Part Number 83-0902024A001 Rev A
Version Date 4 December 1996

DTOS FORMAL TOP-LEVEL SPECIFICATION
(FTLS)

CONTRACT NO. MDA904-93-C-4209
CDRL SEQUENCE NO. A005

Prepared for:
Maryland Procurement Office

Prepared by:

Secure Computing Corporation
2675 Long Lake Road
Roseville, Minnesota 55113

Authenticated by Approved by
(Contracting Agency) (Contractor)

Date Date

Distribution limited to U.S. Government Agencies Only. This document contains NSA
information (4 December 1996). Request for the document must be referred to the Director,
NSA.

Not releasable to the Defense Technical Information Center per DOD Instruction 3200.12.

© Copyright, 1994, Secure Computing Corporation. All Rights Reserved. This material may
be reproduced by or for the U.S. Government pursuant to the copyright license under the
clause at DFARS 252.227-7013 (OCT.88).

=) Secure Gomputing
= . Corporation

Formal Top Level Specification

DTOS FORMAL TOP-LEVEL SPECIFICATION
(FTLS)

Secure Computing Corporation

Abstract
This report formally describes a portion of the DTOS kernel.

Part Number 83-0902024A001 Rev A

Created 2 December 1994

Revised 4 December 1996

Done for Maryland Procurement Office

Distribution Secure Computing and U.S. Government

CM / home/ cmt/rev/dtos/docs/ftl s/ RCS/ftls.vdd,v 1.21 4 Decenber 1996

This document was produced using the TEX document formatting system and the LATEX style macros.

LOCKserver™ | OCKstation™, NETCourier™, Security That Strikes Back™, Sidewinder™, and
Type Enforcement™ are trademarks of Secure Computing Corporation.

LOCK®, LOCKguard®, LOCKix®, LOCKout®, and the padlock logo are registered trademarks of Secure
Computing Corporation.

All other trademarks, trade names, service marks, service names, product names and images mentioned
and/or used herein belong to their respective owners.

© Copyright, 1994, Secure Computing Corporation. All Rights Reserved. This material may be
reproduced by or for the U.S. Government pursuant to the copyright license under the clause at DFARS
252.227-7013 (OCT.88).

CDRL A005
DTOS FTLS

Contents

1 Scope

1.1 Identification
1.2 System Overview
1.3 Document Overview

A

2 Applicable Documents

3 FTLS Overview

3.1 Internal Consistency Within the FTLS
3.2 Comments on Request Specifications
3.3 Typographic Conventions

oD w

4 Basic Kernel State Definition
4.1 Primitive Entities
4.2 Process Management
4.3 Port Name Space
44 Ports

4.5 Notifications

4.6 Special Ports
4.7 Total Send Rights
4.8 Registered Rights
4.9 Memory System
410 Messages
4.11 Processors and Processor Sets
412 Time
413 Devices
414 Summary

5 DTOS State Extensions
5.1 Subject Security Information
5.2 Object Security Information
5.3 Security Identifiers for Access Computations

5.4 Permissions

5.5 Access Vector Cache
5.6 Message Security Information
5.7 Task Creation Information
5.8 Server Ports
5.9 Memory Region Protections
5.10 Summary of DTOS Kernel State

6 Kernel Execution Model
6.1 Execution Summary
6.2 Ultility Transitions
6.3 Trap Invocation
6.4 Initial mach_msg processing
6.5 Service Checks for IPC Based Kernel Requests

Secure Computing Corporation

CAGE Code OHDC7

83-0902024A001 Rev A
1.21, 4 December 1996

CDRL A005

ii CONTENTS
6.6 RequestValidation 89
6.7 Definitions 91
7 System Trap Requests 97
7.1 Introductionto System Trap Requests 97
7.2 mach_thread_self 98
8 Port Requests 105
8.1 Introductionto Port Requests 105
8.2 mach_port_allocate 113
8.3 mach_port_get_receive_status 119
8.4 mach_port_get_refs 124
8.5 mach_port_get_set_status 130
8.6 mach_port_names 134
8.7 mach_port_rename 139
8.8 mach_port_request_notification 144
8.9 mach_port_set_mscount 158
8.10 mach_port_set_glimit 162
8.11 mach_port_set_seqno 167
9 Thread Requests 172
9.1 Introductionto Thread Requests 172
9.2 thread_abort 183
9.3 thread_create and thread_create_secure 188
9.4 thread_depress_abort 196
9.5 thread_disable_pc_sampling L. 200
9.6 thread_enable_pc_sampling 203
9.7 thread_get_assignment 208
9.8 thread_get_sampled_pcs 210
9.9 thread_get_special_port 215
9.10 thread_get_state 222
9.11 thread_info 227
9.12 thread_max_priority L 234
9.13 thread_policy 239
9.14 thread_priority 243
9.15 thread_resume and thread_resume_secure 248
9.16 thread_set_special_port 253
9.17 thread_set_state and thread_set_state_secure 260
9.18 thread_suspend 267
9.19 thread_terminate. 270
10 Virtual Memory Requests 277
10.1 Introduction to Virtual Memory Requests 277
10.2 vm_allocate and vm_allocate_secure 286
10.3 vm_deallocate 296
10.4 vmdinherito 299
10.5 vme_protect 303
10.6 VIM_WIItE e 308
11 Notes 314
11.1 ACrONYMS o o 314
11.2 GlOSSAry o 314

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code OHDC7

CDRL A005

DTOS FTLS iii
A Bibliography 315
Z Extensions 316
B.1 Disjointness and Partitions L L 316
B.2 Partial Orders 317
B.3 Sequences. 318
C IPC 319
C.1 IPCRequests 319
C.2 mach_msg e 320
D Refinements of the State Model 348
D.1 Additional ZExtensions. 348
D.2 Refinementof IPCName Spaces 348
D.3 Refinementof Pending Receives 354
D.4 Refinementof VirtualMemory 356
D.5 Miscellaneous Refinementso 360
Secure Computing Corporation 83-0902024A001 Rev A

CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
LIST OF FIGURES

List of Figures

1 Utility Transitions 80
2 mach_msg Trap Invocation 84
3 Message Transmission L 86
4 Request Validation 89
5 mach_thread_self Processing 103
83-0902024A001 Rev A Secure Computing Corporation

1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS \%

List of Tables

1 Return Values for mach_thread_self 100
2 Return Values for mach_port_allocate 117
3 State Change Cases for mach_port_allocate 117
4 Return Values for mach_port_get_receive_status 122
5 Return Values for mach_port_get_refs 128
6 Return Values for mach_port_get_set_status 133
7 Return Values for mach_port_names., .. 137
8 Return Values for mach_port_rename 142
9 Return Values for mach_port_request_notification 150
10 Return Values for mach_port_request_notification, port-destroyed notification 151
11 Return Values for mach_port_request_notification, no-senders notification . 152
12 Return Values for mach_port_request_notification, dead-name notification . 152
13 State Change Cases for mach_port_request_notification 154
14 Return Values for mach_port_set_mscount 161
15 Return Values for mach_port_set_glimit 165
16 Return Values for mach_port_set_segno 169
17 Return Values forthread_abort 185
18 Return Values forthread_create 191
19 Return Values for thread_create_secure 191
20 Return Values for thread_depress_abort 198
21 Return Values for thread_disable_pc_sampling 202
22 Return Values for thread_enable_pc_sampling 206
23 Return Values for thread_get_assignment 210
24 Return Values for thread_get_sampled_pcs 213
25 Return Values for thread_get_sampled_pcs 213
26 Return Values for thread_get_sampled_pcs 213
27 Return Values for thread_get_sampled_pcs 214
28 Return Values for thread_get_special_port 220
29 Return Values for thread_get_special_port 220
30 Return Values forthread_get_state 225
31 Return Values forthread_get_state 225
32 Return Values for thread_get_state 225
33 Return Values forthread_info 231
34 Return Values forthread_info, 232
35 Return Values forthread_info 232
36 Return Values for thread_max_priority 237
37 Return Values for thread_policy 241
38 Return Values for thread_priority 246
39 Return Values forthread_resume 250
40 Return Values for thread_resume_secure. 251
41 Return Values for thread_set_special_port 257
42 Return Values forthread_set_state 263
43 Return Values for thread_set_state_secure. 264
44 Return Values forthread_suspend 268
45 Return Values for thread_terminate 271
46 Return Values for vm_allocate and vm_allocate_secure 292
Secure Computing Corporation 83-0902024A001 Rev A

CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005

Vi LIST OF TABLES
47 Return Values forvm_deallocate 298
48 Return Values forvm_inherit 302
49 Return Values forvm_protect 306
50 Return Values forvm_write 311
83-0902024A001 Rev A Secure Computing Corporation

1.21, 4 December 1996 CAGE Code OHDC7

Section

CDRL A005
DTOS FTLS 1

1
Scope

1.1 Identification

This Formal Top Level Specification (FTLS) document presents a formal specification of a
portion' of the prototype kernel developed on the Distributed Trusted Operating System
(DTOS) program, contract MDA904-93-C-4209.

1.2 System Overview

The DTOS prototype is an enhanced version of the CMU Mach 3.0 kernel that provides support
for a wide variety of security policies by enforcing access decisions provided to it by asecurity
server. By developing different security servers, a wide range of policies can be supported by the
same DTOS kernel. By developing a security server that allows all accesses, the DTOS kernel
behaves essentially the same as the CMU Mach 3.0 kernel. Although this is uninteresting from
a security standpoint, it demonstrates the compatibility of DTOS with Mach 3.0.

By using appropriately developed security servers, the DTOS kernel can support interesting
security policies such as MLS (multi-level security) and type enforcement. The first security
server planned for development is one that enforces a combination of MLS and type enforce-
ment.

1.3 Document Overview
The report is structured as follows:

m Section 1, Scope, defines the scope and this overview of the document.

m Section 2, Applicable Documents, describes other documents that are relevant to this
document.

m Section 3, FTLS Overview, provides an introduction to this document.

m Section 4, Basic Kernel State Definition, describes the data structures contained in
the Mach kernel state.

m Section 5, DTOS State Extensions, describes extensions to the base Mach microkernel
state that are needed to support the DTOS kernel.

m Section 6, Kernel Execution Model, describes the computational model used to model
the DTOS kernel requests and the processing that is common to multiple DTOS requests.

m Section 7, System Trap Requests, describes a single request (swtch) that is invoked as
a system trap.

m Section 8, Port Requests, describes a selection of the port manipulation requests.

1See Section 3 for a description the coverage.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
2 Scope

m Section 9, Thread Requests, describes a selection of the thread manipulation requests.

m Section 10, Virtual Memory Requests, describes a selection of the virtual memory
manipulation requests.

= Section 11, Notes, contains a partial list of acronyms and a small glossary for this docu-
ment.

m Appendix A, Bibliography, provides the bibliographical information for the documents
referenced in this document.

» Appendix B, Z Extensions, describes “extensions” to the Z specification language that
are used in the DTOS FTLS.

m Appendix C, IPC Requests, describes the mach_msg request. This section has not yet
been updated for DTOS. Currently, this section is a direct copy of the corresponding
DTMach FTLS [5] section with minor changes required for DTOS sections that depend
on this section and has been included only for easy reference.

m Appendix D, Refinements of the State Model, refines portions of the state model to a
lower level of detail to model some of the data types and relationships that are used to
implement the high-level abstract model described in the Basic Kernel State Definition
and DTOS State Extensions chapters.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 3

Section 2
Applicable Documents

The following document provides a high level description of the Mach microkernel:
m OSF Mach Kernel Principles [7]
The following documents provide a detailed description of the Mach and DTOS microkernels:

m OSF Mach 3 Kernel Interface [6]
m DTOS Kernel Interface Document (KID) [8]

The DTOS security policy model is described in
s DTOS Formal Security Policy Model (FSPM) [9]
Much of this document was derived from the following document:
m Formal Top Level Specification for Distributed Trusted Mach [5]
The following documents were used as additional sources of information on Mach:

= A Mathematical Model of the Mach Kernel: Entities and Relations (Draft) [2]

» A Mathematical Description of the Mach Kernel: Virtual Memory Services (Draft) [1]
= A Mathematical Model of the Mach Kernel: Port Services (Draft) [3]

= A Mathematical Model of the Mach Kernel: Task and Thread Services (Draft) [4]

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
4 FTLS Overview

Section 3
FTLS Overview

This document provides a partial formal top-level specification (FTLS) of the DTOS micro-
kernel. We have made no attempt at complete coverage of the kernel interface. The FTLS
includes

m A specification of the DTOS system state,

The general properties of request execution common to most requests,

m One system trap request specification,

10 port request specifications,

21 thread request specifications, and

Six virtual memory request specifications.

There are roughly 150 requests in DTOS, so this document covers approximately 25% of the
DTOS kernel requests.

This document describes the system behavior both in English and in the Z formal specification
language. Thus, readers who are unfamiliar with Z can simply ignore the formal Z specifications
and read the English text.

Writing an FTLS is valuable because many behaviors of the system that have an impact on
security can easily be overlooked in a less formal description. This is particularly true of
behaviors which might be considered side effects of operations that have some other primary
purpose. We have found this to be especially relevant for Mach since, by design, objects in the
Mach microkernel have complex interactions. The process of formally specifying the behavior
of a system frequently brings these behaviors to the surface.

