
Asynchronous Distributed

IOT-Enabled Customer

Characterization in Distribution

Networks: Theory and Hardware

Implementation

Andrew Campbell

University of Utah

UUCS-21-017

School of Computing

University of Utah

Salt Lake City, UT 84112 USA

10 August 2021

Abstract

This work proposes and implements an asynchronous distributed IoT (Internet of

Things)-enabled customer characterization framework to classify customer’s load con-

sumption behaviors in electric distribution networks. More specifically, the proposed

framework enables robust fully distributed clustering of customers’ electricity con-

sumption habits in a highly scalable and interoperable framework. The proposed

clustering method also eliminates the need for hefty synchronization efforts typical

to other distributed clustering algorithms. The theoretical foundations of designing

the proposed framework are introduced. The orchestration of the layers and the ap-

plications integrated in the proposed framework are demonstrated in an experimental

implementation on a real-time network adopting a data-centric databus architecture.

The results of the experimental implementation on IoT development boards demon-

strate that the proposed framework can characterize customer categories with a 95%

accuracy compared to classical centralized k-means clustering, while ensuring seam-

less and interoperable peer-to-peer (P2P) information exchange. This proved to be

highly scalable and applicable to the real-world.

1



ASYNCHRONOUS DISTRIBUTED IOT-ENABLED CUSTOMER 
CHARACTERIZATION IN DISTRIBUTION NETWORKS: THEORY AND 

HARDWARE IMPLEMENTATION 

by 

Andrew Campbell 

A Senior Honors Thesis Submitted to the Faculty of 
The University of Utah 

In Partial Fulfillment of the Requirements for the 

Honors Degree in Bachelor of Science 

In 

Computer Science 

Approved: 

______________________________ 
Thomas Henderson, PhD 
Thesis Faculty Co-Advisor 

_____________________________ 
Mary Hall, PhD 
Director, School of Computing 

______________________________ 
Masood Parvania, Ph.D 
Thesis Faculty Co-Advisor 

_____________________________ 
Sylvia D. Torti, PhD 
Dean, Honors College 

July 2021  
Copyright © 2021 

All Rights Reserved 



1 Abstract

This work proposes and implements an asynchronous distributed IoT (Internet

of Things)-enabled customer characterization framework to classify customers’ load con-

sumption behaviors in electric distribution networks. More specifically, the proposed frame-

work enables robust fully distributed clustering of customers’ electricity consumption habits

in a highly scalable and interoperable framework. The proposed clustering method also

eliminates the need for hefty synchronization efforts typical to other distributed clustering

algorithms. The theoretical foundations of designing the proposed framework are intro-

duced. The orchestration of the layers and the applications integrated in the proposed

framework are demonstrated in an experimental implementation on a real-time network

adopting a data-centric databus architecture. The results of the experimental implementa-

tion on IoT development boards demonstrate that the proposed framework can characterize

customer categories with a 95% accuracy compared to classical centralized k-means clus-

tering, while ensuring seamless and interoperable peer-to-peer (P2P) information exchange.

This proved to be highly scalable and applicable to the real-world.

ii



Table of Contents

1 Abstract ii

2 Introduction 1

3 Background 3

4 Completed Work 5

4.1 Introduction to the Developed Framework . . . . . . . . . . . . . . . . . . 5

4.2 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2.1 Algorithm Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Implementation of the Asynchronous Distributed Clustering Algorithm . . 15

4.3.1 Load Demand Data . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.4 Simulation and Experimental Setups . . . . . . . . . . . . . . . . . . . . . 16

4.4.1 Simulation proof of Concept . . . . . . . . . . . . . . . . . . . . . 16

4.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.4.3 Hyper-Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Results and Discussion 19

5.1 Accuracy and Distance Metrics . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iii



5.3 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Conclusions 24

7 References 25

iv



2 Introduction

In power systems, one of the fundamental concerns facing utilities and the grid

is ramping. Ramping is defined as the rate of change of the load on the grid. Since the

baseload generation of the power grid is slow to scale up or down production, rapid in-

creases or decreases in load can cause problems for the grid as they can lead to dramatic

price increases and in some situations lead to blackouts. Additionally, the grid is limited

by the frequency and voltage of electricity transmission and rapid increases or decreases in

load can destabilize the transmission frequency resulting in blackouts. Utilities can attempt

to mitigate ramping by having immediately dispatchable generation units on standby for

when the rate of consumption increases. More recently, utilities and Independent Service

Operators (ISOs) have begun using demand response programs to incentives customers to

decrease their load to reduce the ramping on the grid.[24]

Demand response is the practice of incentivizing electricity consumers to change

their load to limit the effects of the demand peak and to reduce ramping [24]. The demand

peak is another problem that faces the grid. In some regions, the total amount of genera-

tion cannot match the peak demand and can result in power outages. While it is possible

for utilities to increase their total available supply by building additional generation units,

these generation units are very expensive since they are only needed during a small portion

of the day [24]. This increased cost is typically transferred to consumers [24]. Demand

response programs on the other hand, while an inconvenience to customers, usually re-

sults in cheaper electricity prices [24]. When enough consumers change their consumption

habits to reduce the ramping and total peak consumption, utilities do not need to increase

their total generation capacity and do not have to rapidly scale up generation, thus resulting

in cheaper power production and electricity prices. Additionally, as the grid modernizes,

demand response programs will become more effective, increasing their adoption and im-

portance.

1



As consumers and the grid modernize, more smart devices are being incorporated

into the grid [18]. In residential homes, these smart devices are typically internet equipped

devices that can schedule their demand loads. A typical example is a smart air condition-

ing(AC) unit which controls the activation of AC to reduce costs to the owner. In the context

of this work, these smart devices are considered Internet of Things (IoT) devices. These

IoT devices, when coupled with a demand response program can effectively schedule loads

and reduce the peak and ramping on the grid [18]. One strategy that a utility or ISO can em-

ploy for demand response is learning customers consumption habits from the customers’

IoT devices and using this information for designing a demand response program. In total,

understanding customers’ electricity consumption behaviors plays a vital role in distribu-

tion planning, demand response, market segmentation and management, energy efficiency,

and other applications that enhance the reliability and efficiency of distribution networks.

