

void expertLoop(int n) {

for (count i = 0; count < n; count++) {

// some work;

}

}

Figure 2: Novice and Expert examples of the loop pattern.

String noviceExclusiveIfs(String s) {

if (s.length < 10) {

return "small";

}

if (s.length >= 10 && s.length < 20) {

return "medium";

}

if (s.length > 20) {

return "large";

}

return "";

}

Figure 3: Novice example of the Exclusive Ifs pattern.

String expertExclusiveIfs(String s) {

if (s.length < 10) {

return "small";

}

else if (s.length < 20) {

return "medium";

}

else {

return "large";

}

}

Figure 4: Expert example of the Exclusive Ifs pattern.

Previous research shows that University instructors recognize the need to

instruct better code structure [1]. However, professors don’t typically see many

examples of student code, and manually reviewing samples would be incredibly

time consuming. As a result instructors are admittedly unaware of how com-

mon the use of novice structure is, and typically underestimate its prevalence.

Instructors would like to instruct their students to use better structure, but lack

9

the time and space in their curriculum to give meaningful instruction [1].

Many instructors at the University of Utah suggest CS 1410 as the appro-

priate starting point for teaching good structure [1]. Instructors that teach this

course find that teaching good structure here can be challenging since this is

a beginner course. Students are typically more concerned with getting their

program to compile and execute. Telling a student at this level that their code

works, but wasn’t written correctly can be confusing, frustrating, and demoral-

izing [1].

It appears to be the case that teaching students to use expert structure is

important, but there isn’t an obvious place for it in the curriculum. In beginning

courses, students may not be ready to think about their code at that level, and

in later courses, good code structure may be considered outside the scope of the

learning goals.

We may be able to employ a tool that can automatically detect novice pat-

terns to address these issues. Such a tool could be used on batches of student

assignment for quantitative analysis of the use of novice code by students. It

would also enable instructors to quickly identify and give appropriate feedback

to their students. We may also be able to use it to assist the instruction of

expert style as well. A tool integrated into the student’s IDE’s, such as a linter,

could also give feedback to students about their structure while they’re writing

their code. If students are able to engage with the linter, and the feedback

students receive is effective, then they could receive instruction about more ad-

vanced code structures without requiring instructors to dedicate limited time

and resources.

Existing linter and static analysis tools appear to not fit our needs for several

reasons. First, most of the patterns they detect are not related to novice style.

For example, SonarLint [15], PMD [11], and Roslynator [10] offer static analysis

and linting with hundreds of rules or patterns in C# or Java. Only a handful of

rules actually detect the novice patterns we’re interested in. The rest are focused

on fixing bugs, security vulnerabilities, or adherence to naming, whitespace, and

bracketing conventions.

In addition, existing tools do not detect many of the novice style patterns

that we’re interested in. While some patterns such as collapsible consecutive or

nested if statements are commonly included in existing tools, others are only

intermittently included, such as detecting while loops that should be for loops.

Other patterns aren’t included at all and may be difficult or impossible to detect

with static analysis techniques. For example, the ‘exclusive ifs’ pattern could

10

only be detected with AST analysis in simple cases. Using other techniques and

tools such as an SMT solver or concolic execution could greatly increase the

number of instances that would be detected. The efforts applied in detecting

this particular pattern are described in detail.

Lastly, the feedback given may not be appropriate for an educational setting.

The feedback is usually given in the context of alerting an expert of an issue,

assuming they already know how to fix it. Feedback given to a novice needs

to be given in such a way that they can engage with it. Feedback with too

technical of language might be dismissed or ignored.

A pattern detection tool would also need to be designed to support course

staff as well. In my personal experience as a TA, during one semester we had an

autograding tool that students could test their homework against before mak-

ing their final submissions. Frequently, the autograder would produce strange

results or even results that were incorrect. This autograding tool was main-

tained by a lab instructor, and this individual was not always accessible to the

students to address their questions about their autograder results. This meant

that students would go to the TAs with their questions. Since the tool was not

really accessible to the TAs either, the TAs would often instruct students to

dismiss or ignore the autograder altogether, undermining its usefulness.

One can imagine a similar scenario playing out with a pattern detector. If

course staff often disagree with, or don’t understand the feedback given, they

may instruct students to discount the advice they receive, defeating the purpose

of using a pattern detector. Since teaching assistants are still students, we can’t

assume their level of expertise with regards to code structure.

This leads us to consider the following research questions:

• Are teaching assistants more likely to agree with experts or novices with

regards to code structure?

• How do teaching assistants communicate with students about code struc-

ture? For instance, they may notice and give feedback about structure if

it makes it difficult for them to debug. Alternatively, they may not give

feedback about code structure if they don’t think it’s their role to do so,

or for other reasons.

• Can we use software to identify the novice structures that we’re interested

in?

• Since the course TA’s are on the front lines with the students, looking

11

at their code and providing feedback, can we use their experience to in-

form the design of a pattern detector so it gives informative, actionable

feedback?

12

3 Pattern Detector

3.1 Methods

An extension to PMD, an open-source source code analyzer, has been under

ongoing development through Dr. Wiese’s research as a tool to automatically

detect instances of novice structure patterns [1, 12]. One pattern that was

yet undetected by PMD is the ‘exclusive ifs’ pattern. This pattern is simply

when students use an if statement where an else if statement would be more

appropriate, as demonstrated in Figure 3.

Since checking for i < 10 is covered by the first if statement, the second if

statement can be changed to an else if statement, and we can omit the redun-

dant i >= 10 check. In addition, since since these three if statements account

for all possible values of i, we can replace the final if statement with an else.

Once we’ve made these changes, we can remove the unreachable return "" at

the end of the method, since the compiler will find that all execution paths have

a return value. The result of applying these changes can be seen in Figure 4.

These changes are preferable since it makes the code easier to read, easier to

maintain, and less likely to include errors. First, the use of else and else if

communicate to the reader that these conditions are meant to be exclusive, and

they enforce this exclusivity at runtime. In the original program, it’s not clear

why there’s a hanging return "" statement. Is this supposed to represent some

error state? Is there a case that should be handled by the code, but was missed

by the developer? Eliminating this return statement communicates that these 3

cases are meant to handle all possible inputs. Second, eliminating the redundant

i >= 10 condition from the second if statement makes the code easier to main-

tain. If the bounds on what was considered “small” and “medium” changed,

the expert version only needs to be updated in a single location, whereas the

novice version requires updating 2 lines of code.

Instances of this pattern would be difficult to detect with the analysis that

the pattern detector currently uses. Currently, PMD analyzes source code by

examining the Abstract Syntax Tree of the program. For example, PMD can

detect the Boolean return pattern by looking for an AST with a particular

structure (Figure 5).

However, when checking for the exclusive ifs pattern, simply identifying the

AST structure is not sufficient. A pair of if statements that are exclusive

(Figure 6) could have the same AST structure as a pair that are not exclusive

13

boolean noviceReturn() {

boolean condition;

// some work

if (condition) {

return true;

}

else {

return false;

}

}

Method: noviceReturn()

boolean condition ... if (condition)

return true else

return false

Figure 5: AST for the novice Boolean return pattern. Detecting the subtree
starting at if (condition) is sufficient to identify the pattern.

(Figure 7). This means that once the structure is identified, it’s necessary to

test the if statements for exclusivity. PMD can examine the conditions of the

if statements, and can test things such as the type of expression, or notice if

the conditions reference the same variables. However it doesn’t include a way

to test for exclusivity. It would be possible to develop a program to do just

that, starting with simple equality or arithmetic checks, and then developing

from there. The logical conclusion of extending this program would be a SAT

solver, since we want to test if the conjunction of two Boolean expressions is

satisfiable.

void notExclusive(int i) {

if (i <= 0) {

foo();

}

if (i >= 0) {

bar();

}

}

Method: notExclusive(int i)

if (i <= 0)

foo()

if (i >= 0)

bar()

Figure 6: Non-exclusive if statements with AST.