3.1 Internal Consistency Within the FTLS

During the initial phases of the DTOS program, the primary goals of the FTLS were clarity,
accuracy and completeness. As the program progressed, completeness in coverage was no longer
a goal and the importance of accuracy was also diminished, leaving room for experimentation
in the presentation of the FTLS. The result of this was that the FTLS is no longer internally
consistent.?

There are two causes of inconsistency:
» Updates to the state model were not carried through to the request chapters. This only

affects the virtual memory requests.

m The execution model was completely rewritten, and other thanmach_thread_self, none
of the request specifications were updated to conform with the new model. The specific
effects of the new model on the request specifications is described in the following section.

2For further discussion of the evolution of the FTLS, the reasons for this evolution and general lessons learned
while developing the FTLS, see the DTOS Lessons Learned Report[10].

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 5

3.2 Comments on Request Specifications

We have taken steps in writing this document to make the specifications easier to follow and
to aid readers in locating desired information. First, requests are generally grouped based
upon the type of kernel object to which the name given as the first parameter of the request
is resolved (see the discussion of the client and kernel interfaces later in this section). Thus,
requests whose first parameter is resolved to a thread (e.g.,thread_abort), are in the Thread
Requests chapter. Requests whose first parameter is resolved to a name space are in the Port
Requests chapter, and requests whose first parameter is resolved to a memory map are in the
VM Requests chapter.3 There are, however, some exceptions to this rule. For example, the first
parameter of a thread_create request is resolved to a task, but the request specification has
been placed in the Thread Requests chapter since it is so intimately linked to the rest of the
material in that chapter. This guideline does not apply at all to system trap requests many of
which do not even have any parameters. So, these requests are in a separate chapter.

Second, we have attempted to make the structure of each chapter and each request specification
as consistent as possible. Each chapter begins with an introduction that describes processing
that is common or similar for multiple requests in the chapter.

The remainder of each chapter specifies the behavior of individual requests. Each of these
specifications has the following structure:

1. Client Interface - the interface visible to the thread sending the request message. This
includes a C Synopsis similar to that given in the Kernel Interface Document.

(8) Input Parameters - the parameters included in the request message and the way in
which the request in invoked.

(b) Output Parameters - the parameters included in the reply message generated by the
request (note that some parameters may occur in both lists).

Editorial Note:

The client interface is not consistent with the new execution model because the new execution model
makes no attempt to model the client interface. The old model included hooks for such modeling
though they were not integrated at all with the rest of the specification.

2. Kernel Interface - the interface visible to the kernel when it calls the kernel service
routine.
(&) Input Parameters - the input parameters included in the call.

(b) Output Parameters - the output parameters included in the call (note that some
parameters may occur in both lists).

Editorial Note:

The kernel interface is not consistent with the new execution model. The old execution model was
based upon an abstraction which considered kernel requests to be received off of a message queue
rather than “directly” from a trap as in the updated execution model.

In the new execution model, the specification of the input interface is directly related to the extraction
of parameters from a request (ExtractRequest) while specification of the output interface leads into
the transition (Return) that describes the return from a kernel trap into user space.

3This draft of the FTLS does not explicitly represent name spaces and memory maps. It associates the names in
a space and the regions in a map with the task that contains the name space and the memory map. However, the
distinction between the task and the name space or memory map is still reflected in the division of the FTLS into
chapters.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
6 FTLS Overview

3. Request Criteria - the conditions that determine the behavior of the request (i.e., return
values and state changes) in a given situation.

4. Return Values - a description of the value(s) returned in each possible situation as deter-
mined by the Request Criteria.

5. State Changes - a description of how the system state is changed by the request as
determined by the Request Criteria.

6. Complete Request - ties together the multiple pieces of the specification including the
common processing behavior specified in Section 6, Kernel Execution Model, and in
the appropriate chapter introduction plus the return value and state change behavior
described earlier in the given specification. This section is primarily of importance for the
formal specification in Z. Readers who are ignoring the Z can skip the Complete Request
sections entirely.

Editorial Note:

It is this section that is most directly influenced by the new execution model. With the new model,
it should be possible to describe the total processing of a request more coherently in english as well
as formally. See the specification of mach_thread_self for an example.

The following points should be made. First, some of the specifications contain a description
of the parts of the system state that are invariant in the request. Other specifications do not
contain such a description. In the cases where the invariants are specified, they have largely
been inherited from the DTMach FTLS with only minor editing. They should not be considered
to be highly reliable, particularly since the model of the system state presented in the DTOS
FTLS is changed significantly from the model in the DTMach FTLS.

Second, the specification for each of the IPC-based kernel requests describes both the client
and kernel interface. As stated above, the former describes the input and output parameters
included in the invocation message and the reply message while the latter describes the input
and output parameters included in the function call to the kernel routine. Typically, these
parameters differ only in that some of the Mach names have been resolved to the object named
(e.g., a thread, task, or port). We have not formally specified the relationship between these
two interfaces.

3.3 Typographic Conventions

Finally, we have established typographic conventions for the identifiers used in the FTLS. In
general, global objects in the specification contain capital letters while local objects are all in
lower case. More specifically, the identifiers have the following forms:

= The names of Z schemas consist of capitalized words with no underscores between words
(e.9., SpectalThread Ports).

= Both schema components and variables consist of lower case words separated by under-
scores (e.g., task_self).

» Global constants defined through axiomatic, generic and free type definitions have the
first word capitalized, the remaining words in lower case and all the words separated by
underscores (e.g., Values_partition).

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 7

n All other identifiers (i.e., given types, free types, abbreviations and generic parameters)
are printed in upper case with underscores to separate words (e.g., PORT_CLASS).

A request name appearing in the text is set in bold face with words separated by underscores as
they would be in a call within a program (e.g.,thread_create_secure). In the formalization,
each request has an identifier which is declared as an axiomatic global constant and is therefore
typeset with the first word capitalized, the remaining words in lower case and all the words
separated by underscores (e.g., Thread_create_secure_id). One other typographic convention
followed in this document is that components of the system state that are considered primitive
(as opposed to being derived from some other piece or pieces of the system state) have their
first character underlined (e.g., task_self _rel).

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
8 Basic Kernel State Definition

Section 4
Basic Kernel State Definition

The following describes the data structures contained in the Mach kernel state. The organiza-
tion of this section is as follows:

m Section 4.1, Primitive Entities, describes the primitive entities in Mach. Mach is an
object-based system having these primitive entities as the defined objects.

m Section 4.2, Process Management, describes data structures associated with process
management.

m Section 4.3, Port Name Space, describes data structures associated with task port name
spaces.

m Section 4.4, Ports, describes data structures associated with ports.

m Section 4.5, Notifications, describes data structures associated with registered notifica-
tions.

m Section 4.6, Special Ports, describes the various classes of ports associated with the
primitive entities.

m Section 4.7, Total Send Rights, describes the way in which send rights are counted in
the kernel.

m Section 4.8, Registered Rights, describes the data structures used to record the set of
port rights registered for a task.

m Section 4.9, Memory System, describes the data structures associated with the virtual
memory system.

= Section 4.10, Messages, describes the data structures associated with messages.

m Section 4.11, Processors and Processor Sets, describes the data structures associated
with processors and processor sets.

m Section 4.12, Time, describes the data structures associated with clocks.

m Section 4.13, Devices, describes the data structures associated with devices.

The model of Mach presented in this section consists of both primitive and derived notions. The
derived notions provide no additional information about the Mach state beyond that embodied
in the primitive notions. In the following sections, derived notions are noted as being conve-
niences. For example, Section 4.2.1 introduces the derived notion embodied by the function
threads to provide a more convenient representation for the primitive notion embodied by the
relation task_thread_rel. Although any statement about threads can be reworded as a statement
about task_thread_rel, it is often more desirable to write the statement in terms of threads. In
many cases, the choice of whether to view a structure as being primitive or derived is subjective.
For example, others might prefer to view task_thread_rel as being derived from threads instead
of threads being derived from task_thread_rel.

As a convention, we underline the first letter in the identifier for each primitive structure in
the Mach state. This is most useful when identifying which primitive structures are affected
by DTOS services.

4.1 Primitive Entities

The primitive entities in Mach are:

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 9

Tasks — environments in which threads execute; a task consists of an address space, a port
name space, and a set of threads

Threads — active entities comprised of an instruction pointer and a local register state
Ports — unidirectional communication channels between tasks

Messages — entities transmitted through ports

Memories — memory object representing a shared memory

Pages — logical units of memory; either a unit of physical memory or provided by a memory
Hosts — instances of the Mach kernel

Processors — devices capable of executing threads

Processor Sets — groups of processors, each belonging to a host, to which threads are as-
signed for scheduling

Devices — resources such as terminals and printers that can be used to transmit information
between the system and its environment

Each of these primitive entities can be viewed as an abstract data type.
Mach Definition 1

[TASK, THREAD, PORT, MESSAGE, MEMORY ;, PAGE,
HOST, PROCESSOR, PROCESSOR_SET, DEVICE]

At any given time, only certain primitive entities are present in the system. The setst ask_czists,
thread_exists, Bort_emsts, message_erists, memory_erists, Bage_emsts, Broc_emsts, Brocset_emsts,
and d ewvice_exists denote the entities of each class that are present in the current system state.

Mach Definition 2

TaskEzist = [task_exists : P TASK]

ThreadEzist = [thread_exists : P THREAD]

MessageErist = [message_exists : P MESSAGE]
MemoryEzist = [memory_exists : P MEMORY]

PageExist = [page_exists : P PAGE]

ProcessorErist = [proc_exists : P PROCESSOR)
ProcessorSetExist = [procset_exists : P PROCESSOR_SET)
Device Fxist = [device_exists : P DEVICE)]

Ip_null and Ip_dead are two special values in PORT which are never in the set of existing ports.
port_pointer consists of port_exists plus the special values Ip_null and Ip_dead.

Mach Definition 3
Ip_null, Ip_dead : PORT
Ip_null # Ip_dead

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
10 Basic Kernel State Definition

Mach Definition 4

__PortErist
port_emists : P PORT
port_pointer : P PORT

Ip_null & port_ewxists
Ip_dead ¢ port_exists
port_pointer = port_exists U {Ip_null, Ip_dead }

Mach Definition 5

_ Frist
TaskErist
ThreadErist
PortErist
MessageFxist
MemoryFrist
PageFErist
ProcessorErist
ProcessorSetErist
DeviceErist

Note that in the model, the kernel itself is viewed as an existing task and is denoted byt ernel.
Mach Definition 6
— Kernel

kernel : TASK
TaskErist

kernel € task_erists

4.2 Process Management

This section describes the data structures associated with process management. Multi-
threaded processes are supported by allowing tasks to contain multiple threads.

4.2.1 Thread to Task Relationship

The relation task_thread_rel denotes the relationship between threads and tasks; a pair
(task, thread) is an element of task_thread_rel exactly when thread is one of the threads contained
in task. Each thread belongs to exactly one task. For convenience, the following additional no-
tation is introduced:

m owning_task(thread) — the task to which thread belongs
m threads(task) — the set of threads belonging to task

Mach Definition 7

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 11

__TasksAndThreads
TaskErist
ThreadErist
task_thread_rel : TASK «— THREAD
owning_task : THREAD —+ TASK
threads : TASK -— P THREAD

dom task_thread_rel C task_cxists
ran task_thread_rel = thread_ezists
owning_task = task_thread_rel™
threads
= (Atask : TASK
| task € task_exists
o task_thread_rel({task}))

4.2.2 Execution Status

The execution status of a thread identifies whether a thread is running, waiting on an event,
waiting uninterruptibly, and/or halted. A thread holds some subset of these characteristics
at any point in time. The type RUN_STATES defines the possible thread characteristics.
RUN_STATES has possible values Running, Stopped, Waiting, Uninterruptible and Halted.

Mach Definition 8

RUN_STATES ::= Running | Stopped | Waiting | Uninterruptible | Halled

The values of this type have the following meanings:

m Running — The thread is either executing on a processor or is in a run queue waiting to
execute.

m Stopped — The thread has been asked to stop (and might have done so). A stopped thread
does not execute any instructions.

m Waiting — The thread is waiting for an event.
n Uninterruptible — The thread is waiting uninterruptibly.

m Halted — The thread is halted at what the kernel considers to be a “clean” point (i.e., it
can be resumed properly).

The state Uninterruptible does not imply the state Waiting. A run_state that includes the former
but not the latter can result when the procedurecl ear _wai t is called on a thread that is both
Uninterruptible and Waiting. The expression run_state(thread) indicates which of the above
characteristics are held by an existing thread.

Each thread has an associated suspend count that determines whether the thread may execute
user level instructions. This count is denoted by thread_suspend_count(thread). A thread may
execute such instructions only if the value of its suspend count is zero. It is a consequence of
the operation of the system (and therefore is not stated as an axiom here) that only stopped
threads have a suspend count greater than zero.

A thread may be swapped out. A thread that is swapped out has no kernel stack. The set of
such threads is indicated by swapped_threads. Some threads may be wired into the system. A

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
12 Basic Kernel State Definition

wired thread may not be swapped out. The set threads_wired denotes the set of wired threads.
Certain threads are called idle threads. An idle thread is one that runs on a processor that has
no user threads to run. (That is, the thread keeps the processor “idling”.) User threads will not
be marked as idle. We use idle_threads to denote the set of idle threads.