Customer characterization profiles can also be used for planning infrastructure

since regions containing customers with a higher power consumption will likely require

additional investments as the population grows. Additionally, customer consumption be-

havior can be directly used for market segmentation which is a valuable tool for ISOs and

utilities interested in demand response programs [18]. More specifically, regions with high

consumption and ramping are the regions in which an ISO or utility would benefit the most

from a demand response program. There are many more other use cases for customer char-

acterization profiles, but it is beyond the scope of this work. Rather, it is assumed that a

customer characterization profile is a useful tool for Demand Response programs.

This project proposes a distributed clustering algorithm that is both scalable and

robust. More precisely, it proposes an asynchronous distributed IoT-enabled customer char-

acterization framework that provides a fully distributed and asynchronous clustering algo-

rithm to characterize customer consumption profiles. The proposed clustering algorithm

utilizes domain specific knowledge to perform feature construction via a proposed function

2



mapping. The mapping also serves as a dimensionality reduction for clustering. Unlike

other distributed clustering approaches, the proposed algorithm is designed for peer-to-

peer (P2P) networks and is asynchronous. This work differs from other asynchronous P2P

algorithms by abstracting the networking and clustering functionalities. That is, the net-

working stack is decoupled from the clustering in both implementation and theory. The

networking functionalities use a data-centric communication model to ensure scalability

and interoperability in real-world deployment. Simultaneously, a hardware implementation

of the proposed clustering framework on embedded IoT devices over an Ethernet network

utilizing data sets with varying clusterablity [3] demonstrates that the proposed framework

produces accurate customer clusters, is efficient in terms of memory, time, and network

resources, and is highly scalable for real world applications.

3 Background

Most of the previous works that address customer clustering utilize centralized

clustering algorithms with offline data. For instance, authors in [16, 20, 27] presented

comparative studies of the various clustering approaches used in the vast literature, such

as k-means, k-mediods, and self organizing maps for clustering electricity demand pro-

files according to daily load patterns. In [7, 8, 13, 21], authors used partition clustering

methods, such as k-means, for studying electricity consumption habits of residential cus-

tomers. In [25], the authors used fast search and find density peaks to obtain the typical

dynamics of consumption behavior. The authors in [14, 23] used shape-based clustering

approaches based on dynamic time wrapping to categorize household load profiles. In

[17], the authors propose a model-based approach using delay coordinate embedding for

dynamic load-clustering. In [5], the authors proposed three hierarchical clustering method-

ologies that allow for the capturing of different characteristics of a time series based on a

3



set of dissimilarity measures computed over different features. Note that all of the above

methods are centralized.

While highly effective in certain situations, centralized clustering algorithms are

often difficult to implement in real-world scenarios. For instance, real-time sensor net-

works, such as smart metering infrastructure, collect huge amounts of data from geograph-

ically dispersed locations making centralization impractical (i.e., effective storage and pro-

cessing of big data). From a system security perspective, centralization usually implies

a single point of failure. Considering the importance of grid operation for public secu-

rity, limiting the occurrence of single points of failure is in the best interest of the general

public. In contrast, distributed algorithms rarely have a single point of failure and do not

require powerful computers or servers since the computations are distributed among the

nodes of the network. Therefore, in the domain of power utilities where big data, secu-

rity, and computational resources are important considerations, distributed algorithms are

advantageous.

The fundamental challenge for distributed clustering algorithms is ensuring, via

the algorithmic design, that each node has a global clustering of the whole data set without

accessing the entire data set. This can be reduced to three smaller problems: 1) what com-

putations each node performs, 2) what data each node shares, and 3) how each node shares

its data. These three questions are usually answered by the algorithm’s synchronization

requirements. The work in [15, 19] are asynchronous algorithms, and thus each algorithm

runs the same computations and uses the same protocol for data sharing. However, in both

of these works, the networking protocol was not abstracted from the clustering algorithm.

That is, the networking protocol was designed with the clustering algorithm. The work in

[6, 9, 10, 11] all use synchronization. I.e., during clustering individuals are required to wait

and do not run independently. While [10, 11] require synchronization at every iteration

of the clustering algorithm, [6, 9] only require synchronization for the merging of cluster

4



boundaries.

Finally, most of the literature utilizes simulated networks and offline data for

testing and verification. While simulated networks work well for evaluating the theoret-

ical efficacy of a distributed algorithm, they don’t capture most of the challenges of real

networks, such as heterogeneity, local irregularities, unpredictable congestion and rapid

changes, among other difficulties [12]. Additionally, an algorithm’s theoretical effective-

ness and its real-world effectiveness frequently differ. Therefore, an algorithm that per-

forms well in the idealized controlled environment does not necessarily perform well in a

real implementation.

4 Completed Work

4.1 Introduction to the Developed Framework

The framework developed here assumes that each house within a distribution net-

work has an IoT Aggregator, named Intelli-Agg, that collects consumption data of all the

customer’s loads (e.g. air-conditioning, refrigerator, and all other household appliances).

Each Intelli-Agg is capable of predicting its own day ahead demand curve. However, fore-

casting of demand curves is well studied and beyond the scope of this work [28]. For this

manuscript, day ahead curves were generated a priori. The architecture of Intelli-Agg is

shown in Fig. 1.

At a high level, each Intelli-Agg is composed of 5 modules. 1) The Feature Con-

structor creates the features needed by the clustering algorithm from the day ahead load

profile of the customer. The Intelli-Agg then shares its data with its neighbors. 2) The

constructed features, along with neighbor data, are then passed to the Data Assembler to

5



Feature Generator

Learning Engine

Data Processor

Gets neighborhood data

Creates features from 

load profile.

Shares features.

Proposed distributed 

clustering algorithm

Identifies cluster 

categories

Data Assembler
ID

So
rt

Neighbor Data

Features

Local Clustering
Global Ledger

Belongs to 
Cluster 1 C1

C2
C3

D
a

ta
 P

r
o
v
id

er
C

o
n
ta

in
s 

th
e 

n
et

w
o
rk

in
g

 s
ta

ck
. 

P
ro

v
id

es
 f

le
x
ib

il
it

y
 i
n

 c
h
an

g
in

g
 

p
ro

to
c
o
ls

, 
d
at

a 
m

o
d

el
s,

 a
d
d

in
g

 
to

p
ic

s,
 e

tc
.