Furthermore, side-effects of function calls could make the analysis difficult.

Consider the example program in Figure 7. Suppose i was a global variable

rather than a function parameter. This means the foo() method could modify

the value of i, and as a result this pair of statements wouldn’t actually be

exclusive.

This means that PMD can be used to detect AST structures of potentially

14

void exclusive(int i) {

if (i == 0) {

foo();

}

if (i != 0) {

bar();

}

}

Method: exclusive(int i)

if (i == 0)

foo()

if (i != 0)

bar()

Figure 7: Exclusive if statements with AST.

exclusive if statements, but actually testing the statements for exclusivity re-

quires more specialized programs.

Lastly, developer intent is a black box. It is not possible to examine the

structures in a program and determine if its author used those structures in-

tentionally or accidentally. In particular, it may always be the case that the

author purposely did not use an else if statement when it would appear to

be preferable. Even so, it would be useful to point such instances out, and let

the developer decide what to use.

In collaboration with Dr. Zvonomir Rakamaric, we employed techniques

from software verification to detect this pattern and address these issues. We

developed two approaches, one with a dynamic analysis technique, and one ana-

lyzing the code statically. Ultimately, we incorporated the static approach into

the pattern detector, though further efforts in employing the dynamic approach

are worth investigating.

3.1.1 Identifying if statements to test

We define a set of consecutive if statements to be exclusive if only one of the

if statements ever executes when that part of the program is reached. In such

a set, we only need to test the consecutive pairs of if statements for exclusivity.

if (condition1) {...}

if (condition2) {...}

if (condition3) {...}

Figure 8: Consecutive if statements. The if statements for condition1 and
condition2 form a consecutive pair, as do condition2 and condition3.

Take Figure 8 for example, if we find that the if statements for condition1

and condition3 are exclusive, it would be incorrect to suggest changing condition3

15

to use an else if since this would make condition2 and condition3 exclu-

sive. In some cases it may be possible to rearrange the if statements so that

condition3 could use an else if, but it’s not always possible to do so in a

way that preserves semantic equivalence of the program. Detecting such cases

remains an interesting challenge not explored by this project.

Once identified, testing the pairs of if statements for exclusivity varies under

each approach. In the dynamic approach, we use concolic execution to test if

both if statements are ever executed. Under the static approach we take the

conditions of each if statement and test their conjunction for satisfiability.

A simple approach would be to check if statements that appear as siblings

in the AST. Consider the example in Figure 9:

void example() {

if (condition1) {

foo();

}

if (condition2) {

bar();

}

}

Method: example()

if (condition1)

foo()

if (condition2)

bar()

Figure 9: A simple example with AST.

The if statements are represented as child nodes of the method example

node. The bodies of the if statements are represented as their children. In

this case, the if statements for condition1 and condition2 are siblings in

the AST. In addition, we also want to consider the example in Figure 10 for

transformation:

void endingElse() {

if (condition1) {

foo();

}

if (condition2) {

bar();

}

else {

baz();

}

}

Method: endingElse()

if (condition1)

foo()

if (condition2)

bar() else

baz()

Figure 10: Even though condition2 has an else statement, we still want to
test for exclusivity with condition1.

16

The first two if statements are consecutive in the source code. If condition1

and condition2 are exclusive, it would be more appropriate for condition2 to

use an else if.

However, it turns out this simple approach is neither a necessary nor suf-

ficient condition. There are some patterns we should test for exclusivity, even

when the if statements are not siblings in the AST, and there are some sibling

if statements that we should not test. The code snippet in Figure 11 is an

example of both cases.

void ifElseIfIf() {

if (condition1) {

foo();

}

else if (condition2) {

bar();

}

if (condition3) {

baz();

}

}

Method: ifElseIfIf()

if (condition1)

foo() else

if (condition2)

bar()

if (condition3)

baz()

Figure 11: ‘Siblings in the AST’ is not the same as ‘Consecutive in the source
code.’

The if statements for condition2 and condition3 are consecutive in the

source code, so we want to check if they are exclusive. In addition, we don’t want

to test condition1 and condition3 for exclusivity, since changing condition3

to use an else if would make it exclusive with condition2, not condition1.

Notably, even though the if statements for condition2 and condition3

appear consecutive in the source code, they are not adjacent in the AST. Instead,

condition2 is a descendent of condition1. Since there can be any number of

else if descendants, such as in Figure 12, it’s necessary to check for the deepest

if descendant. In Figure 12, only conditionN-1 and conditionN should be

checked for exclusivity. We do not want to check condition1 and conditionN.

17

void nElseIfs() {

if (condition1) {

foo();

}

else if (condition2) {

bar();

}

...

else if (conditionN-1) {

baz();

}

if (conditionN) {

qux();

}

}

Method: nElseIfs()

if (condition1)

foo() else

if (condition2)

bar()

...

else

if (conditionN-1)

baz()

if (conditionN)

qux()

Figure 12: There can be any number of else if statements between
condition2 and conditionN-1.

The code in Figures 13 and 14 are examples of if statements that are not

consecutive in the source code, and therefore are not tested for exclusivity:

void notConsecutive() {

if (condition1) {

foo();

}

bar();

if (condition2) {

baz();

}

}

Method: notConsecutive()

if (condition1)

foo()

bar() if (condition2)

baz()

Figure 13: Any statement between two if statements means they aren’t con-
secutive.

Note that in Figure 14, the if statements for condition1 and condition2

do appear as siblings. However, in both examples it would be a syntax error

to change the if statement for condition2 to an else if statement, so we do

not want to test these conditions for exclusivity.

Not only do we need to identify if statements in these patterns, we also

18

void ifElseIf() {

if (condition1) {

foo();

}

else {

bar();

}

if (condition2) {

baz();

}

}

Method: ifElseIf()

if (condition1)

foo() else

bar()

if (condition2)

baz()

Figure 14: The else statement comes between the two if statements.

need to consider the body of the if statements. In Java, there are 4 branching

control flow statements which modify the order of execution of a program. They

are return, break, continue, and throw. These statements impose a sort of

exclusivity already; if inside the body of an if statement, they would prevent

the execution of a following if statement, just as an else if statement would.

This means the programs in Figure 15 have identical execution:

void branchingControlFlow1() {

if (condition1) {

foo();

return;

}

if (condition2) {

bar();

}

baz();

}

void branchingControlFlow2() {

if (condition1) {

foo();

return;

}

else if (condition2) {

bar();

}

baz();

}

Figure 15: Since condition1 will always return from the method, using an
else statement for condition2 doesn’t change how this program will execute.

The else if is unncessary, since if condition1 is true, then condition2

is not executed in either example. Since neither structure is preferable, we

don’t want our pattern detector to recommend changing the if statement for

condition1 to an else if. Note that this is another example of two adjacent

if statements in the AST that we wish to ignore, as see in in Figure 16. Finally,

its necessary to apply all of the above logic at each level of scope in the source

code.

In Figure 17, condition1and condition4 should be checked for exclusivity,

19

Method: branchingControlFlow1()

if (condition1)

foo() return

if (condition2)

baz()

Figure 16: AST for the branchingControlFlow method.

void scopeLevels() {

if (condition1) {

if (condition2) {

foo();

}

if (condition3) {

bar();

}

}

if (condition4) {

baz();

}

}

Method: scopeLevels()

if (condition1)

if (condition2)

foo()

if (condition3)

bar()

if (condition4)

baz()

Figure 17: The if statements for condition1 and condition4 are consecutive
in the source code, since condition2 and condition3 lie in a child scope.

as well as condition2 and condition3. Every kind of code block should be

checked; scopes created by loop statements, method calls, floating scope brack-

ets, etc. Note that this per-scope approach conveniently handles cases where

branching control flow statements are conditionally contained inside an if state-

ment, since the conditions will reside in a child scope and can therefore be

ignored in this scope level. The child condition will be tested in its own scope

level. An example of this is shown in Figure 18. Since condition1 doesn’t

necessarily return from the method, its return statement doesn’t impose any

exclusivity with condition3. Therefore, we should still check condition1 and

condition3.