Mach Definition 9

—ThreadEzecStatus
ThreadFxist
run_state : THREAD «+— P RUN_STATES
thread_suspend_count : THREAD - N
swapped_threads : P THREAD
threads_wired : P THREAD
idle_threads : P THREAD

dom run_state = thread_exists

dom thread_suspend_count = thread_exists
swapped_threads C thread_exists
threads_wired C thread_exists
idle_threads C thread_exists
threads_wired N swapped_threads = &

Each task also has a suspend count. The expressiontask_suspend_count(task) denotes the count
associated with task. If this value is non-zero, then none of the threads in task may execute
regardless of their individual suspend counts.

Mach Definition 10

TaskSuspendCount
task_suspend_count : TASK +—N

Review Note:
We should probably specify the relationships between task_suspend_count, thread_suspend_count and
run_state here.

4.2.3 Priority Levels

Thread priority levels are used to determine thread execution scheduling priorities. Priority
levels are represented as a subset of the integers (in particular by the numbers between 0 and
31 inclusive in current implementations). The set Priority_levels denotes the allowable priority
levels. The relation Lower_priority indicates when a priority is lower than a second priority; in
particular, (z, y) is an element of Lower_priority exactly when z is a lower priority than y. Since
the implementation uses higher numbers to indicate lower priorities, = is lower than y when
z > y. The relation Higher_priority is the inverse ordering indicating when a priority is higher
than a second priority. The constants Lowest_possible_priority and Highest_possible_priority
denote the maximum and minimum integers, respectively, in Priority_levels.

Mach Definition 11

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 13

Priority_levels : P2
Lower_priority, Higher_priority : 2 «+— 2
Lowest_possible_priority, Highest_possible_priority : 2

Lower_priority C Priority_levels x Priority_levels
Va,y: Priority_levels o (z,y) € Lower_priority < © > y
Higher_priority = Lower_priority”™
Lowest_possible_priority = max Priority_levels
Highest_possible_priority = min Priority_levels

Using these relations, the minimum and maximum priorities in a set of priorities can be
defined. These are denoted by Lowest_priority(priority_set) and Highest_priority(priority_set),
respectively.

Mach Definition 12

Lowest_priority, Highest_priority : P2 + 2

dom Lowest_priority = P, Priority_levels

ran Lowest_priority = Priority_levels

dom Highest_priority = P, Priority_levels

ran Heghest_priority = Priority_levels

V priority_set : P, Z @ Lowest_priority(priority_set) = maz priority_set
V priority_set : P, 2 Highest_priority(priority_set) = min priority_set

There is a highest priority (equal to 12 in current implementations) normally granted to ordi-
nary user threads. This priority is denoted by Base_user_priority.

Mach Definition 13

| Base_user_priority : 2

Base_user_priority € Priority_levels

Three different types of priority values are associated with each thread.

» The expression thread_priority(thread) represents a base user-setable priority for thread.

» The expression thread_maz_priority(thread) represents the maximum value to which
thread_priority(thread) can be set.

» The expression thread_sched_priority(thread) represents the priority that the system uses
to make scheduling decisions. This value is determined based upon thread_priority and
the thread scheduling policy (discussed in Section 4.2.4), and is not directly set by the
user. This value cannot exceed thread _priority(thread).

The priority level of a thread can temporarily be depressed by the request swtch_pri or
thread_switch to allow other threads to run. When a thread is depressed, its priority is
set to the lowest possible priority* The set depressed_threads denotes those threads whose
priority is currently depressed. The expression priority_before_depression(thread) denotes the
priority level thread had before depression if thread’s priority level has been depressed and
thread_priority(thread) otherwise.

Mach Definition 14

4 Note, however, that not all threads having the lowest possible priority are depressed.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

14

CDRL A005
Basic Kernel State Definition

_ ThreadPr:

ThreadFxist

thread_priority : THREAD - 2
thread_maz_priority : THREAD - 2
thread_sched_priority : THREAD 2
depressed_threads : P THREAD
priority_before_depression : THREAD — 2

ran thread_priority C Priority_levels

ran thread_maz_priority C Priority_levels

ran thread_sched_priority C Priority_levels

ran priority_before_depression C Priorily_levels

depressed_threads C thread_exists

dom thread_priority = dom thread_max_priority = dom thread_sched_priority
= dom priority_before_depression = thread_exists

YV thread : THREAD | thread € dom thread_priorily

o (thread_priority(thread), thread_maz_priority(thread)) ¢ Higher_priority

A (thread _sched_priority(thread), thread_priority(thread)) ¢ Higher_priority

Y thread : THREAD | thread € dom thread_priorily \ depressed_threads

e priority_before_depression(thread) = thread_priority(thread)

YV thread : THREAD | thread € depressed_threads

e thread_priority(thread) = Lowest_possible_priority

Each existing task has an associated priority level, denoted by task_priority(task), that is used
to assign the initial priority for any thread created within the task.

Mach Definition 15

__TaskPriority

TaskFExist

task_priority : TASK 2

dom task_priority = task_exists
ran task_priority C Priority_levels

4.2.4 Scheduling Policies

Each thread has an associated scheduling policy, represented by thread_sched_policy(thread).
The type SCHED_POLICY represents the set of available scheduling policies. Examples of
supported policies are Timesharing (T'meshare) and Fixed Priority (Fizedpri). Some scheduling
policies have associated policy specific data that must be associated with each thread. For
example, threads scheduled under the Fixed Priority policy must have an associated scheduling
quantum. The type SCHED_POLICY_DATA denotes policy specific scheduling data. The
expression thread_sched_policy_data(thread) denotes any such policy specific data associated
with thread. The set supported_sp indicates which scheduling policies are actually supported by
a given Mach system. All Mach systems are required to support Timeshare and each thread in
a Mach system must be assigned one of the scheduling policies supported by the system.

Mach Definition 16

[SCHED_POLICY ,SCHED_POLICY _DATA]

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 15

Timeshare, Fizedpri : SCHED_POLICY
Timeshare # Fizedpri

Mach Definition 17

__ThreadSchedPolicy
ThreadFxist
thread_sched_policy - THREAD « SCHED_POLICY
thread_sched_policy_data : THREAD - SCHED_POLICY_DATA
supported_sp : P SCHED_POLICY

dom thread_sched _policy_data C dom thread_sched_policy = thread_exists
Timeshare € supported_sp
ran thread_sched_policy C supported_sp

4.2.5 Instruction Pointer

The set VIRTUAL_ADDRESS is used to denote the set of virtual addresses. These addresses
are assumed to be ordered in some manner with Vm_start and Vm_end denoting, respectively,
the smallest and largest addresses.

Mach Definition 18
[VIRTUAL_ADDRESS]

| Vm_start, Vm_end : VIRTUAL_ADDRESS

Each thread has an associated instruction pointer indicating the address at which the thread
is currently executing. The expression instruction_pointer(thread) denotes thread’s current in-
struction pointer.

Mach Definition 19

ThreadInstruction

’»Znstruction_pointer : THREAD -+ VIRTUAL_ADDRESS

4.2.6 Emulation Environment

Mach supports binary compatibility by allowing tasks to establish user-level handlers for sys-
tem calls. This is accomplished by associating an emulation vector with each task. Each
entry in an emulation vector specifies a system call and a virtual address. Whenever the task
executes a system call that has an entry in the emulation vector, the code at the specified
virtual address for the system call is executed rather than the system call. The expression
emulation_vector(task) denotes task’s emulation vector.

Mach Definition 20
__ Fmulation Vector

TaskFrist
emulation_vector : TASK =N —+ VIRTUAL_ADDRESS

dom emulation_vector = task_exists

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
16 Basic Kernel State Definition

4.2.7 Sampling

Any thread or task may be sampled. This causes the instruction pointer to be recorded in
a buffer during clock interrupts or page faults if the thread or task is currently execut-
ing. The type SAMPLE represents the sampling information that is collected, and type
SAMPLE_TYPES represents information that determines at which times during execution
samples are collected for a given thread or task.

There are six recognized sample types. They are:

Sample_periodic — each clock interrupt

Sample_vm_zfill_faults — zero-filling a virtual memory page
Sample_vm_reactivation_faults — reactivating a virtual memory page
Sample_vm_pagein_faults — bringing a virtual memory page in

Sample_vm_cow_faults — virtual memory copy-on-write faults

Sample_vm_faults_any — all virtual memory page faults. This includes miscellaneous
faults beyond the above mentioned four types of virtual memory faults.

These values comprise the elements of the set Recognized_sample_types.
Mach Definition 21

[SAMPLE, SAMPLE_TYPES]

Sample_periodic, Sample_vm_zfill_faults,
Sample_vm_reactivation_faults, Sample_vm_pagein_faults,
Sample_vm_cow_faults, Sample_vm_faults_any : SAMPLE_TYPES
Recognized_sample_types : P SAMPLE_TYPES

(Sample_periodic, Sample_vm_zfill_faults,

Sample_vm_reactivation_faults, Sample_vm_pagein_faults,

Sample_vm_cow_faults, Sample_vm_faults_any)
Values_partition Recognized_sample_types

For convenience, SAMPLE_VM_FAULTS is used as the combination of the sample
types Sample_vm_zfill_faults, Sample_vm_reactivation_faults, Sample_vm_pagein_faults and
Sample_vm_cow_faults.

There is a maximum number of samples (determined by the buffer size) that can be kept for
any thread or task. This maximum is represented by Maz_samples.

Mach Definition 22

SAMPLE_VM_FAULTS == {Sample_vm_zfill_faulls, Sample_vm_reactivation_faulls,
Sample_vm_pagein_faulls, Sample_vm_cow_faults}

| Maz_samples : Ny

The set sampled_threads denotes the set of threads that are currently being sampled. For
each sampled thread there is a set of sample types, denoted by thread_sample_types(thread),
indicating when a sample should be taken for the thread. Each sample taken for a thread is
assigned a unique sequence number. The expression thread _sample_sequence_number(thread)
denotes the sequence number of the most recent sample for a thread (or zero if no samples have

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005

DTOS FTLS 17

been collected). The expression thread_samples(thread) denotes the currently stored samples
for thread. Each sample is stored with an associated sample number. Only the Maz_samples

most recent samples are retained.
Mach Definition 23

__ThreadSampling
ThreadFxist
sampled_threads : P THREAD

thread_sample_types : THREAD P SAMPLE_TYPES
thread_sample_sequence_number : THREAD —— N
thread_samples : THREAD « (N—++ SAMPLE)

sampled_threads C thread_exists

dom thread_sample_types = sampled_threads

dom thread_sample_sequence_number = sampled_threads

dom thread_samples = sampled_threads

YV smpls : N+ SAMPLE; thread : THREAD;
num, high : N

| (thread, smpls) € thread_samples
A high = thread_sample_sequence_number(thread)
A num = min {high, Maz_samples}

e dom smpls = high — num + 1.. high

The same sampling information is kept for tasks.

Mach Definition 24

__TaskSampling
TaskFrist
sampled_tasks : P TASK

task_sample_types : TASK +— P SAMPLE_TYPES
task_sample_sequence_number : TASK N
task_samples : TASK -+ (N—+ SAMPLE)

sampled_tasks C task_exists

dom task_sample_types = sampled_tasks

dom task_sample_sequence_number = sampled _tasks

dom task_samples = sampled_tasks

YV smpls : N+ SAMPLE; task : TASK;
num, high : N

| (task, smpls) € task_samples
A high = task_sample_sequence_number(task)
A num = min {high, Maz_samples}

e dom smpls = high — num + 1.. high

4.2.8 Thread Time Statistics

The system records time statistics for each thread. The following information is recorded:

m user_time(thread) — the total user run time for thread
n system_time(thread) — the total system run time for thread

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
18 Basic Kernel State Definition

m cpu_time(thread) — thread's scaled CPU usage
m sleep_time(thread) — the amount of time for which thread has been sleeping

Mach Definition 25

__ThreadStatistics
ThreadFxist
user_time : THREAD ——N
system_time : THREAD N
cpu_time : THREAD —+— N
sleep_time : THREAD —— N

dom user_time = dom system_time = dom cpu_ttme = dom sleep_time
= thread_exists

Review Note:
Should the domain of sieep_time be all threads or only those with a particular run state?

4.2.9 Machine State

The system records the machine state of each thread. Typically, the structure of the machine
state varies depending upon the architecture of the machine to which the thread is assigned.
The type SUPP_MACHINE_ARCH represents the set of supported machine architectures. The
set THREAD_STATE_INFO_TYPES denotes the names of the various structures that are
associated with the supported architectures. The type THREAD_STATE_INFO denotes the
possible values of the state information recorded for a thread.

The expression State_info_avail(arch) denotes the types of state information which the archi-
tecture supports.

Mach Definition 26

[SUPP_MACHINE_ARCH]
[THREAD_STATE_INFO_TYPES, THREAD_STATE_INFO)]

State_info_avail : SUPP_MACHINE_ARCH
— P THREAD_STATE_INFO_TYPES

The expression thread_state(thread, info_type) returns the indicated type of state information
recorded for thread.