Architecture of Intelli-Agg

Figure 1: Architecture of the Intelli-Agg.

perform some data pre-processing. 3) The Learning Engine performs the proposed dis-

tributed clustering algorithm. Throughout this process, data is being shared on a global

ledger. Note that the data shared is a summary and the whole data set is not stored in the

ledger. 4) The Data Processor then returns the learning results (i.e., identifying which clus-

ter the Intelli-Agg belongs to). The end result is a spatio-temporal clustering of electricity

consumption as shown in Fig. 2. Finally, 5) all the networking functionalities have been

decoupled from the operational functionalities of the proposed algorithm and are handled

by the Data Provider. That is, any networking schema can be integrated with the pro-

posed clustering algorithm. In this work, the Data Distribution Service (DDS) is used. The

steps of the proposed distributed clustering algorithm are summarized in Fig. 3, and are

described as follows:

Initialization: At the start of each day each Intelli-Agg is provided with the global average

demand (Dp(t)) and the ID of the neighborhood it belongs to (NID). Each Intelli-Agg has

its own day-ahead demand curve as well. (Step 1 in Fig. 3).

6



Low consumption High consumption

Figure 2: Resulting spatio-temporal demand clustering.

Data Sharing and Feature Mapping: Each Intelli-Agg performs a feature construction and

dimensionality reduction with its own day ahead profile. Then, it shares those features with

its neighbors (Step 2.a in Fig. 3). That is, every individual in a neighborhood will have the

constructed features of all other individuals in the neighborhood.

Distributed K-Means Algorithm: After all the data has been shared with Intelli-Aggs in the

same neighborhood, each Intelli-Agg performs one iteration of local clustering (Step 2.b

in Fig. 3). The local clustering is based on k-means. Traditionally, k-means is centralized

and converges to the centers by repeated iterations and random initialization. In this work,

the proposed algorithm requires that clustering be fully distributed, efficient, and scalable

to real-world uses.

This distributed k-means algorithm consists of 2 major components: 1) local

clustering, and 2) a global ledger. On each iteration, an Intelli-Agg in the network reads

weighted centers from the ledger and adds the weighted centers to its local data set. The

“weight” of the added center is equivalent to the number of elements whose nearest cluster

is that center. For clustering, the weight is equivalent to multiple copies of the center (i.e.,

if center1 has a weight of 2, for clustering purposes, there are 2 copies of center1 in the

7



Neighborhood k

Ci
Dp

Average Demand is shared with 
all IoT Aggregators (IoT-Agg)

Each IoT-Agg:
a. constructs the features via f(Ci) and 
shares the data with its neighbors
b. performs local clustering for 1 iteration.

Update > 
Threshold

False: Enter 
listening mode

Converged: Stop

All IoT-Aggs are 
in listening mode

Global Ledger

True: Update Global Ledger Class 1: Centroids, # of elements

Class 2: Centroids, # of elements

Class 3: Centroids, # of elements

Class N: Centroids, # of elements

1

2

3

4

Repeat clustering with 
new center till entering 
listening mode

Figure 3: Proposed asynchronous distributed clustering algorithm.

data set). This weighting ensures that local abnormalities do not disproportionately affect

the centers during local clustering. After reading the weighted centers, the algorithm then

performs a traditional centralized k-means clustering on the appended data set locally. It

uses the global centers for initializing the centers. That is, each Intelli-Agg, after reading

the centers from the ledger, appends it local data with the global centers and runs k-means.

Next, it compares the locally clustered centers to those on the ledger. If the Euclidean

distance (L2 norm) between the centers on the ledger and the local centers is greater than a

specified threshold, the Intelli-Agg pushes its local centers to the ledger along with updated

weights (Step 3 in Fig. 3). That is, if the Intelli-Agg, after clustering with the new weighted

centers, changes which centers its data points belong to, it will increase or decrease the

weighting accordingly. It also increases the threshold value by the specified step size after

every update. If the Intelli-Agg cannot make an update larger than the threshold, it enters

listening mode (Step 4 in Fig. 3).

Convergence and Cluster Identification: The algorithm converges once all Intelli-Aggs

enter listening mode and the global ledger is no longer updated. Each Intelli-Agg then

reads the final centers on the ledger and identifies the cluster it belongs to based on those

centers. Convergence is guaranteed since the step size increases the threshold after each

update.

8



4.2 Mathematical Formulation

Time series data provides a challenge for clustering-based learning approaches

as it increases the required computation and complexity for learning. Particularly with Eu-

clidean distance, as dimensionality increases, the distance between points becomes indis-

tinguishable, thus devaluing the clustering results. Furthermore, as data collection and pre-

diction capabilities increase their granularity and accuracy, time-series will become more

computationally intensive and the curse of dimensionality will become more prevalent. To

address the former challenges, in this work, a function mapping from the time series data

to a single point in a lower dimensional vector space is proposed. This mapping ensures

that data can easily be clustered and is scalable. Note that the proposed mapping moves

a function f (t) : R→ R to a point ∈ R4n, but it is typical to represent a demand curve as

a vector in R24x, where x is the number of samples per hour. Using this representation,

then indeed the proposed mapping is a dimensionality reduction. Here, n is the number of

partitions over the time interval. If n = 1 then the full 24-hour time period is mapped into

R4. If n = 2 the time period would be partitioned into two smaller intervals, and so on.

Many of the current feature construction strategies in the literature rely on Fourier

transformations, Markov models, and neural networks[4, 22, 26]. In the case of time-series,

it is normal to perform a signal deconstruction as a dimensional reduction. This work

appeals to simplicity and uses expert domain knowledge to perform feature construction.

The following discussion will present the features that were constructed to represent the

time-series demand data along with the rationale of each feature.

Four features were constructed for dimensionlaity reduction. These features al-

low for both a robust clustering and preservation of valuable information from the demand

profiles. Let Ci(t) : R→ R represent the demand profile for customer i at a given time

t ∈ [0,1]. For any t, Ci(t) is the day ahead demand for customer i at time t. A time period is

9



partitioned by ta and tb such that t0 = 0, tn = 1 and t0 ≤ ta < tb ≤ tn. The four features are:

1) the cost function, 2) peak consumption, 3) peak consumption time, and 4) ramping.