20

void conditionalReturn() {

if (condition1) {

foo();

if (condition2) {

return;

}

}

if (condition3) {

bar();

}

}

Method: conditionalReturn()

if (condition1)

foo() if (condition2)

return

if (condition3)

bar()

Figure 18: It’s still necessary to test condition1 and condition3 for exclusivity,
since condition1 only returns from the method under condition2.

A general algorithm to identify if statements for exclusivity testing is de-

scribed in Figure 19. Once we’ve identified the if statements to test for exclu-

sivity, how we perform that test varies under the two approaches we developed.

3.1.2 The Dynamic Approach

Dr. Rakamaric has previously worked on a tool called JDart which can perform

concolic execution on Java code. [8] Concolic execution is a dynamic analysis

technique. Essentially, it tries to run a program with every possible input that

completes a different execution path through the program. For example, the

output of JDart on a simple program is shown in Figure 20.

It reports the total number of unique execution paths through the program.

It also reports the number of paths that threw an exception vs threw no ex-

ceptions, and paths for which it is unable to determine a result. While this

output does not give the specific values that result in each path, this case is

simple enough to deduce. There are 2 “OK” paths: when i < 1000, and when

i > 1000. There is 1 “error” path, when i == 1000.

Encoding the Exclusivity Test Under a dynamic view of exclusivity, we

consider a pair of if statements to be exclusive if for all possible inputs, it is

never the case that both if statements execute in a given run of the program.

Since this test will include running the program, it’s necessary to modify the

program to encode this definition of exclusivity into our test. We introduce vari-

ables to track the execution of each consecutive if statement, and a statement

to assert exclusivity.

21

For each code block c:

previous = none

For each statement s in c:

If s is not an if statement:

previous = none

continue

Else if previous:

test(s, previous)

If s terminates with a branching control flow statement:

previous = none

Else if s has a child else statement:

previous = deepest else if child of s

Else:

previous = s

Figure 19: Algorithm to determine which pairs of if statements to test for
exclusivity.

void simpleConcolic(int i) {

if (i >= 1000) {

if (!(i > 1000)) {

assert false;

}

}

}

Figure 20: One execution path reaches the assert false statement.

Our initial encoding was as follows: For each pair of if statements we wish to

test, modify the source code and introduce a new counter variable. In each if

statement, add a new statement to increment the counter variable. Finally, add

a statement after the pair of if statements to assert counter < 2. Then run

JDart on the program. If JDart finds that all execution paths pass the assertion,

then this means both if statements were never both executed. Consider the ex-

22

ample in Figue 21. Since JDart finds no path that fails to assert counter < 2,

as seen in Figure 22, it must mean that these if statements are exclusive.

public void example(int i) {

if (i <= 10) {

foo();

}

if (i > 10) {

bar();

}

}

public void exampleTransformed(int i) {

int counter = 0;

if (i <= 10) {

counter++;

foo();

}

if (i > 10) {

counter++;

bar();

}

assert counter < 2;

}

Figure 21: A simple program before and after transformation for the test.

Figure 22: JDart output from the exampleTransformed program.

While this encoding is straightforward for a pair of if statements, it’s not

clear how this approach will scale if there are many consecutive if statements.

Consider the more complicated program in Figure 23. Since we only check the

consecutive pairs, then it’s no longer correct to assert counter < 2. This

would let us know if all the if statements should be else if statements, but

we’d like to test each pair individually. This would require each pair to have

its own counter variable. Since a single if statement could be part of mul-

tiple pairings, this means each if statement would need to increment each of

23

the counter variables for each pair it is part of. The results of applying this

transformation are seen in Figure 24.

void example2(int i) {

int x = 0;

if (i % 2 == 0) {

x++;

}

if (i < x) {

x = 2;

}

if (i > x) {

x--;

}

if (i % 2 == 1) {

x *= 2;

}

return x;

}

Figure 23: How to transform a program with more than two consecutive if

statements?

Instead, we can simplify the above by testing if each branch was executed,

rather than counting the number of branches executed per pair. We can do this

by using a Boolean variable for each branch to indicate that branch was visited,

e.g., branch1, branch2, branchN for N if statements. Then for each consecu-

tive pair of if statements branchJ and branchK, we assert branchJ XOR branchK.

This simpler encoding is seen in Figure 25.

However, this version of the encoding is insufficient for two reasons. First,

if two statements were never reached, then the XOR assertion would still be

true, but not because the statements were exclusive. Rather, it’s because these

statements are dead code. While it might be useful to report such instances,

this encoding makes dead code indistinguishable from exclusive statements.

To address this issue, we arrived at the final encoding, which involves up to

2 calls to JDart but with different assertions. The first is seen in Figure 26.

Here we can see this assertion will only be true if one or zero branches were

executed. If the transformed code always passes the assertion, then either these

if statements are exclusive, or they are dead code. To determine which is the

case, we apply a second transformation (Figure 27) to the original code, and

run JDart again. If this assertion always passes, then we’ve found dead code.

24

void example2Transformed1(int i) {

int x = 0;

int pair1 = 0;

int pair2 = 0;

int pair3 = 0;

if (i % 2 == 0) {

x++;

pair1++;

}

if (i < x) {

x = 2;

pair1++;

pair2++;

}

if (i > x) {

x--;

pair2++;

pair3++;

}

if (i % 2 ==1) {

x *= 2;

pair3++;

}

assert pair1 < 2;

assert pair2 < 2;

assert pair3 < 2;

return x;

}

Figure 24: Applying the näıve encoding to example2.

Otherwise, the pair truly are exclusive.

Transforming the Source Code To modify the source code and insert the

necessary statements, we developed a program using Spoon [9], which is an AST

analysis and modification library for Java.

First, it is necessary to identify series of if statements that could potentially

be corrected to else if statements. Once identified, we then insert the nec-

essary initialization, assignment, and assertion statements into the AST. These

first two steps an be accomplished with a modification of the algorithm from

Figure 19. The modified algorithm is found in Figure 28. Finally, the new AST

is emitted as a Java source file and run against JDart.

25

void example2Transformed2(int i) {

int x = 0;

boolean branch1 = false;

boolean branch2 = false;

boolean branch3 = false;

boolean branch4 = false;

if (i % 2 == 0) {

x++;

branch1 = true;

}

if (i < x) {

x = 2;

branch2 = true;

}

if (i > x) {

x--;

branch3 = true;

}

if (i % 2 ==1) {

x *= 2;

branch4 = true;

}

assert branch1 ^ branch2;

assert branch2 ^ branch3;

assert branch3 ^ branch4;

return x;

}

Figure 25: Simplified encoding using Boolean variables, rather than counters.

Limitations The dynamic analyzer wasn’t fully realized for several reasons

related to JDart. These issues could potentially be solved with correct configu-

ration, or even using another concolic execution tool for Java.

The first issue is related to JDart output. If JDart reports that all execution

paths are OK – meaning the presence of an if statement that should be an

else if – how do we determine where in the program it is? Unless the program

only has a single pair of if statements, which is unlikely, it is not possible to

know which pair of if statements should be made exclusive. It may be possible

to configure JDart to give more detailed output, but it’s not immediately clear

how to do so.