Mach Definition 27

—_ ThreadMachineState

ThreadErist

thread_state : THREAD x THREAD_STATE_INFO_TYPES
—+—THRFEAD_STATE_INFO

dom thread_state = thread_exists x THREAD_STATE_INFO_TYPES

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 19

Review Note:
Actually, the current instruction pointer is part of the machine state rather than being a separate state
component.

Mach Definition 28

__Threads
TasksAndThreads
ThreadPri
ThreadSchedPolicy
ThreadInstruction
ThreadErecStatus
ThreadStatistics
ThreadMachineState
ThreadSampling
TaskSampling

4.3 Port Name Space

Each task uses its own (local) set of names to refer to ports. The set NVAMFE is used to hame
ports in a task’s name space.

Mach Definition 29

[NAME]

The names Mach_port_null and Mach_port_dead are reserved. They will never be used as an
index in a task’s port name space. The remainder of this section discusses the three types of
entities that can be in name spaces: port rights, port sets, and dead names.

Mach Definition 30

Mach_port_dead : NAME
Mach_port_null : NAME

4.3.1 Port Rights

A port is only of use to a task if the task holds some kind of right to the port. The types of
available rights are defined via the type RIGHT. Aright for a port allows a task to either send
or receive messages via that port. The task may have either a general right to send messages
via a port or a one-time right to do so. Thus, the elements of type RIGHT" are: Send, Receive,
and Send_once.

A Capability is the combination of a port and a right to do something with that port.

Strictly speaking, a task associates a name with a particular right to a port, not simply with
the port. The set port_right_rel relates the ports to which a task has rights with their right
types and their local names. More specifically, each element of pori_right_rel is a tuple of the
form (task, port, name, right, i). Such a tuple is an element of port_right_rel only when name
denotes in task’'s name space a right of type right to port. The i-value is used to allow a task
to accumulate multiple send rights under the same name. For send-once or receive rights, the

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
20 Basic Kernel State Definition

value of i is always equal to 1. For convenience, the expression named_port(task, name) denotes
the port associated with name in task’s name space.

At most one task can receive messages from a port at any given time. The expression
recetver(port) denotes the task (if any) that is currently permitted to receive messages from
port, and receiver_name(port) denotes the receiver task’s name for the port.

Many tasks may have Send or Send_once rights to a port. The relation sender indicates the
tasks currently permitted to send messages to a port; an element(port, task) is in sender exactly
when task has a send right to port.

Mach Definition 31
RIGHT ::= Send | Receive | Send_once
__ Capability

port : PORT
right : RIGHT

—_TasksAndPorts
TaskErist
PortErist
port_right_rel : P(TASK x PORT x NAME x RIGHT x Np)
named_port : TASK x NAME - PORT

recewver : PORT - TASK

recewver_name : PORT - NAMFE

sender : PORT < TASK

port_right_rel C task_exists X port_ezxists x NAME x RIGHT x N;

Y task : TASK; port : PORT; m';ht RIGHT; 1 : Ny

o (task, port, Mach_port_null right, i) ¢ port_right_rel

A (task, port, Mach_port_dead, right, i) ¢ port_right_rel

named_port = { task : TASK; port : PORT; name : NAME; right : RIGHT; i : Ny
| (task, port, name, right, i) € pori_right_rel o ((task, name), port)}

receiver = { task : TASK; port : PORT:; name : NAME
| (task, port, name, Receive, 1) € pori_right_rel o (port, task) }

recetver_name = { lask : TASK; port : PORT:; name : NAME
| (task, port, name, Receive, 1) € pori_right_rel ® (port, name) }

sender = { task : TASK; port : PORT; name : NAME; right : RIGHT; i : N;
| (((task, port, name, right, i) € port_right_rel) A right € {Send, Send_once})
e (port, task) } B

The i-value is called the user reference count. As noted above, it is equal to 1 for receive and
send-once rights, but is of interest for send rights. The expressions_right_ref_count(task, name)
returns the user reference count for name in task’s name space (when it is a send right). There
is a system-wide maximum number of references to a given send right which a task may
accumulate, represented by Maz_right_refs.

Mach Definition 32

| Max_right_refs : Ny

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 21

Mach Definition 33

—UserReferenceCount
TasksAndPorts
s_right_ref_count : TASK x NAME — N;

Y task : TASK; port : PORT; name : NAME; right : { Receive, Send_once}; ¢ : Ny
o (task, port, name, right, i) € port_right_rel = i =1

s_righl_ref_count = { task : TASK; port : PORT; name : NAME: i : Ny

| (task, port, name, Send, i) € port_righi_rel o ((task, name), i)}

Vtask : TASK; name : NAME s—right_ref_count(task, name) < Maz_right_refs

For convenience:

m The relations s_right, r_right, and so_right are used to identify the names of each of the
types of rights which are associated with a given task. For example, (task, name) is an
element of s_right exactly when name is a send right in task’s name space.

m The relation s_r_right is used to identify names that are either a receive or a send right.

m The relation port_right_namep identifies names that are either receive, send, or send-once
rights.

The semantics of Mach are such that send and receive rights within a task coalesce into a single
name. In other words:

m If name is a receive right for port in task’s name space, then no other name in task’s name
space may be a send right for port; the send rights must be associated with name, too.

m If name is a send right for port in task’s name space, then all of the send rights for port in
task’s name space are associated with name.

Note, however, that the same task can have multiple names associated with send-once rights
for the same port. Mach prohibits a name that is a send or a receive right from also being a
send-once right.

A message may be forcibly enqueued using a send right. In this case it will be added to the
message queue of the named port even if the queue has reached its designated size limit. At
most one message may be forcibly enqueued at a time using any given send right. After that
message is removed from the queue, a message-accepted notification is sent and the send right
can again be used to forcibly enqueue a message. The component forcibly_queued(task, name)
denotes the message, if any, forcibly enqueued using a send rightname in task's ipc name space.

Mach Definition 34

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
22 Basic Kernel State Definition

_ TasksAndRuights
MessageFxist
TasksAndPorts
s_right : TASK «<— NAME
r_right : TASK «— NAME
so_right : TASK <= NAME
s_r_right : TASK <= NAME
port_right_namep : TASK «<— NAME
forcibly_queued : (TASK x NAME) - MESSAGE

s_right = { task : TASK; port : PORT; name : NAME; i : Ny

| (task, port, name, Send, i) € port_right_rel o (task, name)}
r_right = { task : TASK; port : PORT; name : NAME

| (task, port, name, Receive, 1) € pori_right_rel (task, name)}
so_right = { task : TASK; port : PORT; name : NAME

| (task, port, name, Send_once, 1) € port_right_rel o (task, name)}
s_r_right = s_right U r_right
port_right_namep = s_r_right U so_right

dom f orcibly_queuned C s_right
ran forcibly_queued C message_exists

disjoint {so_right, s_r_right)

Y task : TASK; namey, namey : NAME

o (task,namey) € s_r_right A (task, names) € s_r_right
A named_port(task, name;) = named_port(task, namesz)
= name; = names

Review Note:
I'd like to tie the message indicated by f orcibly_gqueued back to the portindicated by the send right, but
I'm not sure this will be accurate.

4.3.2 Port Sets

A port set is a set of ports associated with a particular task and name. A port set is used to
allow the receiving of a message via any member of the port set. Given a task and a port set
name, the expression port_set(task, name) denotes the port set. The relation port_set_namep
identifies the port set names associated with each task. containing_set(port) denotes the name
of the port set containing port, if any. Note that a port can be in at most one port set.

Mach prohibits the reserved names Mach_port_null and Mach_port_dead from being port set
names or the inclusion of the same receive right in two different port sets.

Mach Definition 35

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 23

__PortSets
TaskFrist

TasksAndRights

port_set_rel : P(TASK x NAME x P PORT)
port_set : (TASK x NAME) -+ P PORT
port_set_namep : TASK <= NAME
containing_set : PORT +— NAME

port_sel = {task : TASK; name : NAMFE; sel_of _ports : P PORT
| (task, name, set_of _ports) € port_set_rel o (({ask, name), set_of _ports)}
port_set_namep = dom port_set B
containing_set = {task : TASK; name : NAME; port : PORT
| (task, name) € port_set_namep A port € port_set(task, name)
e (port, name)}

dom port_set_namep C task_ecxists

Vtask : TASK; name : NAME; port : PORT | (task, name) € dom port_set
e port € port_set(task, name) = task = receiver(port)

Y task : TASK; set_of _ports : P PORT

o ((task, Mach_port_null), set_of _ports) ¢ port_set

A ((task, Mach_port_dead), sel_of _ports) ¢ port_set

Y task : TASK; namey, namey : NAME

| (task, namey) € dom port_set A (task, names) € dom port_set

e name; # names = disjoint (port_set(task, namey), port_set(task, names))

4.3.3 Dead Rights

A dead name is a nhame which previously named a send, receive, or send-once right for a task,
but no longer does.” Each dead name in a task can have an associated count that is analogous
to the reference count associated with send rights. This count is initially set based on the user
reference counts for the right previously bearing the name. The count may be modified by
subsequent actions of the kernel. The relation dead_right_rel identifies the dead names and
their associated counts for each task; an element(task, name, i) is an element of dead_right_rel
if name is a dead name in task with associated count i. The previously defined constant,
Maz_right_refs, is a system-wide maximum for the reference count of a given dead right. For
convenience:

m The relation dead_namep identifies the dead names associated with each task.
m The expression dead_right_ref _count(task, name) denotes the count associated with name
in task (when name is a dead name).

Mach prohibits Mach_port_null and Mach_port_dead from being dead names.

Mach Definition 36

5 A dead name may also be specified in the body of a message in place of an actual port right.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
24 Basic Kernel State Definition

— DeadRights
dead_right_rel : P(TASK x NAME x Nyp)
dead_right_ref _count : TASK x NAME - N;
dead_namep : TASK < NAME

dead_right_ref _count = {task : TASK; name : NAME; i : Ny
| (task, name, i) € dead_right_rel o ((task, name), i)}
dead_namep = dom dead_right_ref _count
Vtask : TASK; name : NAME
o dead_right_ref _count(task, name) < Maz_right_refs
Y task : TASK
o (task, Mach_port_null) ¢ dead_namep
A (task, Mach_port_dead) ¢ dead_namep

4.3.4 Summary

A task’s port right names (send, receive, and send-once), port set names, and dead names are
mutually disjoint. The union of port_right_namep, port_set_namep, and dead_namep identifies
the names in each task’s name space. For convenience:

m The relation local_namep is used to denote this union.
m The expression number_of _rights(task) is used to denote the number of names that
local_namep associates with task. This is the current size of task’s name space.

Mach Definition 37

__PortNameSpace
TaskFrist
TasksAndPorts
TasksAndRights
UserReference Count

PortSets

DeadRights

local_namep : TASK +— NAME
number_of _rights : TASK +— N

disjoint {port_right_namep, port_set_namep, dead_namep)
local_namep = port_right_namep U pori_set_namep U dead_namep
dom number_of _rights = task_exists
Vtask : TASK | task € task_exists
o number_of_rights(task) = #(local_namep ({ task }))

4.4 Ports

This section describes data structures associated with ports.

4.4.1 Make Send Count

Each time the receiver for a port creates a new send right for the port, the system increments
a counter associated with the port. The expression make_send_count(port) denotes the value

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 25

of the counter associated with pori. Note that this count does not necessarily represent the
current number of send rights for the port since tasks other than the receiver can create send
rights. Furthermore, the count does not necessarily represent the number of send rights the
receiver has created because the count can directly be set to arbitrary values by user threads.

Mach Definition 38
—_SendRightsCount

PortErist
make_send_count : PORT —+ N

dom make_send_count = port_exists

4.4.2 Message Queues

Each port has an associated message queue. A message queue can be thought of as a sequence
of messages. In Mach, a task may set a limit on the number of messages that are permitted
in a given message queue. The value Mach_port_q_limit_default represents the default limit
the kernel uses for newly allocated ports. The value Mach_port_q_limit_maz represents a
system-imposed limit on the value a task may specify as the limit for a message queue.

Mach Definition 39

Mach_port_q_limit_maz : N
Mach_port_qg_limit_default : N

For each port, ¢_limit(port) indicates the current limit set for the port. This denotes an in-
tended bound on the number of messages in the associated message queue. The expression
port_size(port) indicates the number of messages that are actually present in port’s message
queue. Although it is intended that port_size(port) is always less than or equal to q_limit(port),
the kernel does not actually guarantee that this property always holds. Examples of ways in
which the property may be violated include:

m The intended bound on the number of messages in a queue can be decreased below the
number of messages already in the queue.

= Messages sent with a send-once right are delivered regardless of whether the destination
port's queue is already full.

s Each name for a send right to a port may be used to forcibly enqueue one message at a
time to the named full port.

The expression message_in_port_rel(port) denotes the sequence of messages in the queue asso-
ciated with port. Each message is contained in at most one message queue. For convenience,
the expression containing_port(message) is used to indicate the port associated with the message
gueue to which message belongs.

Each port has an associated sequence number that is used to properly sequence messages
received through the port. The expression sequence_no(port) indicates port’'s current sequence
number.