1. The Cost Function:
∫ tb

ta Cost(Ci(t))

Let Dp(t) be the average demand curve for the specified population and p be the

maximum value of the curve, thus p = max(Dp(t)). Note that the choice of popula-

tion size is an implementation decision dependent on the topology of the distribution

network. The cost function is defined as:

Cost(Ci(t)) =
Ci(t)−Dp(t)
p−Dp(t)+1

(1)

Here, the difference between the customer’s demand and the average population de-

mand is calculated, and then it is scaled down by the distance to the peak. That is,

Ci(t)−Dp(t) is scaled by some s ∈ [
1

p+1
,1], where s→ 1 as Dp(t)→ p. This en-

sures that a reduction or increase in consumption of power is weighted more when

it occurs closer to peak demand. By integrating this feature, the total cost difference

over the specified time period for a customer compared to the average consumption

of the population is computed. This should aid in forming 3 demand clusters: Low,

less than average; Base, average; and High, more than average demand. Although

the scaling is not the real monetary cost of electricity, the proportional weighting for

demand during peak hours will help ensure that consumption at peak hours is treated

as a higher cost. For example, two customers could have identical total demand,

but the associated cost of supplying a customer whose peak demand coincides with

the global peak time is much higher than that of a customer whose peak consumption

does not occur during global peak hours. Using cost in this way will aid in separating

consumption habits.

Claim: Cost(Ci(t)) is a homeomorphism.

10



Proof. Let C be the set of possible customer demand curves restricted by physical

constraints. More precisely, for some c ∈ C, c(t) ∈ [Pmin,Pmax] and where |Pmin| ≤

|Pmax|. Now, let gDp(c) = c−Dp where Dp ∈ C. Notice that for ci,c j ∈ C such

that ci 6= c j then gDp(ci) 6= gDp(c j) and that for di,d j ∈ gDp(c) where di 6= d j, then

g−1(di) 6= g−1(d j). Therefore, gDp is bijective. Also notice that since Dp,c ∈C are

continuous, the operation c−Dp, and its inverse, are also continuous. Therefore gDp

is a homeomorphism.

Let h(d ∈ gDp(c)) =
d

p−Dp +1
where p = max(Dp). Since Dp is continuous and

p+ 1 is a constant, p−Dp + 1 is continuous and since p−Dp + 1 6= 0,
d

p−Dp +1
is also continuous, by similar argument h−1 is also continuous. Also, notice that if

di,d j ∈ gDp(C) such that di 6= d j then h(di) 6= h(d j) and if ri.r j ∈ h(gDp(c)) such that

ri 6= r j then h−1(ri) 6= h−1(r j). Therefore since g and h are both homeomorphisms

and the composition of homeomorphisms is also a homeomorphism, then the cost

function must also be a homeomorphism. In other words, imagine each demand

curve as a path in R2 restricted over [0,1]× [−1,1], where the path must start at

(0,y0) and end at (1,y f ). The first mapping shifts and bends the path, while the

second mapping fixes a point (the maximum) and stretches the path about that point

and the endpoints. Here, the function space was scaled by
1

max(|Ci(t)−DP(t)|)
.

2. Peak Consumption: P(Ci(t))

P calculates the peak consumption value over the time interval [ta, tb]. That is,

P(Ci(t)) = maxt∈[ta,tb]{Ci(t)} A consumer who has a larger than average demand

peak is likely a more expensive consumer, just as a consumer with a smaller than

average peak is likely a less expensive consumer. Also, due to physical limitations

on distribution lines, the magnitude of consumption is valuable, irrespective of the

associated cost of a consumer.

3. Peak Consumption Time: PT (Ci(t))

11



PT (Ci(t)) returns the time value of the peak over [ta, tb]. That is, PT (Ci(t))
∣∣∣∣tb
ta
=

P−1(p), where p = maxt∈[ta,tb]{Ci(t)} Similar to the magnitude of the peak, knowing

when the consumer has maximum demand will aid in determining the consumer’s

consumption profile. A consumer who has a peak time significantly before or after

the average peak will be a less expensive customer. Like peak consumption, peak

consumption time, irrespective of cost, is a useful metric in managing loads in power

distribution systems.

4. Ramping: C′i(tp)

This is the slope at the peak on the interval [ta, tb]. More precisely, let tp =PT (Ci(t))
∣∣∣∣tb
ta

and C′i(tp) be the derivative. Then, we are evaluating for:

C′i(tp) = lim
h→0−

(
Ci(tp +h)−Ci(tp)

h

)
(2)

It is important to know the rate at which a consumer is increasing their power con-

sumption. A consumer who increases there rate of consumption as they approach

their peak is a more expensive consumer. Not only that, ramping is an important

metric as power systems are limited in their ability to rapidly increase and decrease

available electricity both from a distribution and generation point of view.

Accordingly, the purposed feature-construction function mapping is defined as:

f (Ci(t))
∣∣∣∣tb
ta
=

((∫ tb

ta
Cost((Ci(t))

)
,

(
P

(
Ci(t)

∣∣∣∣tb
ta

))
,

(
PT

(
Ci(t)

∣∣∣∣tb
ta

))
,
(
C′i(tp)

) )

(3)

12



Algorithm 1: Proposed Clustering Algorithm
Input: Dp(t),NIDs,Ci,{t0, ..., tn}
Output: cg

i
1 Construct Features of Ci

for ta, tb ∈ {t0, ...tn} where t0 ≤ ta < tb ≤ tn−1:

v j = f (Ci(t))
∣∣∣∣tb
ta

2 Share v j with all Ci ∈ NIDs where j 6= i
3 Get Cg and W l from ledger:

if Cg,W l are empty, return zero vectors
4 C,W = Distro-kmeans(Cg,W g)
5 if C 6=Cg:

wait γ seconds repeat steps 3,4
6 Enter ListeningMode
7 if all Ci == ListeningMode:

Read ledger: Cg = Lc:
cg

i = DetermineClusterMembership(v j)
return cg

i
8 repeat step 7

Algorithm 2: Distro-kmeans
Input: Cg,W g

Output: Cg,W g

1 Update V : V =V
⋃

Cg

2 Cluster V : Cl,W l = Clustering results
3 Compute new centers:

for i ∈ [1,3] ∈ Z

cl
i =

(cl
i ∗wl

i)+(cg
i ∗wg

i )

wl
i +wg

i

wl
i =

wl
i +wg

i
2

4 for i ∈ [1,3] ∈ Z, if
∥∥cl

i− cg
i

∥∥> ε:
Cg =Cl and W g =W l

ε+= δ

break
5 V =V0
6 return Cg,W g

13



4.2.1 Algorithm Pseudo Code

Let Ci be an individual Intelli-Agg in neighborhood kn where |kn| = j. Let Vi =

{v1, ...,v j} be the set of points in R4 where f (Ci) = vi ∀Ci ∈ kn, where f is Equation 3. Each

Ci has its own local Vi. Let Cg = {cg
1,c

g
2,c

g
3} represent the global centers for Low, Base, and

High clusters, and W g = {wg
1,w

g
2,w

g
3} the global weights corresponding to each center. Let

ε be the threshold value, and δ be the step size. At each step of the algorithm Ci will read

from the ledger and update Vi so that Vi =Vi
⋃

Cg. Ci, then, performs local clustering on Vi

but it weights each cg
m ∈ Vi by the corresponding wg

m. The clustering returns local centers

labeled Cl = {cl
1,c

l
2,c

l
3} and the corresponding weights are labeled W l = {wl

1,w
l
2,w

l
3}.

Each weight is the number of vi in the corresponding center, i.e., let d(x,y) be the Euclidean

distance between x and y, then wl
m = |{x ∈Vi : min

∀cl∈Cl
(d(vi,cl)) = cl

m}|.

Then, Cl is updated using the formula:

cl
m =

(cl
m ∗wl

m)+(cg
m ∗wg

m)

wl
m +wg

m
(4)

and the weights are updated according to:

wl
m =

wl
m +wg

m

2
(5)

If the distance from Cl and Cg is greater than the threshold ε , then Cg is set to Cl and W g is

set to W l:

if ∃cl
i such that

∥∥∥cl
i− cg

i

∥∥∥> ε :

Cg =Cl and W g =W l

else:

Cg =Cg and W g =W g

(6)

14



The clustering process is summarized in Algorithms 1 and 2.

4.3 Implementation of the Asynchronous Distributed Clustering Al-

gorithm

4.3.1 Load Demand Data

The Topical Meteorological Year (TMY3) data set was utilized to generate load

profiles representing residential houses. The distribution network considered in this work

is the IEEE 33-node feeder distribution network. The TMY3 data set contains hourly load

profile data for residential buildings based on the Building America House Simulation Pro-

tocols. This data set also uses the Residential Energy Consumption Survey (RECS) for

statistical references of building types by location. Hourly load profiles are available for

all TMY3 locations in the United States [1]. The following assumptions are made: 1) Each

node in the the 33-node feeder represents a neighborhood with only residential houses. 2)

There are three classes of houses classified according to their consumption patterns as fol-

lows: L(Low) are houses with power consumption less than average demand, B(Base) are

houses with average demand, and H(High) are houses with more than average demand. 3)

Average demand is defined as the average of the aggregated demands of all nodes in the

33-node test feeder.

Two populations were generated from the TMY3 data set for residential houses

in Salt Lake City, Utah: 1) Prep, where each node contains at least one house from each cat-

egory (i.e., L, B, and H), and therefore, each node is representative of the entire population;

2) Pnonrep, where each node contains houses randomly selected from only one category,

and therefore, each node is non-representative of the entire population. To guarantee that

the proposed distributed clustering algorithm generalizes well for real world scenarios, 13

15



variations of Prep and Pnonrep were generated. Each variation set was labeled iPrep, where i

represents the level of variation. That is, each iPrep had a random
1
3

of the demand curves

in Prep shifted by a random value in [−i, i] where i ∈ {0,1.5,2,2.5,3,3.5,4,5,6,7,8,9,10}.

The remaining
2
3

of the curves are unchanged.

The three clusters (low, base, and high) can be clearly seen in the original set.

However, this is less intuitive to identify as the variation level increases reaching 10. Test-

ing the proposed clustering algorithm on high variation levels ensures that the proposed

algorithm generalizes well for real world scenarios. Mathematical Formulation: Let P ∈

{Prep,Pnonrep}, Ci(t)∈P be a demand curve, and v∈V = {0,1.5,2,2.5,3,3.5,4,5,6,7,8,9,10}.

Then let
1
3

P be a random subset of P containing
1
3

of the curves from P. Then ∀Ci(t)∈
1
3

P,

pick a random value from [−v,v] ∈ R, call it r and generate vP by

vP =
⋃
∀i
{C(t)|C(t) =Ci(t)+ r} (7)

4.4 Simulation and Experimental Setups

4.4.1 Simulation proof of Concept

A proof of concept experiment was conducted in order to test the validity of the

proposed clustering algorithm. The algorithm was implemented in Python and tested on

the two data sets Prep and Pnonrep with all their variations. However, the P2P network was

simulated on a single device. That is each, Intelli-Agg was represented by an object, and

each object performed synchronous communications between other objects.

16



4.4.2 Experimental Setup

The proposed clustering framework was implemented in C++11 using the stan-

dard libraries and the RTI DDS API [2]. A total of 7 embedded IoT-devices were used.

These included 5 Odroid X-U4 devices with an Octa core ARM Cortex-A15 Quad 2Ghz

32-bit processor running lightweight Ubuntu Linux, 1 Beaglebone Black with an AM3358

ARM Cortex-A8 32-bit processor running Debian Linux, and 1 laptop with 2.4Ghz intel i7

64-bit processor running full Ubuntu Linux. All the devices were connected to a local area

network (LAN) via a NetGear NetHawk router and a 24-port Cisco Ethernet switch.

Multiple threads on each device were executed, where each thread represented an

individual Intelli-Agg. In order not to exceed the network card capacity of the IoT-devices

while conducting the experiments, no more than 15 threads (i.e., codes for Intelli-Aggs

for 15 customers) were compiled and executed on the Odriod X-U4 devices, 20 on the

laptop, and 5 on the Beaglebone. Therefore, subsets of iPrep and iPnonrep of sizes 67 and

64, respectively, were considered. Call the subsets iPs
rep and iPs

nonrep. For each iPs
rep and

iPs
nonrep, the individuals across the devices were distributed conforming to their respective

networking constraints. These subsets were randomly generated from iPrep and iPnonrep.