The second issue is related to the program input. This approach was de-

veloped with an Algorithms & Data Structures course in mind, which means

26

void example3() {

if (condition1) {

foo();

}

if (condition2) {

bar();

}

}

void example3Transformed1() {

boolean branch1 = false;

boolean branch2 = false;

if (condition1) {

foo();

branch1 = true;

}

if (condition2) {

bar();

branch2 = true;

}

assert !(branch1 && branch2);

}

Figure 26: The first transformation under the final encoding scheme.

void example3Transformed2() {

boolean branch1 = false;

boolean branch2 = false;

if (condition1) {

foo();

branch1 = true;

}

if (condition2) {

bar();

branch2 = true;

}

assert !branch1 && !branch2;

}

Figure 27: The second transformation under the final encoding scheme.

that student assignments typically require collections of data to build into data

structures, or to run algorithms on. JDart is best suited for programs with

primitive data type input, rather than collections of data. It is not clear how

to run JDart on a program that is expecting an array or list of data. A branch

of JDart called JDoop was briefly discussed as a potential solution, but it was

27

For each code block c:

IfStatements = new list

For each statement s in c:

If s is not an if statement:

Cache IfStatements

IfStatements = new list

Else if s terminates with a branching control flow statement:

IfStatements.Add(s)

Cache IfStatements

IfStatements = new list

Else if s has a child else statement:

IfStatements.Add(s)

Cache IfStatements

IfStatements = new list

e = deepest else if child of s

If e exists:

IfStatements.Add(e)

Else:

IfStatements.Add(s)

Cache IfStatements

For each cached list l:

For i=0 to n=l.length:

s = l[i]

Insert ``boolean branch_i = false'' before l[0]

Insert ``branch_i = true'' in s.Body

For i=1 to l.length:

s = l[i]

Insert ``assert branch_i-1 ^ branch_i'' after l[n]

Figure 28: Algorithm to modify the source code by inserting new variables and
assert statements.

28

not investigated.[5] It may still be possible to use this approach in a more basic

computer programming course, if the programming assignments typically re-

quire primitive data rather than collections of data. It also might be possible

to address this issue by using a different concolic execution tool altogether.

3.1.3 The Static Approach

This approach employs an SMT solver to test conditions for exclusivity. An

SMT solver can be used to decide the satisfiability of logical formulas. If the

conditions for two if statements are found to be unsatisfiable, then we can

conclude that the conditions must be exclusive since no assignment of variables

results in both condition expressions being true. The SMT solver we use is Z3,

and since the pattern detector is written in Java, we use the Z3 Java bindings

to create the Z3 queries [4].

To test two if statements for exclusivity, we need to construct a Z3 query

where we assert the conditions of each statement, and then check for satisfia-

bility. For example, if the code we wish to test is as seen in Figure 29:

if (x == 0) {...}

if (x >= 0) {...}

Figure 29: A simple pair of if statements to test.

We’d need to construct the Z3 query seen in Figure 30. In this example, the

(declare-const x Int)

(assert (= x 0))

(assert (>= x 0))

(check-sat)

Figure 30: The Z3 query corresponding to the program in Figure 29.

output is sat since x = 0 satisfies both conditions.

The translation from Java source to Z3 was accomplished using the visi-

tor pattern. A visitor is a Java class that recursively traverses the Java AST

and converts the kinds of expressions found to Z3 expressions. In developing

the conversion process, we found there are 4 types of expressions that could

be converted from Java to Z3. They are Boolean, integral (int, long, char,

etc.), floating-point, and objects. Boolean expressions were naturally the eas-

iest to convert to Z3. Integral expressions correspond to the Int type in Z3,

29

and floating-point expressions correspond to the Real type. Operations over

these expressions are simple to convert, however the various forms of numeric

constants permitted by the Java grammar required thoughtful parsing. Ob-

ject expressions were simply treated as Z3 Int expressions. While it might be

possible to develop a Z3 sort for the objects encountered in a Java program,

it seems sufficient to treat objects as numbers since objects in Java reduce to

numeric addresses in memory. For example, testing object equality in Java is

the same as testing the object’s address for equality. This means that the con-

dition expression in if (obj1 == obj2) can be translated to the Z3 query in

Figure 31.

(declare-const obj1 Int)

(declare-const obj2 Int)

(assert (= obj1 obj2))

Figure 31: Objects in Java are treated as Int in Z3.

Java expressions that involve some indirection, such as array accesses, object

member accesses, and method calls, are treated as variables in Z3 with the given

type. For example, if we have an int[] a, the Java code if (a[4] < foo.bar().baz())

corresponds to the Z3 query in Figure 32.

(declare-const |a[4]| Int)

(declare-const |foo.bar().baz()| Int)

(assert (< |a[4]| |foo.bar().baz()|))

Figure 32: In Z3 syntax the | characters denote symbol literals, so |a[4]| and
|foo.bar().baz()| are the names of Int variables.

Note that it’s safe to assume a[4] and foo.bar().baz() have the same

type, since if they did not have the same type, Java’s typechecker would fail

during compilation. If the code doesn’t compile then it has greater issues than

whether or not it contains novice structure.

Limitations Due to limitations in the AST library for PMD, sometimes type

information cannot be resolved on more complicated expressions. For example,

in the expression foo.bar().baz(), PMD maintains the type of foo but not

for .bar() or .baz(). This poses a challenge since .baz() defines the resulting

type of the entire expression. In this case we treat the Z3 variable as an Int.

30

As mentioned above, this poses no problem if .baz() is an object. If it’s a

Boolean, then we lose some precision, and this could cause the detector to miss

some exclusive statements.

For example, consider the Java code in Figure 33:

if (foo.bar() != foo.baz() && foo.baz() != foo.qux()) { ... }

if (foo.qux() != foo.baz()) { ... }

Figure 33: PMD maintains the type of foo, but not any of its members.

Since there’s no type information here, the visitor will assume that the type

each of these function calls is an Int. This means that Z3 will find that the

corresponding Z3 query (Figure 34) is satisfiable. However, if these functions are

actually Boolean, then it should not be satisfiable since there are not 3 distinct

Boolean values.

(declare-const |foo.bar()| Int)

(declare-const |foo.baz()| Int)

(declare-const |foo.qux()| Int)

(assert (and (distinct |foo.bar()| |foo.baz()|) (distinct |foo.baz()| |foo.qux())))

(assert (distinct |foo.qux()| |foo.bar()))

Figure 34: Unknown types are assumed to be Int.

There are a few workarounds for this issue. First, in some cases we may be

able to infer the type of an expression. For example, expressions using arithmetic

operations such as +, -, *, / can be assumed to be numeric types. Expressions

using Boolean operations such as && and || can be assumed to be Boolean

expressions. Also, we can assume that expressions will pass typechecking, so

knowing or inferring one part of an expression is enough to infer the entire

expression. For example, in Figure 35 the expression foo.bar() may not have

type information available, but since b is a local variable, we know its type

is Boolean. Therefore, we can infer that the expression foo.bar() != b is

Boolean as well.

This sort of type inference could be extended to apply to other expressions as

well. In the example above, we can also infer that foo.baz() is also a Boolean.

However this extension is not yet implemented. In fact, the detector in its

current state would interpret the condition at line 2 as a Boolean expression,

and the condition at line 3 as an integer expression.

31

void example1 (boolean b) {

if (foo.bar() != b) { ... }

if (foo.bar() != foo.baz()) { ... }

}

Figure 35: In some cases we can apply limited type inference.

As a special case, we always treat the .equals(Object) method as a Boolean

since it is defined as such for every object in Java.

Some uncommon Java expressions are currently not supported for conversion

to Z3. For example, bitwise expressions are challenging to convert since they

can be applied to any integral Java type, but in Z3 they can only be applied to

BitVector types. However in the batch of 2420 submissions being studied, there

were no instances of students of using bitwise expressions. The converter does

currently support conversion for all kinds of expressions found in if statements

in the 2420 batch.

Since the source code is only evaluated statically, this analysis assumes that

any method calls do not produce side-effects that would change the result of a

following if statement. This means it may produce some false positives, where

the developer intended the if statements to not be exclusive. Consider the

program in Figure 36.

boolean b;

void example2 (int x) {

if (b) { foo(); }

if (!b) { ... }

}

Figure 36: Side-effects of foo() could modify the value of b.