Mach Definition 40

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
26 Basic Kernel State Definition

__MessageQueues
PortErist
g_limit : PORT =N

message_in_port_rel : PORT — iseq MESSAGE
port_size : PORT —— N

containing_port : MESSAGE - PORT
sequence_no : PORT +— 2

containing_port = { message : MESSAGE; port : PORT
| message € ran(message_in_port_rel(port)) ® message — port }
(V¥ port : port_exists
o port_size(port) = # (message_in_port_rel(port))
A q_limit(port) < Mach_port_q_limit_mazx)
dom q_limit = pori_exists

dom message_in_port_rel = port_exists

dom sequence_no = port_exists

4.4.3 Summary

The data structures defined in this section consist of make-send counts, message queues, and
sequence numbers associated with ports.

Mach Definition 41

PortSummary

|>SendRightsCount

MessageQueues

4.5 Notifications

A task may request that a notification message be sent when one of the following changes
occurs in the status of a port:

m The port is destroyed.
» The last send right for the port is deallocated.

A task may also request a notification message be sent when a send right becomes a dead name.
In each case, the task requesting the notification must register a port to which the notification
should be sent.

The relation pori_notify_destroyed_rel identifies the ports for which a destroyed noti-
fication has been requested and the associated notification ports. For convenience,
port_notify_destroyed(port) is used to denote the notification port registered for a destroyed
notification on port.

The relation port_notify_no_more_senders_rel identifies the ports for which a no-more-senders
notification has been requested and the associated notification ports. For convenience,
pori_notify_no_more_senders(port) is used to denote the notification port registered for a no-
more-senders notification on port.

The relation pori_notify_dead_rel identifies the task-name pairs for which a dead-name
notification has been requested and the associated notification ports. For convenience,

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 27

port_notify_dead(task, name) is used to denote the notification port registered for a dead-name
notification on name in task’s name space.

The registered notification ports remain in force as long as both the port in question and the
registered port exist regardless of whether the same tasks remain related to these ports.

Mach Definition 42

— Notifications
PortErist
TasksAndPorts

port_notify_destroyed_rel : PORT <— PORT
Eort_notify_no_more_senders_rel : PORT < PORT
pori_notify_dead_rel : P(PORT x TASK x NAME)
port_notify_destroyed : PORT - PORT
port_notify_no_more_senders : PORT - PORT
port_notify_dead : TASK x NAME —+ PORT

port_notify_destroyed = port_notify_destroyed_rel
port_notify_no_more_segders = port_notify_no_more_senders_rel
Y task : TASK; port : PORT, name : NAME
o ((port, task, name) € port_notify_dead_rel
< ((task, name), port) € port_notify_dead)

dom port_notify_destroyed = pori_exists
dom port_notify_no_more_senders = pori_erists
dom port_notify_dead = dom named_port

ran port_notify_destroyed C port_exists U {Ip_null}
ran port_notify_dead C port_exists U {Ip_null}
ran port_notify_no_more_senders C port_exists U {Ip_null}

Review Note:
Should the range of these functions also include Ip_dead? It seems that it should because the port could

die. Should look at the code to see what happens if we try to send a notification in this situation.

4.6 Special Ports

This section describes the special ports known to the kernel. Each of the special ports is
associated with some kernel entity.

4.6.1 Task Ports

In addition to the ports referenced in its port name space, each task has four special ports. The
self port is used to request the kernel to perform actions upon the task. Any task holding a
send right to a second task may use that right to request operations on the second task. The
kernel is always the receiver for a task’s self port. A task’s sself port is normally equal to its
self port, but may refer to a different port and have a task other than the kernel, such as a
debugger, as its receiver. The relations task_self_rel and task_sself _rel identify the self and
sself ports associated with each task.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
28 Basic Kernel State Definition

The other two special ports are the exception port and the bootstrap port. A task receives
exception messages from the kernel via its exception port. A task’s bootstrap port is provided
as a start-up means for a task to obtain a send right to a service port for a server that can
provide the task start-up information. The relations task_eport_rel and task_bport_rel identify
the exception port and bootstrap port associated with each task. The sself, exception and
bootstrap ports may be modified. Unlike the self port, they may become Ip_null or Ip_dead.

For convenience:

m The expression task_self (task) denotes task’s self port.

m The expression task_sself (task) denotes task’s sself port.

m The expression task_eport(task) denotes task’s exception port.

m The expression task_bport(task) denotes task’s bootstrap port.

» The expression self _task(port) denotes the task (if any) having port as its self port.

Mach Definition 43

__SpecialTaskPorts
TaskFrist
PortErist
Kernel
TasksAndPorts
task_self_rel : TASK «<— PORT
task_sself _rel : TASK < PORT
task_eport_rel : TASK «—— PORT
task_bport_rel : TASK «—— PORT
task_self : TASK —+ PORT
task_sself : TASK - PORT
task_eport : TASK - PORT
task_bport : TASK - PORT
self _task : PORT —+ TASK

task_self = task_self _rel
task_eport = task_eport_rel
task_bport = task_bport_rel
task_sself = task_sself _rel
dom task_self = dom task_sself = dom task_eport = dom task_bport = task_ecxists
ran task_self C port_exists
ran task_sself C pori_pointer
ran task_eport C port_pointer
ran task_bport C port_pointer
self _task = port_exists <1 (task_self™)
YV task : TASK | task € task_exists o receiver(task_self(task)) = kernel

4.6.2 Thread Ports

Each thread has a self port, sself port, and an exception port with purposes parallel to the cor-
responding special ports for tasks. The relations and functionsthread_self _rel, thread_sself _rel,
thread_epori_rel, thread_self, thread_sself, thread_eport, and self _thread are used to denote these
state components.

Mach Definition 44

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 29

__SpecialThreadPorts
ThreadFxist
PortErist
TasksAndPorts
Kernel
thread_self _rel : THREAD <— PORT
thread_sself _rel : THREAD < PORT
thread_eport_rel : THREAD < PORT
thread_self : THREAD —~+ PORT
thread_sself : THREAD -+ PORT
thread_eport : THREAD + PORT
self _thread : PORT ~+ THRFEAD

thread_self _rel = thread_self
thread_sself _rel = thread_sself
thread_eport_rel = thread_eport
dom thread_self = thread_exists
dom thread_sself = thread_exists
dom thread_eport = thread_exists
ran thread_self C port_exists
ran thread_sself C_port_pointer
ran thread_eport C port_pointer
self _thread = pori_exists < (thread_self™)
Vthread : THREAD | thread € thread_exists o receiver(thread_self(thread)) = kernel

4.6.3 Memory Ports

A kernel and a memory object interact by engaging in a dialogue. The kernel sends messages
to an object port and the object manager sends messages to a control port. There is also a
name port used to identify the object in vm_region requests. The relations object_port_rel,
control_pori_rel, and name_pori_rel are used to represent the binding between a memory and
its associated ports. For a particular Mach host kernel, there is at most one of each type of port
associated with a given memory. Furthermore, no object port is associated with more than one
memory object. For convenience:

= The expressions objeci_port(memory), control_port(memory), and name_port(memory) are
used to denote, respectively, the object, control, and name port for memory.

= The expression cbject_memory(port) denotes the memory object (if any) for which port is
the object port.

= The expression control_memory(port) denotes the memory object (if any) for which port is
the control port.

Memory objects are given a name port immediately upon allocation. However, they need not
necessarily have object and control ports until a page that they back needs to be paged out.

Mach Definition 45

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
30 Basic Kernel State Definition

— MemoriesAndPorts
Kernel
MemoryFrist
TasksAndPorts
object_port_rel : MEMORY < PORT
control_port_rel : MEMORY < PORT
name_port_rel : MEMORY < PORT
object_port : MEMORY + PORT
control_port : MEMORY —+ PORT
name_port : MEMORY —+ PORT
object_memory : PORT -+ MEMORY
control_memory : PORT —~+ MEMORY

object_port_rel = object_port

control_port_rel = control_port
name_port_rel = name_port

object_port™ = object_memory

control_port™ = control_memory

dom control_port_rel = dom object_pori_rel C dom name_port_rel
dom pame_port_rel = memory_exists

Y port : PORT | port € ran control_pori_rel

e port € dom receiver A receiver(port) = kernel
Y port : PORT | port € ran name_port_rel

e port € dom receiver A receiver(port) = kernel

4.6.4 Host Ports

Each host has two associated ports: the control port and the name port. These ports are
denoted by host_control_port and host_name_port. The Kernel is the receiver for each of these
ports. The name port is used to service “unprivileged” requests while the control port is used
to service “privileged” requests.

Mach Definition 46

—_HostsAndPorts
Kernel
TasksAndPorts
host_control_port : PORT
host_name_port : PORT

host_name_port, kernel) € receiver

host t, k l
host_control_port, kernel) € recetver
host trol t, k l

4.6.5 Processor Ports

Each processor has a port that is used to name it. The relation processor_pori_rel indicates the
association between processors and their name ports. There is exactly one port associated with
each processor. For convenience, proc_self(proc) and the_processor(port) are used to denote,
respectively, the port associated with a given processor and the processor associated with a
given port.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 31

Each processor set has two associated ports: the control port and the name port. The relations
ps_control_port_rel and ps_name_port_rel are used to represent the binding between a processor
set and its associated ports. In Mach, there is exactly one of each type of port associated with
each existing processor set. For convenience:

» Theexpression controlled_proc_set(port) is used to indicate the processor set (if any) having
port as its control port.

m The expression procset_self (procset) is used to indicate procset’s control port.

m The expression named_proc_set(port) is used to indicate the processor set (if any) having
port as its name port.

m The expression procset_name_port(procset) is used to indicate procset’s name port.

Mach Definition 47

__ProcessorsAndPorts
Kernel
TasksAndPorts
processor_port_rel : PROCESSOR <= PORT
ps—control_port_rel : PROCESSOR_SET <— PORT
ps_name_pori_rel : PROCESSOR_SET «— PORT
proc_self : PROCESSOR -+ PORT

the_processor : PORT - PROCESSOR
controlled_proc_set : PORT - PROCESSOR_SET
procset_self : PROCESSOR_SET - PORT
named_proc_set : PORT -+ PROCESSOR_SET
procset_name_port : PROCESSOR_SET + PORT

dom ps_control_port_rel = dom ps_name_pori_rel
proce_ssor_port_relN = the_proce_ssor
processor_port_rel = proc_self
ps_control_port_rel™ = controlled_proc_set
;s_control_port_rel = procset_self
ps_name_port_rel™ = named_proc_set
;s_name_port_rel = procsel_name_port
Y port : PORT | port € ran ps_control_port_rel
e port € dom receiver A rece_iver(port) = kernel
Y port : PORT | port € ran ps_name_porl_rel
e port € dom receiver A rece_iver(port) = kernel
Vport : PORT | port € ran processor_port_rel
e port € dom receiver A receiver(port) = kernel

4.6.6 Device Ports

Each device is represented by a unique port. The relation d evice_port_rel identifies the device
port representing each device. The kernel is the receiver for a device port. For convenience:

m The expression device_port(dev) is used to denote dev’s device port.
m The expression port_device(port) is used to denote the device (if any) having port as its
device port.

Mach Definition 48

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
32 Basic Kernel State Definition

__DevicesAndPorts
TasksAndPorts
Kernel
device_port_rel : DEVICE +— PORT
device_port : DEVICE + PORT
port_device : PORT - DEVICE

device_port = device_port_rel

port_device = device_port_rel™

Y port : PORT | port € ran d evice_pori_rel

e port € dom receiver A receiver(port) = kernel

4.6.7 Device Master Port

Tasks gain access to devices through the device master port which is denoted by
master_device_port. The Kernel is the receiver for this port.

Mach Definition 49

— MasterDevicePort
TasksAndPorts
Kernel
master_device_port : PORT

(master_device_port, kernel) € receiver

4.6.8 Summary

Each special port for which the kernel is always the receiver must be distinct from all of the
other special ports for which the kernel is always the receiver. For example, no two tasks may
have the same self port, and no port may be both a task self port and a thread self port. Note,
however, that the kernel does not prohibit overlaps between the special ports for which the
kernel is always the receiver and the other special ports. For example, a task’s bootstrap port
might be set to some others task’s self port (even though this would probably not serve any
useful purpose).

Mach Definition 50

—_Special Purpose Ports
SpecialTaskPorts
Special ThreadPorts
MemoriesAndPorts
HostsAndPorts
ProcessorsAndPorts
DevicesAndPorts
MasterDevice Port

disjoint {ran task_self, ran thread_self ran control_port,ran object_port,
ran name_port, { host_control_port },{ host_name_port },
ran ps_conirol_pori_rel, ran ps_name_port_rel, ran processor_pori_rel,
ran device_port_rel,{ master_device_port })

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 33

Editorial Note:
The following needs some revision:
= Add port classes for pager name ports and pager (object) ports.

= Correct the misunderstanding that a port in a port class must have the kernel as the receiver.
While this is true for most classes, memory object (pager) ports are a notable exception.

The type PORT_CLASS denotes the classes of ports for which the kernel is the receiver.
These are Pc_task, Pc_thread, Pc_host_control, Pc_host_name, Pc_ps_conirol, Pc_ps_name,
Pc_processor, Pc_memory, and Pc_device.