The networking in the proposed clustering framework follows a data-centric com-

munication scheme. More specifically, the Data Distribution Service (DDS) middleware is

utilized to establish a data-centric messaging scheme, utilizing a databus that follows a P2P

publish-subscribe (Pub-Sub) communication model. The Pub-Sub model enables infor-

mation streams (i.e., instances) to be reliably disseminated to several applications, while

maintaining adequate network performance. In this implementation, the DDS middleware

establishes a global dataspace that is accessed by all Intelli-Aggs, as shown in Fig. 4. The

circles in this dataspace represent topics. Each topic provides an identifier to data items

within the global data space. Topics have names, data-types, and quality of service (QoS)

17



profiles related to the data itself. The arrows connecting the Intelli-Aggs to these topics

in the data space represent the contributions to and the data-retrievals from them by the

publishers and subscribers of the involved Intelli-Aggs, respectively. An individual shares

its mapped data with its neighborhood (i.e., Step 2.a Fig. 3) by updating the data in the

topic “Nbd Data.” Here, all Intelli-Aggs update the data in the same topic, however each

Intelli-Agg uses its assigned CID as a key representing its unique identifier. Next, Each

IoT Agg reads the data of its neighbors from “Nbd Data” topic by filtering for the keys of

the other Intelli-Aggs in the neighborhood. Similarly, when updates are made to the global

ledger (i.e., Step 3 in Fig. 3) an individual updates the “Centers” topic. The “Centers” topic

contains the centers location and the corresponding weight.

4.4.3 Hyper-Parameters

There are 3 hyper-parameters for the proposed clustering algorithm. The first

two are the update threshold denoted by ε and the step size denoted by δ . The third hyper-

parameter is the pause time between local clustering iterations denoted by γ . While intu-

ition suggests smaller ε and δ values, in practice it was found ε = 0.101 and δ = 0.041

were an adequate compromise between accuracy and overall clustering duration. When ε ,

δ → 0, accuracy did improve, but total clustering duration increased as well. It was noted

that δ affected clustering duration considerably more than epsilon. It was also observed that

after reaching a sufficiently small ε and δ values, marginal decreases provided insignifi-

cant accuracy improvements. The correct choice of γ is dependent on the networking and

computation speeds of the Intelli-Aggs. For networks with slower communication speeds

and/or lower computational resources, a higher γ value is required. In general, increasing

γ did provide greater accuracy, but the clustering duration also increased considerably. In

this work, γ ∈ [1,2] yielded good results. The choice of ε,δ ,γ is a logistical decision about

the acceptable duration of clustering over the network.

18



Update Centers Get Centers

Get 

Neighborhood 

Data

Share Self 

Features
Update Centers Get Centers

Get 

Neighborhood 

Data

Share Self 

Features
Update Centers Get Centers

Get 

Neighborhood 

Data

Share Self 

Features
Update Centers Get Centers

Get 

Neighborhood 

Data

Share Self 

FeaturesUpdate Centers Get Centers

Get 

Neighborhood 

Data

Share Self 

Features
Update Centers Get Centers

Get 

Neighborhood 

Data

Share Self 

Features

Centers Nbd_Data

DDS Global Data Space

Data Provider

Update Centers Get Centers

Get 

Neighborhood 

Data

Share Self 

Features
Update Centers Get Centers

Get 

Neighborhood 

Data

Share Self 

Features

Publishers Subscribers

Figure 4: DDS network architecture.

5 Results and Discussion

This section presents the simulation results, and the experiments designed and

implemented to validate the efficacy and accuracy of the proposed asynchronous distributed

clustering framework.

5.1 Accuracy and Distance Metrics

To evaluate the efficacy of the clustering algorithm, we defined two metrics for

success: Accuracy and Approximate distance. For both of these metrics, we considered

the data produced by a centralized k-means algorithm to be the ground truth. Let G be the

ground truth and D be the set of labels produced from the algorithm. Accuracy is defined

by the proportion of labels that were the same for centralized and distributed:

∀ labels, lg ∈ G and ld ∈ D Accuracy =
|{l : lg = ld}|

|lg|
(8)

Approximate distance is defined by a normalized Euclidean distance of each center pro-

19



duced by the algorithm from each center produced by the centralized k-means. That is, for

Ground truth =
(

c1 c2 c3

)
and produced centers =

(
c′1 c′2 c′3

)
we have:

Distance =

‖c1− c′1‖
‖c1‖

+
‖c2− c′2‖
‖c2‖

+

∥∥c3− c′3
∥∥

‖c3‖
3

(9)

Defining the distance metric as shown in Equation 9 ensures that individual centers are

scaled by the ground truth, thus, removing any skewing caused by the magnitude of the

ground truth centers. Therefore, this metric provides the average radius of where the dis-

tributed centers are from the ground truth. A radius of 0 means the produced center matches

the ground truth, while a radius of 1 means the produced center is as far from the ground

truth as the magnitude of the ground truth.

5.2 Simulation Results

As shown in Fig. 5 (a), the proposed clustering algorithm achieved an average

distance (i.e., Equation 9) of 0.028 for iPrep and 0.023 for iPnonrep across all variation

levels. This shows that the resulting centers from the proposed algorithm clusters are almost

identical to those produced with traditional centralized k-means.

Fig. 5 (b) shows the accuracy of labeling electricity consumption in the right

category. For both iPrep and iPnonrep, the recorded average accuracy was 0.9944 for all

variation levels. For iPrep, 84.6% of the entire data had and accuracy of 1, and the remaining

had a minimum accuracy of around 0.98, while for iPnonrep, 70% of the entire data had and

accuracy of 1, and the remaining had a minimum accuracy of around 0.96. This implies

that the proposed algorithm generalizes well for real world scenarios.

20



(a)

(b)

Figure 5: Simulation results for distance and accuracy versus variation.

5.3 Experimental Validation

Four iterations of the proposed clustering were performed for each variation level

per subset. The approximate distance and the accuracy for each iteration were computed

and the averages were recorded. The results for the accuracy and distance metrics are

summarized in Fig. 6 (a) and (b), respectively.