If the variable b is not local to the example2() method, it’s possible that

the foo() method modifies the value of b. This means that the developer could

have intentionally chosen an if statement instead of an else if statement,

since they don’t want to always skip over the second statement. If foo() is a

locally defined method, it may be possible to test this with data flow analysis.

However the possibility of using externally defined methods means that this

approach would not always solve this issue. Notably, this sort of issue could be

solved with dynamic analysis.

32

Since developer intent is a black box, at best the detector can point this

out to the developer with messaging such as “These statements appear to be

exclusive, consider using an else if statement or restructuring your code” versus

stronger, more prescriptive statements that could be used by detectors of other

patterns.

3.2 Discussion

Using techniques from software verification have been successful in expanding

the kinds of patterns we can detect. Applying these techniques may even enable

the detection of other novice patterns. In particular, the current detector for

the ‘exclusive ifs’ pattern does not yet test if a final if or else if statement

should be an else statement instead. Both the static and dynamic techniques

seem applicable to this pattern. In addition, the pattern where students use

extraneous cases with a general solution that already covers those cases [17]

may also be detectable with dynamic analysis.

There remain some challenges with integrating these additional programs

into a tool that students could use while they’re writing code. Ideally, such a tool

would require minimal installation and maintenance, and would be seamlessly

integrated with the user’s IDE. These challenges remain for future research.

33

4 Teaching Assistant Interviews

4.1 Methods

To investigate how Teaching Assistants interact with novice code structure,

I interviewed four Teaching Assistants working for the School of Computing

in the Fall Semester of 2020. I sent a recruitment email to a list of current

teaching assistants, offering compensation for a one-hour interview about code

structure. We had hoped to recruit 10 participants, but only 4 responded to

the email. These students had a variety of backgrounds and experience. During

each interview, they would be shown 6 samples of Java source code with various

kinds of novice code structure. We would then discuss their opinions on each

sample, what they liked or disliked, and what kinds of feedback they would give

a student on each sample. The interviews lasted for roughly one hour, and the

participants were compensated $15 for their time.

Five of the code samples came from the previously collected 2420 assignment

submissions. They were identified using the pattern detector. The entire collec-

tion of assignments was analyzed by the pattern detector, which then produced

a spreadsheet identifying each sample of code that was flagged for using novice

structure. Some samples were selected for having multiple flags, and others

were selected for having different kinds of novice structure from the other sam-

ples. Once selected, they were reviewed manually to ensure the overall selection

would be interesting and diverse. Each sample was selected from a different

assignment.

One of the samples was refactored to use expert structure, and both were

modified to include subtle bugs. Both samples were used in the interviews.

These were the only samples to include correctness errors. The other 4 were

assumed to correctly execute the functionality they were meant to provide.

Finally, the samples were extracted from the original student submission file,

and copied into a new file so the relevant code would fit on a single screen,

to avoid needing to scroll during the interview. To avoid extraneous compiler

errors and warnings, the minimal amount of additional code was added, largely

off screen. The entire batch of 2420 assignments was de-identified prior to

collecting samples for this interview. Extracting the samples into their own file

was simply a means of making it easier to discuss during the interview.

The interviews were conducted remotely, using Zoom. First, I would ask

them questions about their background as a student and as a teaching assis-

34

tant. Among the 4 participants, there were 3 seniors, and one Master’s student.

Three participants were Computer Science majors, with one double majoring in

Economics, and one Applied Mathematics major. The courses they’ve TA’d for

include beginner courses such as COMP 1010 and CS 1410, all the way through

senior-level courses such as CS 4150.

Next, I loaded the code samples using the Eclipse IDE, and shared my screen

with the participants. This was meant to be similar to a remote office hours

session, where the student would share their code from their IDE. I then asked

them to review the sample and share their initial thoughts and opinions. If

they made any comments about coding style or structure, I would ask them to

elaborate. After they shared their initial thoughts, I would ask them to view

the sample in the context of their role as a Teaching Assistant. What kinds of

marks or feedback would they give if this were student code they saw during

office hours, or during grading? Some of the samples had specific points of

interest that I would discuss with them. These include comparisons between

novice and expertly structured code, as well as debugging exercises. If these

points weren’t already brought up during our conversation, I would ask them

about these points. Finally, I would ask them to share any additional thoughts

they had before proceeding to the next sample.

4.2 Results

4.2.1 Participant Profiles

The participants recruited are all at least seniors, and have varying majors

and teaching assistant experience. Each of the participants have been given

pseudonyms:

Participant 1: Elspeth Elspeth is a senior who is double majoring in Com-

puter Science and economics. They are considering pursuing a Master’s degree.

They have been a TA for 3 semesters, each time for COMP 1010 “Programming

for All 1.” This course is meant to be an introductory programming course for

students not pursuing a degree in Computer Science, and is taught in Python.

Participant 2: Gideon Gideon is a senior who is majoring in Applied Math-

ematics. They have been TA’d for 3 semesters, twice for CS 1410, “Object Ori-

ented Programming,” and once for CS 4150, “Algorithms.” “Object Oriented

Programming” is an introductory course for those pursuing a major or minor

35

degree in Computer Science. Some prior programming experience is expected,

either through a prerequisite course, or a proficiency test. It is taught using

Java, or C++. “Algorithms” is a senior-level course that expects proficiency

with programming fundamentals. While not the primary focus, some versions

of this course include a programming component that can be completed in a

number of programming languages.

Participant 3: Liliana Liliana is a Master’s student in the Computer Science

program. They have been a TA for 4 semesters. Once for COMP 1020, “Pro-

gramming for All 1,” once for CS 3505 “Software Practice II,” and twice for CS

1410. “Programming for All 2” is follow-up course to COMP 1010. “Software

Practice II” is a junior-level course that is meant to teach software engineering

best practices. It’s taught in C++, and while it may be some student’s first

experience with the language, teaching C++ is not the primary focus of the

course.

Participant 4: Jace Jace is a senior majoring in Computer Science. They’ve

TA’d twice for CS 2420 “Algorithms and Data Structures,” and once for CS

4150.

36

4.2.2 Code Sample 1

10 public boolean checkout_(long isbn, String holder, int month, int day, int year) {

11 int i = 0;

12 LibraryBook book = null;

13 GregorianCalendar dueDate = new GregorianCalendar(year, month, day);

14 while (i < library.size()) {

15 if (library.get(i).getIsbn() == isbn) {

16 book = library.get(i);

17 break;

18 }

19 i++;

20 }

21

22 if (book != null) {

23 if (!book.checkedOut()) {

24 book.checkOut(holder, dueDate);

25 return true;

26 }

27 }

28 return false;

29 }

30

31 public boolean _checkout(long isbn, String holder, int month, int day, int year) {

32 LibraryBook book = null;

33 GregorianCalendar dueDate = new GregorianCalendar(year, month, day);

34 for (int i = 0; i < library.size(); i++) {

35 if (library.get(i).getIsbn() == isbn) {

36 book = library.get(i);

37 break;

38 }

39 }

40

41 return book != null && !book.checkedOut() && book.checkOut(holder, dueDate);

42 }

Figure 37: The code sample shown to the interviewees.

Overview The code sample seen in Figure 37 presents two versions of the

same method to check out a book from a library system. The first method,

checkout_, is the original student code verbatim, and uses novice code struc-

tures. The second method, _checkout is refactored to use more expert style.

Line 14 uses a while loop that should be a for loop, and line 22 exhibits

37

two kinds of novice style. First, it uses nested if statements that could be

collapsed into a single if statement using an && operator. Second, it returns

literal Boolean values, rather than the result of an expression.

Participant 1 Data

1. Elspeth: I like the second one more, [the expert-styled implementation]

just ‘cause it’s fewer lines of code, but the if statements from line 22 to

27 make it more understandable.

Interviewer: You prefer this one, [the expert-styled implementation] ‘cause

it’s fewer lines but you actually prefer, this condition [line 22] because it’s

easier to read?

Elspeth: Yeah

Interviewer: So what would like an ideal version of this method look like?