If the kernel is the receiver for port, then the expression port_class(port) denotes port’s class.
Mach Definition 51

PORT_CLASS ::= Pc_task | Pc_thread | Pc_host_control | Pc_host_name
| Pe_ps—_control | Pc_ps_name | Pc_processor | Pc_memory
| Pe_device

__PortClasses
Special PurposePorts
port_class : PORT -+ PORT_CLASS

VY port : PORT
e (port € ran task_self = (port, Pc_task) € port_class)
A (port € ran thread_self = (port, Pc_thread_) € pori_class)
A (port = host_control_port = (port, Pc_host_co_ntrol) € port_class)
A (port € ran device_pori_rel = (port, Pc_device) € port__class)
A (port € ran control_port_rel = (port, Pc_memory)_e port_class)
A (port = host_name_port = (port, Pc_host_name) € port_ class)
A
A
A

port € ran ps_control_port_rel = (port, Pc_ps_ control) € port_class)
port € ran ps_name_port_rel = (port, Pc_ps_name) € port_class)
port € ran processor_port_ rel = (port, Pc_processor) € pori_ class)

4.7 Total Send Rights

In addition to the send rights contained in the port name spaces associated with the tasks,
the kernel maintains so-called naked send rights to the special ports. We occasionally need to
know the total number of send rights to a given port including both those recorded in a name
space and the naked rights. Naked rights are associated with the following ports: task_sself,
task_eport, task_bport, thread_sself and thread_eport. We define port_right_seq to be any sequence
of the elements of the set pori_right_rel (the precise ordering of elements is not important for
our purposes). The expression total_name_space_srights(port) denotes the number of send rights
to port in all name spaces, and total_naked _srights(port) denotes the total number of send rights
to port that are not stored in any name space. The expression total_srights(port) is the sum of
these two numbers.

Review Note:

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
34 Basic Kernel State Definition

Need to determine if naked send rights are implied by any other special port relationships. Note that a
naked send right is not created for the self port relationships (e.g., thread_self).

Need to determine whether rights in messages count as naked send rights too.

Mach Definition 52

— TotalSendRights
PortErist
TasksAndPorts
Special PurposePorts

port_right_seq : seq(TASK x PORT x NAME x RIGHT x Nyp)
total_name_space_srights : PORT —— N

total_naked_srights : PORT - N

total_srights : PORT - N

ran port_right_seq = pori_right_rel
#port_right_seq = Ffport_right_rel

(¥ port : PORT | port € port_ezists
o total_name_space_srights(port)
= Seq_plus(squash {task : TASK; name : NAME; i, n : Ny
| (n, (task, port, name, Send, i)) € pori_right_seq
o (1,0
A total _naked_srights(port) = #(task_sself > {port})
+ #(task_eport > {port})
+ #(task_bport > {port})
+ #(thread_sself > {port})
+ #(thread_eport > {port})
A total_srights(port) = total_name_space_srights(port) + total_naked_srights(port))

4.8 Registered Rights

Each task has a finite array of send rights, intended to use for access to the Network Name
Server, the Environment Manager, and the Service server (although they may have any use).
These rights are called “registered,” to denote the fact that the kernel knows their identity. The
expression registered_rights(task) denotes the set of names of rights registered for task. There
may be more than three registered rights, in fact their number need only be less than or equal to
the system constant Task_port_register _maz. The Kernel has three constants Name_server_slot,
Fnuvironment_slot, and Service_slot which tell it which element of the array refers to each of
these servers.

Mach Definition 53

Task_port_register_mazx : N
Name_server_slot : N
Environment_slot : N
Service_slot - N

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 35

__ RegisteredRights
TaskFrist
registered_rights : TASK -+ seq PORT

dom registered_rights = task_exists
Vtask : TASK | task € task_exists
o #(registered_rights(task)) < Task_port_register_maz

4.9 Memory System

This section describes the components of the Mach system that are used to provide tasks with
address spaces.

4.9.1 Memory

Each memory can be viewed as mapping a memory offset to a value. Essentially, a memory can
be viewed as an array of values indexed by offsets; the only difference is that a memory may
have holes in the sense that some offsets do not map to any value. The mapping from offsets to
values is defined by the memory’s manager. As described in Section 4.9.2, the kernel becomes
aware of pieces of this mapping as data is cached in resident pages. The types OFFSET and
WORD denote, respectively, the sets of memory offsets and memory values.

The kernel maintains a copy strategy for each memory object. This strategy is one of the
following:

m Memory_copy_none —

Review Note:
We need to figure out the meaning of each strategy.

n Memory_copy_call —
n Memory_copy_delay —
n Memory_copy_temporary —

These values comprise the elements of the type MEMORY _COPY_STRATEGY . The expres-
sion copy_strategy(memory) denotes the copy strategy recorded for memory.

The kernel cannot request access permissions and data from a memory object until it has
received a memory_object_ready command (normally in reply to a memory_object_init
request). The set initialized denotes the set of memory objects for which this has occurred.

The kernel records which memory objects may be cached; the setmay_cache denotes the set of
such memory objects. The memory performance for a memory object is influenced by its copy
strategy and whether it can be cached.

A memory can be either managed or unmanaged. The setmanaged denotes the set of memories
that are managed. Corresponding to each such memory there is a task acting as the memory’s
manager. The manager for memory is denoted by manager(memory). Each memory having an
object port is managed.

Similarly, memories can be temporary or non-temporary. The settemporary_rel denotes the set
of memories that are temporary.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
36 Basic Kernel State Definition

If the page of data corresponding to a given memory-offset pair is not resident when
a thread attempts access, then the thread is blocked on a page fault. The expression
memory_fault(memory, offset) indicates the set of threads that are currently blocked on a page
fault generated by access to a given memory-offset pair.

Temporary memory is backed by the default memory manager. The kernel records a port
identifying the current default memory manager. This port is denoted byd efault_mem_manager.

A null value is used to indicate the lack of a memory filling a particular function in a virtual
memory map entry.

Review Note:
Need to figure out how d efauli_mem_manager relates to managed and manager.

Mach Definition 54

[WORD, OFFSET)]

MEMORY _COPY _STRATEGY ::= Memory_copy_none | Memory_copy—_call
| Memory_copy_delay | Memory_copy_temporary

— Memory
MemoriesAndPorts
PortErist
copy_strateqgy : MEMORY —+— MEMORY _COPY_STRATEGY
inttialized : P MEMORY
may_cache : P MEMORY
managed : P MEMORY
manager : MEMORY — TASK
temporary_rel : P MEMORY
memory_fault : MEMORY X OFFSET P THREAD
default_mem_manager : PORT

default_mem_manager € port_exists
managed = dom object_pozt
dom object _port C dom manager
inttialized C dom object_port
may_cache C initialized
initialized = dom copy_strategy
Y memory : MEMORY ; offset : OFFSET
| (memory, offset) € dom memory_fault

A memory_fault(memory, offset) # &

e memory € managed

4.9.2 Pages

At the physical level, pages relate page offsets and values in much the same way as memories
relate memory offsets and values. The relation page_word_rel identifies the binding between
page-offset pairs and words of data. Since at most one value can be stored at a given page offset,
page_word_rel is actually a function mapping page-offset pairs to values. For convenience,

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 37

page_word_fun(page)(page_offset) is used to denote the word of data at offset page_offset of page
page.

Each page represents some area of memory. The relation represenis_rel indicates the binding
between pages and memory-offset pairs. This relation should be interpreted as indicating the
memory and offset within that memory of the beginning of the data that a page represents.
Since each area of memory is represented by at most one page, the function representing_page
denoting the page representing an area of memory can be defined. Each page in the range of
this function represents some area of memory. For convenience:

m The set represents_memory is used to denote the set of pages that represent some area of
memory.

m The set represented is used to denote the set of memory-offset pairs that are represented
by some page.

= The expressions represented_memory(page) and represented_offset(page) denote, respec-
tively, the memory and offset that page represents.

When a page is modified, it becomes dirty. The set dirty_rel denotes the set of dirty pages.
Upon evicting a page, the kernel checks whether the page is dirty. If it is, then the contents of
the page are sent to the appropriate memory manager for it to record the updates. A memory
manager may instruct the kernel that it will not retain a copy of a page that it has provided to
the kernel by indicating that the page is precious. Whenever the kernel evicts a precious page,
it sends the contents of the page to the appropriate memory manager regardless of whether the
page is dirty. By instructing the kernel that a page is precious, a memory manager can relieve
itself of the responsibility of retaining a copy of a page while the page is resident; the memory
manager can rely on the kernel to inform it of the page’s current contents whenever the page
is evicted. The set precious is used to denote the set of precious pages.

Mach Definition 55

[PAGE_OFFSET)]

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
38 Basic Kernel State Definition

__PageAndMemory
page_word_rel : P((PAGE x PAGE_OFFSET) x WORD)
page_word_fun : PAGE - PAGE_OFFSET — WORD
represents_rel : PAGE « (MEMORY x OFFSET)
representing_page : MEMORY x OFFSET + PAGE
represents_memory : P PAGE
represented : P(MEMORY x OFFSET)
represented_memory : PAGE - MEMORY
represented_offset : PAGE - OFFSET
dirty_rel : P PAGE
precious : P PAGE

(VY page : PAGE; page_offset : PAGE_OFFSET; word : WORD

e page_word_fun(page)(page_offset) = word

< ((page, page_offset), word) € page_word_rel)

represents_memory C dom page_word_fun

representing_page = represents_rel™

dirty_rel C represents_memory = ran representing_page

represented = dom representing_page

represented_memory = {memory : MEMORY ; offsel : OFFSET; page : PAGE
| (page, (memory, offset)) € represents_rel o (page, memory)}

represented_offsel = {memory : MEMORY ; offsel : OFFSET; page : PAGE
| (page, (memory, offset)) € represents_rel o (page, offset)}

precious C represents_memory

Mach allows pages to be locked against particular types of accesses. This is represented by
associating a set of protections with each page. The protections are of type PROTECTION which
is comprised of the elements Read, Write, and Execute. The relation page_lock_rel indicates the
access modes against which a page is locked. For convenience pagejocks(page) is defined to be
the set of access modes against which page is locked.

Mach Definition 56
PROTECTION ::= Read | Write | Ezecute
— Lock

page_lock_rel : PAGE <= P PROTECTION
page_locks : PAGE - P PROTECTION

page_lock_rel = page_locks

4.9.3 Address Space

The set allocated is used to denote the set of TASK-PAGE_INDEX pairs that have been allocated
in a task’s address space. A task-index pair may be mapped to a memory area. Using the
previously defined state components, these memory areas can be related to the physical pages
used to contain the data when it is paged out. Thus, a task’s address space completes the
picture of mapping virtual addresses to physical pages and values. Note, however, that not all
allocated addresses need be mapped to memory. The relation map_rel associates task-index
pairs with memory-offset pairs. There is at most one memory-offset pair associated with each
task-index pair. For convenience:

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 39

m The expressions mapped_memory(task, index) and mapped_offset(task, indezx) are used to
denote the memory and offset corresponding to a given task-index pair.
m The set mapped is used to denote the set of memories to which some task-index pair maps.

Mach Definition 57

[PAGE_INDEX]

__AddressSpace
map_rel : (TASK x PAGE_INDEX) +— (MEMORY x OFFSET)
mapped_memory : TASK X PAGE_INDEX - MEMORY
mapped_offset : TASK x PAGE_INDEX -+ OFFSET
allocated : P(TASK x PAGE_INDEX)
mapped : P MEMORY

dom map_rel = dom mapped_memory = dom mapped_offset
dom map_rel C allocated
mapped = ran mapped_memory
Y task_va_pair : TASK x PAGE_INDEX ; memory : MEMORY ; offset : OFFSET
o (task_va_pair, (memory, offset)) € map_rel
& (mapped_memory(task_va_pair) = memory
A mapped_offset(task_va_pair) = offset)

4.9.4 Memory Protection

Mach protects memory objects by assigning protections to each page in a task’s address space.
Three sets of protections are associated with each page in a task’s address space. The Mach
protection holds currently applicable protection limits as indicated by users. The maximum
protection limits the allowable values for the Mach protection. The third set, the current
protections, is what actually limits a task’s access to a page. This is a DTOS addition and will
be further defined in Section 5.9.°

We use mach_protection to denote the relation between tasks, pages, and Mach protec-
tion sets. The pair ((task, page_index), protection_set) is an element of mach_protection if
protection_set is the set of protections most recently established by a user request to set
the Mach protections for page_indexz. We model maximum protections similarly by defining
maz_protection(task, page_index) to denote the maximum protection that task is permitted to
the memory it has mapped at page_indez.

Mach Definition 58
__MachProtection

mach_protection : (TASK x PAGE_INDEX) + P PROTECTION
maz_protection : (TASK x PAGE_INDEX) -+ P PROTECTION

dom mach_protection = dom max_protection

Y task_page_index : TASK x PAGE_INDEX

| task_page_index € dom mach_protection

e mach_protection(task_page_inder) C max_protection(task_page_indez)

6The Mach protection in DTOS is called the current protection in Mach and is used in Mach to control a task’s
access of pages. The terminology has been changed here to remain consistent with the prototype which must take into
account the decisions of the security server when determining the current protections.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
40 Basic Kernel State Definition

4.9.5 Memory Inheritance

For each memory region within a task’s address space, Mach records an inheritance attribute
that indicates the manner in which child tasks inherit the memory. The possible options are:

m [nheritance_option_share — indicates the region should be shared by the parent and child

m [nheritance_option_copy — indicates the region should be shared by the parent and child
until one of them writes to the region; once a modification occurs, a copy-on-write is
performed

m Inheritance_option_none — indicates the region should not be made accessible to the child

These values comprise the elements of the type INHERITANCE_OPTION .