For all iPs
rep, our proposed distributed clustering algorithm produced an average

accuracy of 0.9699 with a standard deviation of 0.0268 and an average distance of 0.0541

with standard deviation of 0.0268. For all iPs
nonrep an average accuracy of 0.9491 was ob-

served with standard deviation of 0.0303 and an average distance of 0.0685 with a standard

deviation of 0.0226. See Table 1. This suggests that the implementation is very robust

as both data sets and metrics produced low standard deviations. If the Rep and Non-Rep

results are aggregated an average accuracy and standard deviation of 0.9596 and 0.0294

are achieved. If it is assumed that the accuracy of the proposed algorithm follows a normal

21



(a)

(b)

Figure 6: Experimental results for distance and accuracy versus variation.

distribution, then the results suggest that 95% of computed results will have a clustering ac-

curacy no worse than 0.9007, since 0.9007 is two standard deviations away from the mean.

Similarly, aggregating approximate distance yields an average of 0.0614 with a standard

deviation of 0.0229. Again, if a normal distribution for the approximate distance is as-

sumed, then 95% of produced results will have distance no larger than 0.1071. This means

that in real world scenarios, the proposed clustering algorithm will still perform well, and

only in rare occasions, (5% of the time) will the algorithm perform below 90% accuracy.

Therefore the clustering algorithm is robust for real applications.

In summary, the proposed clustering framework can correctly classify approxi-

mately 95% of all individuals in a network. This accuracy is consistent which is evident

from the low corresponding standard deviations. Additionally, since 13 levels of variance

were used and both representative and self-similar neighborhoods were tested, the proposed

asynchronous distributed clustering algorithm generalizes well for real world environments

and applications.

22



Table 1: Standard deviation of experimental results

5.4 Discussion

Synchronization: The proposed algorithm does not require any form of synchronization.

As shown in Algorithms 1 and 2, there are no messages between individuals specifying

when to perform clustering or what information should be shared. Each individual Intelli-

Agg performs the same algorithm. The proposed algorithm clusters asynchronously be-

cause of the threshold and step size ε , δ , and because the weights of the centers are in-

cluded on the ledger and updated at each step. That is, for an individual Intelli-Agg Ci,

after making an update, for a subsequent update to occur, Ci’s centers must be at least ε

distance from the ledger’s centers. This locally prevents an individual from continuously

updating the ledger, thus, not requiring consensus from all individuals before making an

update. The weights handle late joiners. If an individual joins late, although their threshold

to update is low, the existing centers are weighted more heavily than its own. Therefore, an

individual will either not make an update since they cannot shift the centers by ε , or their

update will be sufficiently small not to affect the existing centers. Similarly, if an individual

Ci does not have data, the algorithm defaults to updating a zero vector with zero weights. If

this situation occurs, then individuals with missing data will be unable to make an update

since there update magnitude is always less than ε . These two practices, the threshold and

weighted centers ensure that no consensus or other synchronization is required for effective

clustering. Since synchronization is not required, the proposed algorithm is more robust to

23



real world uncertainties, such as disconnected devices or intermittent network connectivity.

Low Computational Resources: The function mapping is only required once and is not

computationally intensive. The k-means algorithm, however, is a computationally inten-

sive algorithm, but the number of elements is restricted by the neighborhood size. Each

Intelli-Agg performs m-means on its local neighborhood only. Therefore, neighborhoods

can be restricted in size to allow for quick computations on devices lacking computational

resources. Additionally, since the proposed clustering algorithm restricts the number of lo-

cal k-means iterations to 1 per update, the local computational complexity for the algorithm

is linear with respect to the neighborhood size.

Scalability: The proposed algorithm and its implementation can easily be scaled to larger

areas. This is because of the P2P DDS networking, asynchronous clustering, and low local

computational resources. The P2P networking means network communication does not

require a powerful server that can collectively handle large amounts of packets. Therefore,

increased latency from larger networks will not negatively affect clustering performance.

Asynchronous algorithms are usually scalable since the network or population size should

have a minimal effect on individual nodes. This is true for this framework. That is, the

size of the network has a minimal effect on the required computations that each Intelli-Agg

must perform, therefore, larger networks will not overload the Intelli-Aggs.

6 Conclusions

This work presented an asynchronous distributed clustering framework, which

accomplishes demand curve clustering over a P2P network in a fully distributed manner.

This algorithm was implemented in both simulation and in a real-world scenario with IoT

devices over a real network. The clustering algorithm in the proposed framework, using

24



domain knowledge, performs a feature construction that serves as a dimensionality reduc-

tion for clustering. It then performs a fully distributed modified k-means algorithm over

the P2P network asynchronously. It accomplished this by requiring a threshold, step size,

and weighting on the modified k-means algorithm. Intelli-Aggs in the proposed framework

communicate over a P2P network using a data-enctric databus network architecture. In sim-

ulation, the algorithm was able to cluster datas ets with 0.9942 accuracy when compared to

a centralized k-means algorithm. In a real-world application with single board computers

representing neighborhoods within a distribution network, the proposed algorithm achieved

an accuracy of 0.9595. The data sets ranged from low variance (i.e., easy to cluster) to high

variance (i.e., no “natural” clusters), proving that the algorithm, even with highly variant

data, can perform well compared to a centralized k-means algorithm. The data sets also

varied in composition. Some neighborhoods were representative of the whole population,

while other neighborhoods were entirely self-similar. This implies that the proposed algo-

rithm will perform well with real data and is robust to the distribution and composition of

load profiles over a real distribution network. Because of the data-centricity, the algorithm

is highly scalable and can handle large numbers of connected devices.

7 References

[1] Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the
United States. https://openei.org.

[2] RTI - The Largest Software Framework Provider for Smart Machines and Real-World
Systems. www.rti.com.

[3] Margareta Ackerman and Shai Ben-David. Clusterability: A theoretical study. In
David van Dyk and Max Welling, editors, Proceedings of the Twelth International
Conference on Artificial Intelligence and Statistics, volume 5 of Proceedings of Ma-
chine Learning Research, pages 1–8, Hilton Clearwater Beach Resort, Clearwater
Beach, Florida USA, 16–18 Apr 2009. PMLR.