Like, to your preference.

Elspeth: It would include the for statement from the bottom one, but

then the conditional check from the top one.

Interviewer: OK, why don’t you like the while statement?

Elspeth: Because it should be a for loop ‘cause it’s incrementing a counter.

2. Interviewer: So let’s say I’m the student: “Why should I use this different

structure? My code works just fine. Why should I redo it?”

Elspeth: Just because, one: it’s fewer lines of code. It’s like 2 fewer

lines ‘cause you won’t have to instantiate. You don’t have to increment

on separate lines. I think it’s good practice to use a for loop when you

should use a while loop in other cases.

Interviewer: How come? What makes it a good practice?

Elspeth: I once read this in Cracking the Coding Interview, that you should

use for loops when you increment. And I guess I just took that as a

standard.

3. Elspeth: I would say that line 41, was kind of hard to follow. If like, this

was having an issue, it would be harder to figure out what line had the

problem, or like what specifically had the problem. Because on line 41

38

there are three different things going on, so it could have been one of the

checks that are having issues.

Interviewer: So you would want them to break out line 41 because it would

be easier for debugging?

Elspeth: Yep.

Participant 1 Analysis In line 1, Elspeth expresses a mixed agreement with

the research team about expert and novice style. While they agree that the

loop at [line 14] should be be replaced with a for loop, they specifically state

that the novice-styled if statement is easier to understand. In addition, in line

2 they also state the expert version would be more difficult to debug, if one of

the three conditions was incorrect.

In line 2, Elspeth states they prefer the for loop since it’s fewer lines of

code, and that it’s a good coding practice to use a for loop when incrementing

a counter. Their source on why this is a good coding practice is an interview

preparation book, not any instruction they received at the University. The

reasoning also goes against conventional reasons of when to use a for loop.

Websites such as Khan Academy [7] and StackOverflow [16] state that for

loops should be used when the number of iterations is known at run time. It is

unclear if this student did not receive this same instruction at the University,

or if they did not retain it.

In line 3, we see Elspeth’s reason for preferring the novice style is a practical

concern. If three Boolean variables are on a single line, a debugger would

step over the entire line at once, rather than showing the evaluation of each

variable. This would make it more difficult to understand which condition is

faulty and causing unexpected control flow. Debugging tools typically have

the ability to evaluate expressions during execution, but this takes additional

work. In contrast, when the if statements are nested like this, the value of each

condition can be immediately understood during debugging.

Participant 2 Data

4. Gideon: So they both make sense. The top one [novice-style] might be

easier to understand if you’re a beginner, but the bottom one [expert-style]

is slicker from a, a Boolean logic standpoint.

39

5. Gideon: I mean, in my opinion, I like the second one better because for

loops are kind of built for this sort of incrementation idea, where you’re

just going to increment i, to get through the entire library. That’s kind

of what for loops are for, so it makes sense to use a for loop instead of

a while loop there. Save some lines, save some hassle, etc, etc.

6. Gideon: And then, on line 41 ... Yeah I think this makes more sense

too, because, it might be harder to understand up front, like there’s more

overhead to make sure you know what’s going on, but, it’s slicker, it saves

a lot of code. And if you were to like comment it, you could just put one

comment and then you’re, you’re done.

Interviewer: What would you like to see from a comment?

Um, I would probably just put a comment that says like- [to self] let

me remind myself- just say like, “if the book is in the library and is not

checked out, check it out.” That just kind of guides the person reading it

to know what they’re looking for.

But I mean, all in all I think either implementation [of the return con-

dition] is fine. If you’re going to do the top one, you should definitely

like, comment it because it’s a little confusing, but- I mean just a little

lengthier, even if it’s not that confusing.

Participant 2 Analysis Gideon expresses a preference for the expert im-

plementation of the method, because they prefer the use of a for loop in this

context over using a while loop. In line 5, they agree with Elspeth that for

loops should be used along with incrementation, and that it’s preferable to save

a few lines of code.

In regards to the return condition, they state that either version is ‘fine’; the

expert version is more ‘slick,’ but the novice version may be easier to understand

for beginners. So much so, that it would be best to include a comment describing

the return statement (Figure 38):

41 // if the book is not in the library, and is not checked out, check it out

42 return currBook != null && !currBook.getInOrOut() && currBook.checkOut(holder, cal);

Figure 38: While Gideon doesn’t necessarily prefer the single-line return state-
ment, they’d prefer to add this comment if it were used.

40

It is interesting to note that their comment reads like a transliteration of

the code syntax to English. This suggests that the meaning of this return

statement is not immediately accessible to the participant, and it’s preferable

to have the translation available in a comment. While what constitutes a good

code comment can be subjective, it’s not clear that this comment adds any

clarification beyond this transliteration.

Participant 3 Data

7. Liliana: I guess, I like the second [expert] way’s implementation better,

because I think it’s more clean. One thing that I would give for the very

first checkOut() method, is I don’t favor while loops. I think they’re a

little bit more harder to understand, is what I would generally tell students

because, um, I think it’s a little bit harder to track values in that way,

but it doesn’t make it any less correct. I think the biggest difference that

makes the second method preferable to me, is the final if checks, where

you return true or where you return false. Obviously to new coders, or like,

students that are new to CS, the second [expert] approach wouldn’t be

intuitive, so I would understand why a student would do the first [novice]

method’s way, but in either case I think the second method [expert] is

more readable and easily to be understood.

8. Interviewer: So in the class that you’re currently TA’ing for, what is

expected of you in terms of giving feedback to the student about these

sorts of things?

Liliana: So Professor Pseudonym is the professor that I’m currently TA’ing

for, and he’s really good at making us TA’s give in-depth feedback to

students every time we grade it. So rather than taking 2 or 3 hours to

grade assignments, it takes north of 4 hours to grade about 30 assignments,

and it’s because we make comments for each individual so that it’s unique

to everyone. And so for this we grade according to the coding style, and

how they can fix their code to learn to do things a little bit more concisely,

and make sure that it’s still readable.

Interviewer: When you say “fixed” do you mean fix correctness issues, or

fixing style issues?

9. Liliana: Fixing style issues. If I were given, for example, the method on

the top, I would have made a comment on that final if statement, saying

41

this can be done in a single-liner, and let’s think through the logic of

that. Because what we’re returning is a true or false return statement,

and if statements always return a true or false, so we can fall back on

that functionality. So that’s what the type of comment I would give to

this kind of submission. Another thing is, personally I would comment

on this while loop, because for loops are there for a reason, and we

always- personally with my history of TA’ing, whenever students learn

about while loops, they’ve also learned about for loops. Either close to

each other, or at the same time. So they should be able to understand

for loops initialize these counting, incremental variables in a single-liner,

and I would assume that they should know that at this point. So having

a while loop with a counter on the outside, not really the best way of

representing this counter. Because i in this case is a counter, so I would

just recommend using a for loop because for loops do that in a single

line and so it makes it more readable.

Participant 3 Analysis In line 7 Liliana states that they dislike the use of

the while loop in this context. The reasons they give are that it’s harder to

understand, and that for loops initialize and increment their counter variable

all in a single-line. Again, the reasons for this preference don’t really relate to

common knowledge about for vs while loops. They even seem to suggest that

using for loops is always preferable.

They also agree with the expert version of the return pattern. They are

the only participant to express a strong preference for the expert version of

this method, the other participants either prefer the novice version, or they are

ambivalent about the two approaches. In addition, they recognize that a novice

programmer might not think to use the expert version, or that they may not

consider the expert version to be as intuitive.

In line 8 the participant explicitly states that giving detailed, individualized

feedback about coding structure is very time consuming, even suggesting that

it can take at least twice as long to do so. This further confirms what was

suggested by other research; students may not be receiving instruction about

good code structure because of the time commitment required to give personal

feedback.