The expression inheritance(task, page_index) indicate the inheritance option associated with the
region indicated by page_indez in task’s address space.

Mach Definition 59
INHERITANCE_OPTION ::= Inheritance_oplion_share | Inheritance_opilion_copy

| Inheritance_option_none

Inheritance

Finh@m‘tance : TASK x PAGE_INDEX —+ INHERITANCE_OPTION

4.9.6 Shadow Memories

A memory, memory,, is said to back a second memory, memory,, if memory,’s manager takes
responsibility for pages of memory, that are not handled by memory,’s manager. The relation
backing_rel indicates when memory, backs memory, at a given offset within memory,. Each
memory is backed by at most one memory-offset pair. Furthermore, a memory may back at most
one other memory. For convenience, backing_memory(memory) and backing_offset(memory) are
used to denote, respectively, the memory and offset backing memory.

Whenever memory, backs memory,, memory, is said to shadow memory,. For convenience:

» The expression shadow_memories(memory) indicates the singleton set of memories backed
by memory. shadow_memories is defined only for those memories that back another mem-
ory.

m The expression backing_chain(memory) indicates the sequence of memories backing
memory.

If a memory is not backed by any memories, then its backing chain is empty. If memory,
is backed by memory, then the backing chain for memory, consists of memory, followed by
the backing chain for memory,. For example, suppose memory, backs memory,, memorys backs
memory,, and no memory backs memory,. Then, the backing chains for memory,, memory,, and
memory,are, respectively, (), (memorys), and {(memory,, memorys). Mach does not permit cycles
to occur in the sequence of memories backing a memory. Thus, we require that no memory be
present in its backing chain.

Mach Definition 60

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 41

—_ShadowMemories
backing_rel : P(MEMORY x MEMORY x OFFSET)
backing_memory : MEMORY - MEMORY
backing_offset : MEMORY —+ OFFSET
shadow_memories : MEMORY — P MEMORY
backing_chain : MEMORY — seq MEMORY

YV memory,, memory, : MEMORY ; offset : OFFSET

e (memory,, memory,, offset) € backing_rel
& ((memory,, memory,) € backing_memory

A (memory,, offset) € backing_offset)
dom shadow_memories = ran backing_memory
YV memory, : MEMORY | memory, € dom shadow_memories
e shadow_memories(memory,)
= {memory, : MEMORY

| (offset : OFFSET o (memory,, memory,, offset) € backing_rel)}
YV memory, : MEMORY | memory, € dom shadow_memories
o #(shadow_memories(memory,)) = 1
Y memory : MEMORY
e memory ¢ dom backing_memory = #(backing_chain(memory)) =0
A (memory € dom backing_memory

= backing_chain(memory)

= (backing_memory(memory))
“backing_chain(backing_memory(memory)))

Vmemory : MEMORY e memory ¢ ran(backing_chain(memory))

4.9.7 Page Wiring

To prevent critical pages from being evicted, Mach allows tasks to wire pages. For each page
allocated in a task, a count is maintained of the number of times that the task has wired the
page. The expression wire_count(task, page_index) denotes the number of times that task has
wired the page indicated by page_index in its address space. As long as a task’s count for
page_index remains nonzero, the physical page associated with page_indez must be retained in
memory. In other words, a physical page may only be evicted when no task has the page wired.
The set wired denotes the set of physical pages that are wired by some task.

Mach Definition 61

_ Wired
AddressSpace

PageAndMemory

wire_count : (TASK x PAGE_INDEX) + N
wired_locations : P(TASK x PAGE_INDEX)
wired : P PAGE

dom wire_count = allocated

wired_locations = { lask : TASK; page_index : PAGE_INDEX
| wire_count(task, page_indezx) > 0}

wired_locations C dom(representing_page o map_rel)

wired = (representing_page o map_rel) (wired_locations)

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
42 Basic Kernel State Definition

Review Note:

The wire_count component corresponds to the VM entry wire count. A page is wired if any VM entry
that is mapped to it is wired. For efficiency the prototype maintains two wire counts, one on VM entries
and another on pages. The latter denotes the number of VM entries that have the page wired ignoring
multiple wirings by a single VM entry. We do not model the page wire count.

4.9.8 Summary

The memory system is comprised of memory objects, address spaces, pages, and backing chains.

Mach Definition 62

_ MemorySystem
Memory
AddressSpace
PageAndMemory
MachProtection
Lock
ShadowMemories
Inheritance

Wired

allocated = dom mach_protection

ran represented_memory C dom object_port

Y task_va_pair : TASK x PAGE_INDEX

| task_va_pair € dom map_rel

A map_rel(task_va_pair) € dom representing_page

e mach_protection(task_va_pair)

C PROTECTION \ page_locks(representing_page(map_rel(task_va_pair)))
dom inheritance = allocated

mapped C dom object_port

4.10 Messages

This section discusses the structure of messages.

4.10.1 Message Options

The type MACH_MSG_OPTION denotes the base values of the options parameter of
mach_msg. The recognized values of this type are Mach_send_msg, Mach_rcv_msyg,
Mach_send_cancel, Mach_send_notify, Mach_rcv_notify, Mach_rcv_large, Mach_send_timeout,
and Mach_rcv_timeout. The options parameter is set to some set of the base values.

Mach Definition 63

[MACH_MSG_OPTION]

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 43

Mach_send_msg : MACH_MSG_OPTION
Mach_rcv_msg : MACH_MSG_OPTION
Mach_send_cancel : MACH_MSG_OPTION
Mach_send_notify : MACH_MSG_OPTION
Mach_rcv_notify - MACH_MSG_OPTION
Mach_rcv_large : MACH_MSG_OPTION
Mach_send_timeout : MACH_MSG_OPTION
Mach_rev_timeout : MACH_MSG_OPTION

disjoint {({ Mach_send_msg}, {Mach_rcv_msg},
{Mach_send_cancel}, { Mach_rcv_large}, { Mach_send_nolify },
{ Mach_rcv_notify },{ Mach_send_timeout },{ Mach_rcv_timeout })

4.10.2 Complex Messages

In addition to simply carrying data, a message can also carry port rights and memory regions.
A message carrying port rights or memory regions is called acomplex message. Each message
carries a flag indicating whether the message contains port rights or memory regions. The type
COMPLEX_OPTION consists of the elements Co_carries_rights and Co_carries_memory; the
flag carried in each message is a set of these values. Note that a flag containing both elements
indicates that the message contains both port rights and memory regions.

Mach Definition 64

[COMPLEX_OPTION]

Co_carries_rights : COMPLEX_OPTION
Co_carries_memory : COMPLEX _OPTION

disjoint {{ Co_carries_rights}, { Co_carries_memory})

4.10.3 Data Types

Each element in the body of a message is typed. The set MACH _MSG_TYPE denotes the set
of data types recognized by the system.

Mach Definition 65

[MACH_MSG_TYPE]

Whenever a port right is sent in a message, the client indicates a transfer option for the port
right. The collection of acceptable transfer options is denoted by Recognized_transfer _optionsand
contain the values Mmi_make_send, Mmi_copy_send, Mmi_move_send, Mmi_make_send_once,
Mmit_move_send_once, and Mmi_move_receive.

An element of type Mmt_make_send indicates a receive right held by the sender from which a
send right is to be created for the receiver. Similarly, an element of type Mmt_make_send_once
indicates a receive right held by the sender from which a send-once right is to be created for
the receiver.

An element of type Mmt_copy_send indicates a send right that should be copied from the sender’s
port name space into the receiver's port name space. In other words, the sender retains the
existing port right while passing the right to the receiver.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
44 Basic Kernel State Definition

An element of type Mmt_move_send indicates a send right that should be moved from the
sender’s port name space into the receiver’'s port name space. In other words, the sender’s
reference count is decremented by one and the receiver's reference count is incremented by
one. If the sender’s reference count was one, then the sender loses the capability associated
with the right. If the receiver’s reference count was zero, then the receiver gains the capability
associated with the right. Similarly, Mmt_move_send_once and Mmi_move_receive allow send-
once and receive rights to be moved from the sender’s name space to the receiver's name space.

Mach Definition 66

Mmit_make_send : MACH_MSG_TYPFE
Mmi_copy_send : MACH_MSG_TYPE
Mmit_move_send : MACH_MSG_TYPFE
Mmi_make_send_once : MACH_MSG_TYPE
Mmit_move_send_once : MACH_MSG_TYPE
Mmi_move_recetve : MACH_MSG_TYPFE
Recognized_transfer_options : P MACH_MSG_TYPE

({ Mmit_make_send }, { Mmt_copy_send}, { Mmt_move_send },
{Mmt_make_send_once}, { Mmi_move_send_once}, { Mmi_move_receive })
partition Recognized_transfer_options

After the kernel translates the port rights to an internal representation, it is no longer relevant
whether the right was moved, copied or made and the kernel simply records the type of right,
Mach_msg_type_port_receive, Mach_msg_type_port_send, or Mach_msg_type_port_send_once.

These values of MACH_MSG_TYPFE comprise the set Mach_msg_type_port_rights.

Mach Definition 67

Mach_msg_type_port_recewve : MACH_MSG_TYPE
Mach_msg_type_port_send : MACH_MSG_TYPE
Mach_msg_type_port_send_once : MACH_MSG_TYPE
Mach_msg_type_port_rights : P MACH_MSG_TYPE

{({ Mach_msg_type_port_receivet,{ Mach_msg_type_port_send},
{Mach_msg_type_port_send_once})
partition Mach_msg_type_port_rights

4.10.4 Message Headers

The header for a message residing in user-space memory or kernel-space memory contains the
following data:

m Jocal_port — specifies the reply port when sending a message (Mach_pori_null indicates
no reply port is specified)

local_rights — the port rights for the local port (if one is specified)

remote_port — specifies the destination port when sending a message

remote_rights — the port rights for the remote port

size — specifies the size, in bytes, of a message when receiving

msg_sequence_no — specifies the sequence number when receiving a message

operation — operation or function id set by message sender

In addition, a message header in kernel space contains a value complez which in-
dicates whether the message carries port rights or memory regions or both. This

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 45

value is a set of elements of type COMPLEX_OPTION. In place of complez,
a message header in user space contains a single value complex_boolean indicating
whether the message carries port rights and/or memory regions. The possible val-
ues are Co_carries_rights_and_or_memory and Co_carries_neither_rights_nor_memory. If
complex_boolean has value Co_carries_neither_rights_nor_memory, then the message contains
no port rights nor memory regions regardless of what is indicated by the individual data ele-
ments of the message.

Mach Definition 68
[OPERATION]

COMPLEX_OPTION_BOOLEAN
2= Co_carries_rights_and_or_memory
| Co_carries_neither_rights_nor_memory

__MachMsgHeader
local_port : NAME
local_rights : P MACH_MSG_TYPE
remote_port : NAME
remote_rights : MACH_MSG_TYPE

stze N

msg_sequence_no : N
operation : OPERATION
complex_boolean : COMPLEX_OPTION_BOOLEAN

Ftlocal_rights < 1

Messages residing in kernel space contain ports rather than names. Thus, theremote_port and
local_port fields contain ports instead of names when a message is in transit. If Mach_port_null
was specified as the name of the local port in the MachMsgHeader, then local_port is empty in
the corresponding MachinternalHeader.

Mach Definition 69

__ MachInternalHeader
local_port : P PORT
local_rights : P MACH_MSG_TYPE
remote_port : PORT
remote_rights : MACH_MSG_TYPE

stze N

msg_sequence_no : N
operation : OPERATION
complez : P COMPLEX_OPTION

Ftlocal_rights = #local_port < 1

4.10.5 Outcall Operations

There are several sets of operation identifiers used in messages to external servers (e.g., the
security server) and user tasks. Some of these identifiers are used by the kernel when sending
outcalls. We use

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

46

CDRL A005
Basic Kernel State Definition

Freeption_ids to denote the set of operations used by the kernel when sending an exception
message, The only element of this set is Mach_exception_id.

Kernel_service_reply_ids to denote the set of operations used by the kernel in reply mes-
sages to kernel service requests,

m Security_server_ids to denote the set of security server operations,
m Audit_ids to denote the set of audit operations,
m Mem_obj_confirmation_ids to denote the set of operations used by the kernel when sending

confirmations of memory operations to a pager,

m Pager_request_ids to denote the set of pager operations,
m Mach_notify_ids to denote the set of operations used by the kernel in notification messages,

and
Network_packet_ids to denote the set of operations used by the kernel when forwarding
network packets.