25



[4] Reem Al-Otaibi, Nanlin Jin, Tom Wilcox, and Peter Flach. Feature construction and
calibration for clustering daily load curves from smart-meter data. IEEE Transactions
on Industrial Informatics, 12(2):645–654, 2016.

[5] A. M. Alonso, F. J. Nogales, and C. Ruiz. Hierarchical clustering for smart meter
electricity loads based on quantile autocovariances. IEEE Transactions on Smart
Grid, 11(5):4522–4530, 2020.

[6] M. Bendechache and M. Kechadi. Distributed clustering algorithm for spatial data
mining. In 2015 2nd IEEE International Conference on Spatial Data Mining and
Geographical Knowledge Services (ICSDM), pages 60–65, 2015.

[7] A. Bosisio, A. Berizzi, A. Vicario, A. Morotti, B. Greco, G. Iannarelli, and D. D.
Le. A method to analyzing and clustering aggregate customer load profiles based
on pca. In 2020 5th International Conference on Green Technology and Sustainable
Development (GTSD), pages 41–47, 2020.

[8] Kushan Ajay Choksi, Sonal Jain, and Naran M. Pindoriya. Feature based clustering
technique for investigation of domestic load profiles and probabilistic variation as-
sessment: Smart meter dataset. Sustainable Energy, Grids and Networks, 22:100346,
2020.

[9] M. N. Vrahati D. K. Tasoulis. Unsupervised distributed clustering. In IASTED Inter-
national Conference on Parallel and Distributed Computing and Networks, 2004.

[10] S. Datta, C. Giannella, and H. Kargupta. Approximate distributed k-means clustering
over a peer-to-peer network. IEEE Transactions on Knowledge and Data Engineer-
ing, 21(10):1372–1388, 2009.

[11] A. Elgohary and M. A. Ismail. Efficient data clustering over peer-to-peer networks. In
2011 11th International Conference on Intelligent Systems Design and Applications,
pages 208–212, 2011.

[12] D. Gross, J. F. Shortle, M. J. Fischer, and D. M. B. Masi. Difficulties in simulating
queues with pareto service. In Proceedings of the Winter Simulation Conference,
volume 1, pages 407–415 vol.1, 2002.

[13] Tuong Le, Minh Thanh Vo, Tung Kieu, Eenjun Hwang, Seungmin Rho, and
Sung Wook Baik. Multiple electric energy consumption forecasting using a cluster-
based strategy for transfer learning in smart building. Sensors, 20(9), 2020.

[14] Chang Liu, Xiaodi Wang, Yuan Huang, Youbo Liu, Ran Li, Yang Li, and Junyong
Liu. A moving shape-based robust fuzzy k-modes clustering algorithm for electricity
profiles. Electric Power Systems Research, 187:106425, 2020.

[15] H. Mashayekhi, J. Habibi, T. Khalafbeigi, S. Voulgaris, and M. van Steen. Gdcluster:
A general decentralized clustering algorithm. IEEE Transactions on Knowledge and
Data Engineering, 27(7):1892–1905, 2015.

26



[16] Fintan McLoughlin, Aidan Duffy, and Michael Conlon. A clustering approach to
domestic electricity load profile characterisation using smart metering data. Applied
Energy, 141:190–199, 2015.

[17] Omid Motlagh, Adam Berry, and Lachlan O’Neil. Clustering of residential electricity
customers using load time series. Applied Energy, 237:11–24, 2019.

[18] T. R. Olorunfemi and N. Nwulu. A review of demand response techniques and oper-
ational limitations. In 2018 International Conference on Computational Techniques,
Electronics and Mechanical Systems (CTEMS), pages 442–445, 2018.

[19] Cheng Qiao and Kenneth N. Brown. Asynchronous distributed clustering algorithm
for wireless sensor networks. In Proceedings of the 2019 4th International Conference
on Machine Learning Technologies, ICMLT 2019, page 76–82, New York, NY, USA,
2019. Association for Computing Machinery.

[20] Amin Rajabi, Mohsen Eskandari, Mojtaba Jabbari Ghadi, Li Li, Jiangfeng Zhang, and
Pierluigi Siano. A comparative study of clustering techniques for electrical load pat-
tern segmentation. Renewable and Sustainable Energy Reviews, 120:109628, 2020.

[21] Joshua D. Rhodes, Wesley J. Cole, Charles R. Upshaw, Thomas F. Edgar, and
Michael E. Webber. Clustering analysis of residential electricity demand profiles.
Applied Energy, 135:461–471, 2014.

[22] Seunghyoung Ryu, Hyungeun Choi, Hyoseop Lee, and Hongseok Kim. Convolu-
tional autoencoder based feature extraction and clustering for customer load analysis.
IEEE Transactions on Power Systems, 35(2):1048–1060, 2020.

[23] T. Teeraratkul, D. O’Neill, and S. Lall. Shape-based approach to household electric
load curve clustering and prediction. IEEE Transactions on Smart Grid, 9(5):5196–
5206, 2018.

[24] Alexandra von Meier. Electric Power Systems: A Conceptual Introduction. John
Wiley & Sons, Ltd, 2006.

[25] Y. Wang, Q. Chen, C. Kang, and Q. Xia. Clustering of electricity consumption be-
havior dynamics toward big data applications. IEEE Transactions on Smart Grid,
7(5):2437–2447, 2016.

[26] Yi Wang, Qixin Chen, Chongqing Kang, and Qing Xia. Clustering of electricity
consumption behavior dynamics toward big data applications. IEEE Transactions on
Smart Grid, 7(5):2437–2447, 2016.

[27] S. Yilmaz, J. Chambers, and M.K. Patel. Comparison of clustering approaches for
domestic electricity load profile characterisation - implications for demand side man-
agement. Energy, 180:665–677, 2019.

[28] D. Zhang, X. Han, and C. Deng. Review on the research and practice of deep learn-
ing and reinforcement learning in smart grids. CSEE Journal of Power and Energy
Systems, 4(3):362–370, 2018.

27



 

 

 
 
 
 
 
 
 
 
 
 
 

Name of Candidate: Andrew Campbell 

  Birth date:  May 20, 1999 

  Birth place:  St. Croix, US Virgin Islands 

  Address:  803 E Sherman Ave. 
     Salt Lake City, Utah, 84105 
 
 

 


	TR-cover
	thesis_andrewCampbell
	front_page
	temp