In line 9 Liliana gives their reasons for preferring the expert styles, and the

kinds of feedback they would give to a student. They say that “Because what

we’re returning is a true or false return statement, and if statements always

42

return a true or false, so we can fall back on that functionality.” It’s not clear

what this means, and if a novice programmer is unlikely to think to use the

expert pattern, it’s not clear that this would be sufficient to prompt them to

use the expert pattern.

Liliana also states that “because for loops do that in a single line and so it

makes it more readble.” Here they seem to be equating fewer lines of code with

improved readability. While it’s not clear if this is true in the general sense, it

may be the case that novice code has a tendency to be too verbose rather than

too terse. If so, this comment from the participant would make sense, given

their background as a TA for primarily beginner-level courses. If it is indeed

the case that novice code tends towards verbosity, this would be an important

consideration for designing a tool to assist students with improving their code

structure.

Participant 4 Data

10. Jace: OK, so first one, using a while loop, for some reason, and then doing

i++. Yeah, that’s weird, definitely. I have actually seen, other students

do that where they do a while loop they do- Like I have seen a couple

different ones where they do a while loop, and i++ like something that

literally could just be a for loop. (pause) Which I think is weird.

Interviewer: So you said you have seen this before? Or you have not.

Jace: Yeah, I’ve seen like probably two or three 2420 students that like

whenever I come to help them they always use while loops. And they’ll

write like- they’ll be given like pseudocode for an algorithm and then turn

into while loops. And then I’m like “This works so much better as a

for loop!” But I guess it’s still like, you know, obviously still operational

right? But, it just looks weird. When you have something you’re iterating

on, you know?

Interviewer: And did you say in which course was that? Did you have the

students-

Jace: Uh 2420. (Int: 2420? OK) Yeah yeah. Yeah I haven’t seen any of

that in 4150. (Int: OK) but I don’t look at too much code in 4150, so.

11. Jace: Yeah, I mean that last part seems reasonable enough I guess. Let’s

compare it to the next one so- (pause) OK, yeah, I like the- I really like

43

break statements, so this is- I, I like this a lot more and then- (pause)

Hm. I don’t know about the Boolean, though. The Boolean is a lot, so-

Interviewer: What do you mean by “the Boolean”?

Jace: The return statement. So like book != null, and it’s not checked

out, and also check it out. (Pause) I think it’s a cool use of it, but- (pause)

might be closer on the edge of it like, you definitely have to stop and look

at it for second.

Interviewer: Do you have a preference for one method or the other?

Jace: Definitely the second one.

Interviewer: Even though you don’t like the return statement as much?

Jace: Yeah, like, I think the return statement’s like, it’s on the cusp like

I think it still is fine, but, I would probably prefer like an if statement

there because you got like three things going on. But I much prefer the

for loop with the break, rather than the while loop with the- the while

loop looks strange to me.

Interviewer: So you said you prefer an if statement here? What would it

look like? Something like the implementation here [in the novice version

of the method]? Or would it look different?

12. Jace: I’d probably do both of those in the same if statement. And then,

return- (pause) I guess checkOut()- checkOut() returns true only if it

actually checked it out?

Interviewer: Right

Jace: So yeah, I would just say if(book != null && !book.checkedOut(),

then I would return checkOut(). And then I’d just return false at the end.

13. Interviewer: What feedback would you give based on the expectations of

your role as a TA in that course?

Jace: I think if I saw multiple instances of a while loop being used where

it didn’t really need to be- Or I guess even just this one I’d mention like-

“Hey I’m just wondering why you’re using a while loop. It’s just like,

harder to understand what’s going on, you know, rather, than like a for

44

loop.” ’Cause when see a for loop you can see it’s iteration, and so it’s

strange to see a while loop in this scenario where like, you’re just doing

one variable iteration, right? So I think I would probably say something

that even though- Like again, of course it’s totally fine to keep it. I’d just

be like ”Hey, by the way, like a for loop would probably be better here.”

if (book != null && !book.checkedOut()) {

return book.checkOut(holder, dueDate);

}

return false;

Figure 39: Jace’s preferred implementation.

Participant 4 Analysis In line 10, Jace agrees with the other participants

in saying that they disagree with the use of a while loop in the novice example.

In particular, they state that it looks ‘weird.’ Jace also comments that there

were specific students in 2420 who would commonly use that pattern. They

also note that they didn’t notice this pattern as much in 4150. Either this is a

result of students abandoning this pattern by the time they’re seniors, or this is

because Jace didn’t view as much student code in 4150. This poses an interesting

question about the persistence of the use of patterns by individuals. Is this a

pattern that students are likely to learn on their own? Are some patterns more

persistent than others? Are students consistent in their use of novice or expert

structures?

In line 11, Jace states that the expert return pattern is ‘cool,’ but not imme-

diately comprehensible. Their comments are similar to Elspeth’s, saying that

there’s “three things going on.” However, the strangeness of the while loop

is so great, they still prefer the expert method. Jace’s reaction to the expert

pattern is also similar to Gideon’s, which they called ‘slick.’ Both participants

express a kind of admiration for single-line return statement, in spite of their

suggested changes to make it easier to understand.

Jace suggests in line 12 to combine two of the conditions into an if state-

ment, but returns the value of the checkOut() method, or literally false oth-

erwise (Figure 39). This suggests that Jace may conceptually separate the

checkOut() method since it’s performing an action, whereas the conditions

book != null and book.checkedOut() don’t modify any program state. Since

45

they specified “three things going on” it may also be the case that their prefer-

ence is to break up multiple conjunctions in this manner.

4.3 Discussion

Given that the TA’s recruited for these interviews had a variety of experience

and backgrounds, it’s no surprise to see their varied opinions with regards to

code structure. There were as many opinions about the return structure as there

were participants. Only one of the participants expressed a strong preference for

the expert return pattern, one TA preferred the novice pattern, and the other

two had varying degrees of ambivalence. Liliana indicated the professor she

worked for placed educating expert structure as a priority, and it could be the

case that the TAs will care as much about structure as they feel they’re required

to. On the other hand, Elspeth preferred the novice style for purely practical

concerns. Namely, that having the conjunction broken out into separate lines

makes it easier to identify errors when using a visual debugging tool. This shows

that at least for some patterns, teaching assistants may actually prefer novice

style.

However there were some common threads throughout each of the interviews.

All of the participants agreed that the while loop looked ‘weird’ or was otherwise

undesirable. They also agreed about the reason for preferring a for loop: that

for loops should be used for ‘iteration’ or ‘incrementation.’ However this is

strange since while loops can also be used to iterate, and could be controlled

by incrementing a variable. It’s also interesting that none of the participants

gave examples of when to prefer a while loop over a for loop. This could be

because the students lack experience with use cases where while loops are more

appropriate, or they simply always prefer to use for loops. It may also be the

case that the participants lack internalized reasons for their preferences. If this

is the case, we may not be able to totally rely on TA experience when it comes

to developing feedback for a pattern detector.

Another common feature about the interviews is the lack of discussion about

student comprehension. For the most part, they made no comment about any

implications the novice structure might have about the author’s understanding

of the program. Liliana indicated she understood why a novice programmer

would use the novice return pattern, but this was the only mention of identifying

with student’s coding preferences. The while loop example was so alienating,

most of the participants expressed confusion about why someone would write

46

code like that. Jace noticed a few students from the 2420 course who would

frequently use this pattern, but makes no comment about why they might do

so. These students are regarded almost as a mystery. This suggests that there is

some disconnect between novice programmers and TAs. Even though the TAs

are students themselves, they may have advanced far enough that they’re unable

to place themselves at the level of understanding of a novice programmer.

47

5 Conclusions

Let us consider the research questions posed in section 2:

Are teaching assistants more likely to agree with experts or novices

with regards to code structure?

It seems that at best, we might be able to assume the ‘average’ teaching assistant

is an intermediate programmer. Teaching assistants are likely to have more

experiences than the students they’re assisting, so it follows that they’re not

quite novices. As demonstrated by how consistently the participants reacted

to the novice while loop pattern, TAs are likely sufficiently advanced to agree

with certain patterns.

On the other hand, given that the teaching assistants are still students,

it follows that it would not be correct to assume they’re expert programmers

yet. This is shown by their varied reactions to the novice return pattern. In

addition, their reasoning for preferring one pattern or the other was often vague

and poorly articulated. This also suggests TAs haven’t wholly mastered certain

coding conventions.

This makes sense given the variety of backgrounds and experience that teach-

ing assistants have. Instructors who wish to emphasis expert coding patterns

would likely need to ensure their teaching staff are all on the same page. They

shouldn’t necessarily expect that their TAs will already agree with them or have

the same expectations when it comes to coding structure. However, TAs are

capable of identifying sophisticated coding patterns, even if they’re hesitant to

employ them, or unable to articulate why one pattern is preferable over another.

How do teaching assistants communicate with students about code

structure?

It is likely that teaching assistants only give feedback about coding structure to

the extent that they’re required to. Grading assignments is already a tedious

and time-consuming endeavor. Being asked to give personalized feedback on

programs that might even be functionally correct would be even more time-

consuming. Spending 5 additional minutes to give feedback on 30 assignments

to grade would add 2 1/2 hours to the time spent on grading.

During office hours teaching assistants may be willing to give feedback on

coding structure, but likely only when asked by the student. It’s unclear how

48

frequently this occurs. In beginner courses, when students are more concerned

with getting their code to compile and run than with improving their code style,

it may be a rare occurrence indeed.

This also poses questions about the scalability of TA-generated feedback

about coding patterns. Even if all the TAs in every programming course were

giving style feedback on every assignment, if their feedback is poorly articulated

or difficult to understand, would the students really be able to apply it? Would

this be an effective use of the limited time available to instructors and course

staff?

Can we use software to identify the novice structures that we’re in-

terested in?

Yes. Some novice patterns can be detected with the AST analysis that common

linting and static analysis tools offer. Expanding the kinds of analysis at our

disposal, such as SMT analysis and concolic execution, we are able to develop

tools to automatically identify even more kinds of novice patterns.

Can we use teaching assistant experience to inform the design of a

pattern detector so it gives informative, actionable feedback?

This is unclear. If this is possible, we would need to identify teaching assis-

tants who have shown a sophisticated understanding of coding patterns, or

have demonstrated particular success in educating the students they work with.

It seems unlikely that we could arbitrarily select a teaching assistant and rely

on their experiences to create an effective tool.

However this is not to say that teaching assistants shouldn’t be considered

at all. Since not all TAs agree with the use of expert coding patterns, it will be

necessary to design a pattern detection tool with this in mind. The feedback or

instruction it gives will need to be accessible to the TAs and students alike, or

at least to the TAs at minimum. It would not be useful to employ a pattern

detector whose feedback is ignored or dismissed by teaching assistants, since

this attitude may be reflected by the students as well.

49

References

[1] Anderson, J. Addressing novice coding patterns: Evaluating and improv-

ing a tool for code analysis and feedback. Report UUCS-20-002, University

of Utah, 2020.

[2] Braun, V., and Clarke, V. Thematic Analysis. In The Handbook of

Research Methods in Psychology, H. Cooper, Ed. American Psychological

Association, Washington, DC, 2012, ch. 4, pp. 57–71.

[3] Butler, Scott. personal communication.

[4] De Moura, L., and Bjørner, N. Z3: An efficient smt solver. In Pro-

ceedings of the Theory and Practice of Software, 14th International Con-

ference on Tools and Algorithms for the Construction and Analysis of Sys-

tems (Berlin, Heidelberg, 2008), TACAS’08/ETAPS’08, Springer-Verlag,

p. 337–340.

[5] Dimjas̆ević, Marko and Rakamarić, Zvonomir. https://github.com/

psycopaths/jdoop, 2018.

[6] Keuning, H., Heeren, B., and Jeuring, J. How Teachers Would Help

Students to Improve Their Code. In ITiCSE 2019 (2019), no. July, pp. 119–

125.

[7] Khan Academy. When do i use a for loop and when do i use a while

loop in the javascript challenges? https://support.khanacademy.org/hc/

en-us/articles/203327020-When-do-I-use-a-for-loop-and-when-do-I-use-

a-while-loop-in-the-JavaScript-challenges-, 2018. Accessed: 2021-05-04.

[8] Luckow, K., Dimjasevic, M., Giannakopoulou, D., Howar, F.,

Isberner, M., Kahsai, T., Rakamaric, Z., and Raman, V. Jdart:

A dynamic symbolic analysis framework. In Proceedings of the 22nd In-

ternational Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS) (2016), M. Chechik and J.-F. Raskin, Eds.,

vol. 9636 of Lecture Notes in Computer Science, Springer, pp. 442–459.

[9] Pawlak, R., Monperrus, M., Petitprez, N., Noguera, C., and

Seinturier, L. Spoon: A Library for Implementing Analyses and Trans-

formations of Java Source Code. Software: Practice and Experience 46

(2015), 1155–1179.

50

https://github.com/psycopaths/jdoop
https://github.com/psycopaths/jdoop
https://support.khanacademy.org/hc/en-us/articles/203327020-When-do-I-use-a-for-loop-and-when-do-I-use-a-while-loop-in-the-JavaScript-challenges-
https://support.khanacademy.org/hc/en-us/articles/203327020-When-do-I-use-a-for-loop-and-when-do-I-use-a-while-loop-in-the-JavaScript-challenges-
https://support.khanacademy.org/hc/en-us/articles/203327020-When-do-I-use-a-for-loop-and-when-do-I-use-a-while-loop-in-the-JavaScript-challenges-

[10] Pihrt, Josef. Roslynator analyzers. https://github.com/JosefPihrt/

Roslynator/blob/master/src/Analyzers/README.md, 2021. Accessed:

2021-05-04.

[11] PMD Source Code Analyzer Project. Java rules. https://

pmd.github.io/pmd-6.30.0/pmd rules java.html, 2020. Accessed: 2021-05-

04.

[12] PMD Source Code Analyzer Project. Pmd source code analyzer

project. https://pmd.github.io/, 2021. Accessed: 2021-05-04.

[13] Ren, Y., Krishnamurthi, S., and Fisler, K. What help do students

seek in Ta office hours? ICER 2019 - Proceedings of the 2019 ACM Con-

ference on International Computing Education Research (2019), 41–49.

[14] Soloway, E., and Ehrlich, K. Empirical Studies of Programming

Knowledge. IEEE Transactions on Software Engineering SE-10, 5 (1984),

595–609.

[15] SonarSource. Unique rules to find bugs, vulnerabilities, security

hotspots, and code smells in your java code. https://rules.sonarsource.com/

java. Accessed: 2021-05-04.

[16] user747858. when to use while loop rather than for loop.

https://stackoverflow.com/questions/6710601/when-to-use-while-loop-

rather-than-for-loop, 2011. Accessed: 2021-05-04.

[17] Wiese, E. S., Rafferty, A. N., and Fox, A. Linking Code Readabil-

ity, Structure, and Comprehension among Novices: It’s Complicated. In

Proceedings of the 41st International Conference on Software Engineering

(2019), ACM, pp. 84–94.

51

https://github.com/JosefPihrt/Roslynator/blob/master/src/Analyzers/README.md
https://github.com/JosefPihrt/Roslynator/blob/master/src/Analyzers/README.md
https://pmd.github.io/pmd-6.30.0/pmd_rules_java.html
https://pmd.github.io/pmd-6.30.0/pmd_rules_java.html
https://pmd.github.io/
https://rules.sonarsource.com/java
https://rules.sonarsource.com/java
https://stackoverflow.com/questions/6710601/when-to-use-while-loop-rather-than-for-loop
https://stackoverflow.com/questions/6710601/when-to-use-while-loop-rather-than-for-loop