We give a partial description of the identifiers in these sets.
Mach Definition 70

Ezception_ids : P OPERATION
Mach_exception_id : OPERATION

Fzceptlion_ids = { Mach_exception_id}

Mach Definition 71

‘ Kernel_service_reply_ids : P OPERATION

Mach Definition 72

Security_server_ids : P OPERATION
SSI_compute_av_id :
OPERATION

{SSI _compute_av_id}
C Securily_server_ids

Mach Definition 73

Audit_ids : P OPERATION
Audit_batch_id, Audit_id :
OPERATION

{Audit _batch_id, Audit_id}
C Audit_uds

Mach Definition 74

Mem_obj_confirmation_ids : P OPERATION
Memory_object_change_completed_id, Memory_object_lock_completed_id,

Memory_object_supply_completed_id :
OPERATION

{Memory_object _change_completed_id, Memory_object_lock_completed_id,
Memory_object_supply_completed_id}
C Mem_obj_confirmation_uds

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 47

Mach Definition 75

Pager_request_ids : P OPERATION

Memory_object_copy—id, Memory_object _create_id, Memory_object _data_initialize_id,
Memory_object_data_request_id, Memory_object_data_return_id,
Memory_objecti_data_unlock_id, Memory_object_data_write_id,
Memory_object_init_id, Memory_object_terminate_id :

OPERATION

{Memory_object_copy_id, Memory_objeci_create_id, Memory_object _data_initialize_id,
Memory_object_data_request_id, Memory_object_data_return_id,
Memory_object_data_unlock_id, Memory—_object_data_write_id,
Memory_object_inil_id, Memory_object _terminate_id}

C Pager_request_uds

Mach Definition 76

Mach_notify_ids : P OPERATION
Ipc_notify_dead_name_ud, Ipc_notify_msg_accepted_td, Ipc_notify_no_senders_id,
Ipc_notify_port_deleted_id, Ipc_notify_port_destroyed_ud,
Ipc_notify_send_once_id :

OPERATION

{Ipc_notlify_dead_name_id, Ipc_nolify_msg_accepted_id, Ipc_notify_no_senders_id,
Ipc_notify_port_deleted_id, Ipc_notify_port_destroyed_d,
Ipc_notify_send_once_id}

C Mach_notify_uds

Mach Definition 77

Network_packet_ids : P OPERATION
Forward_net_packet_id :
OPERATION

{Forward_nel_packet_id}
C Network_packet_ids

4.10.6 Message Bodies

The body of a message consists of a sequence of message elements. Each element contains the
following:

= the number of data elements contained in the message element
= a data type
= a collection of data elements or a single address

A triple that contains a collection of data elements represents in-line data. The number of data
elements in the collection is the same as the specified number of data elements, and each such
element is of the specified type. A triple that contains a single address represents out-of-line
data. The address specifies the start of the area of memory containing the data. The data in
that area is interpreted as being a collection of the specified humber of data elements of the
specified data type. Each out-of-line element contains a flag indicating whether the memory
should be deallocated from the sender’'s address space. The possible values of this flag are
Msg_deallocate and Msg_dont_deallocate.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
48 Basic Kernel State Definition

Mach Definition 78

[MSG_DATA]

OLSD ::= Msg_deallocate | Msg_doni_deallocate
BASE_MSG_ELEMENT
= In_line{N x MACH_MSG_TYPE x seq MSG_DATA))
| Out_of _line{(N x MACH_MSG_TYPE x VIRTUAL_ADDRESS x OLSD})

Thus, an in-line message element is denoted by:

In_line(n, mach_msg_type, data_seq)

and an out-of-line message element is denoted by:

Out_of _line(n, mach_msg_type, va, olsd)

The number of entries specified in a triple representing in-line data must be the same as the
number of entries in the specified sequence of data elements. The set Msg_clement denotes the
set of valid message elements, and the set WVESSAGE_BODY denotes the set of sequences of
valid message elements. In other words, MESSAGE_BODY denotes the set of valid message
bodies.

Mach Definition 79

Msg_element : P BASE_MSG_ELEMENT

Msg_element
= {msg_element : BASE_MSG_ELEMENT
| (3 n :N; mach_msg_type : MACH_MSG_TYPE; data_seq : seq MSG_DATA;
va : VIRTUAL_ADDRESS; olsd : OLSD
o (msg_element = In_line(n, mach_msg_type, data_seq)
A #data_seq = n)
V msg—element = Oul_of _line(n, mach_msg_type, va, olsd))}

Mach Definition 80

MESSAGE_BODY == seq Msg_element

When a message is moved into kernel space, the port names appearing in the message are
transformed into port identifiers and the virtual addresses indicating out-of-line data are
transformed into memory-offset pairs. In other words, the client specific names for kernel
entities are transformed into the appropriate global names used internal to the kernel. Thus,
an element in a message body in kernel space is of one of the following forms:

» Msg_value(n, mach_msg_type, (task, value_seq)) — an in-line element; if mach_msg_type is
an element of Recognized_transfer_options and some elements of value_seq have not yet
been resolved to ports then further processing is required to transform the sequence of
data into a sequence of ports.

Note that there are two forms for elements of value_seq. An entry of the form
V_data(msg_data,v_data_l) denotes the data msg_date while an entry of the form

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 49

V_port(port, v_date_l) denotes a port name that has been resolved into a port. In ei-
ther case, v_data_I indicates whether the element came from an in-line data element or
an out-of-line data element. The only time v_data_I will indicate an out-of-line data ele-
ment is when the element is a port name from an out-of-line data element that has been
resolved into a port.

m Transit_right(n, mach_msg_type, (task, port_seq, v_data_l)) — a sequence of port rights in
transit; task indicates the task that sent the message and »_data_I indicates whether the
port right was sent in-line or out-of-line

n Msg_region(n, mach_msg_type, (task, va, olsd)) — an out-of-line element that requires fur-
ther processing to transform the task-address pair into a memory-offset pair; task indi-
cates the task that sent the message and olsd indicates whether the region should be
deallocated from task’s address space

n Transit_memory(n, mach_msg_type, (task, memory, offset)) — an out-of-line element that
has been transformed from a task-address pair to a memory-offset pair;task indicates the
task that sent the message

The number of entries specified in a triple representing in-line data must be the same as the
number of entries in the specified sequence of data elements. The type Internal_clement denotes
the set of valid message elements internal to the kernel, and the type INTERNAL_BODY
denotes the set of sequences of these elements. Thus, INTERNAL_BODY denotes the set of
message bodies that can be stored in the kernel.

Mach Definition 81

V_DATA_LOCATION ::= V_data_in | V_data_out
MSG_VALUE = V_data(MSG_DATA x V_DATA_LOCATIONY
| V_port (PORT x V_DATA_LOCATIONY)
BASE_INTERNAL_ELEMENT
= Msg_value (N x MACH_MSG_TYPE x (TASK x seq MSG_VALUE))
| Transit_right(N x MACH_MSG_TYPE
x(TASK x seq PORT x V_DATA_LOCATION))
| Msg_region(N x MACH_MSG_TYPE x (TASK x VIRTUAL_ADDRESS x OLSD))
| Transit_memory{(N x MACH_MSG_TYPE x (TASK x MEMORY x OFFSET))

Editorial Note:
Transit_right probably needs to be considered in the following.

Internal_element : P BASE_INTERNAL_ELEMENT

Internal_element
= {msg_element : BASE_INTERNAL_ELEMENT
| (3 n :N; mach_msg_type : MACH_MSG_TYPE; task : TASK;
value_seq : seq MSG_VALUE; port_seq : seq PORT;,
memory : MEMORY ; offset : OFFSET; va : VIRTUAL_ADDRESS,
olsd : OLSD; v_data_l : V_DATA_LOCATION
o (msg_element = Msg_value(n, mach_msg_type, (task, value_seq))
A #value_seq = n)
V msg_element = Msg_region(n, mach_msg_type, (task, va, olsd))
V msg_element
= Transit_memory(n, mach_msg_type, (task, memory, offset)))}

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
50 Basic Kernel State Definition

INTERNAL_BODY == {body : seq Internal_element
| (Ftask : TASK
o (Vn :N; mach_msg_type : MACH_MSG_TYPE;
value_seq : seq MSG_VALUE;
olsd : OLSD; tasky : TASK; va : VIRTUAL_ADDRESS
| Msg_value(n, mach_msg_type, (tasky, value_seq)) € ran body
V Msg_region(n, mach_msg_type, (tasky, va, olsd)) € ran body
e task = tasky))}

Review Note:
Should Transit_memory be added to the above?

Note that all of the elements in a single message body must contain the same task identifier.
It is intended that this task identifier unambiguously defines the identity of the task that sent
the message.

4.10.7 Message Status
Once a message enters the kernel, it can be in one of three states:

m Msg_stat_send — indicates that the kernel is performing processing to send the message

m Msg_stat_pseudo — indicates that the kernel is performing processing to return the mes-
sage to the message sender as part of a failed send request

m Msg_stat_rcv — indicates that the kernel is performing processing to receive the message

These elements comprise the values of the type MSG_STATUS.

The following error conditions can arise during the process-
ing of a message: Msg_error_invalid_memory, Msg_error_invalid_right, Msg_error_invalid_type,
Msg_error_msg_too_small, Msq_error_notify_in_progress, and Msg_error_timed_out. These val-
ues comprise the set MSG_ERROR.

Mach Definition 82
MSG_STATUS ::= Msg_stat_send | Msg_stal_pseudo | Msg_stal_rcv
MSG_ERROR ::= Msg_error_invalid_memory | Msg_error_invalid_right

| Msg_error_invalid_type | Msg_error_msg_too_small
| Msg_error_notify_in_progress | Msg_error_timed_out

4.10.8 Message Structure

Each message is modeled as containing fields header and body. The type Message denotes the
set of user space messages.

Mach Definition 83

Message
header : MachMsgHeader
body : MESSAGE_BODY

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 51

In addition to the header and body, messages in transit also contain the following fields:

m option — indicates the options specified by the client
m time_out_at — indicates when a given send or receive request will time out

If the set contained in this field is empty, then the message will not time out. Otherwise,
the set contains exactly one value and this value defines the earliest time at which the
associated send or receive request can time out.

m status — indicates future processing the kernel must perform on the message
m error — indicates the first error (if any) that occurred during the processing of the message.

Editorial Note:
status and error should be removed as the purpose they were intended to serve can now be accomplished
more generally using the tools of the execution model.

The type InternalMessage denotes the possible values of messages in transit.
Mach Definition 84

__InternalMessage

header : MachinternalHeader

body : INTERNAL_BODY

option : P MACH _MSG_OPTION
time_out_at : PN

status : MSG_STATUS

error : P MSG_ERROR

Ftime_out_at < 1

Ferror <1

4.10.9 Pending Receives

Each port can have clients blocked on message receive requests waiting for messages to arrive
at the port. Each pending receive request has the following associated information:

notify — the notify port name specified by the receiving task

option — the options specified by the receiving task

rcv_size — the receive size specified by the receiving task

time_oui_at — the time at which the request will time out; this has the same format as
the time_out_at component of InternalMessage.

Mach Definition 85

— PendingReceive

notify : NAME

option : P MACH_MSG_OPTION
recv—_size : N

time_out_at : PN

Ftime_out_at < 1

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
52 Basic Kernel State Definition

4.10.10 Reply Ports

The sender of a message can specify a reply port for the receiver to use to reply to the message.
The sender does so by setting the local_port field to its name for the port. For convenience,
the relation reply_port_rel is used to denote the reply port and transferred right in a message
specifying a reply port. The interpretation of:

(message, (port, right))

being an element of reply_port_rel is that message transfers the type of right specified by right
(send or send-once) for port to the receiver of message. The intent is that the receiver use
the transferred right to send a reply message to port. Each message contains at most one
reply port and right for that port. For convenience, the expressions reply_port(message) and
reply_port_right(message) are used to denote the reply port and transferred right contained in
a given message.

Mach Definition 86

__ReplyPorts
reply_pori_rel : MESSAGE <= (PORT x {Send, Send_once})
reply_port : MESSAGE - PORT
reply_pori_right : MESSAGE —+ {Send, Send_once}

reply_port = { message : MESSAGE; port : PORT; right : RIGHT
| (message, (port, right)) € reply_port_rel ® (message, port)}
reply_pori_right = { message : MESSAGE; port : PORT; right : RIGHT
| (message, (port, right)) € reply_port_rel o (message, right)}

4.10.11 Summary

This section has defined the data structures used to model messages. The expression
msg_contents(message) is used to denote the internal message structure associated with each
message identifier, and the expression pending_receives(task, name) indicates the receive re-
guests currently pending for threads intask that attempted to receive through the port named
by name. The expression task_received_msgs(task) denotes the set of user-space messages that
have been received by task.

For convenience, the expression msg_operation(message) is used to denote the type of operation
requested by message. In other words, the returned value is the operation field of the message
identified by message.

Mach Definition 87

Operations

msg_operation : MESSAGE +— OPERATION

Mach Definition 88

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 53

_ Messages
TaskFrist
MessageFxist

Operations

ReplyPorts

msg_contents : MESSAGE — InternalMessage
pending_receives : TASK x NAME — seq PendingReceive
task_recetved_msgs : TASK — P MESSAGE

dom reply_port C message—_exists
dom msg_operation = dom msg_contents = message_exists
YV message : MESSAGE | message € message_exisls
e msg_operation(message) = (msg_contents(message)).header.operation
YV message : MESSAGE; port : PORT | message € message_exists
e (message, (port, Send)) € reply_port_rel
& ((msg—_contents(message)).header local_port = {port}
A (msg_contents(message)).header.local_rights

N{ Mmit_make_send, Mmt_move_send, Mmt_copy_send } # &)
YV message : MESSAGE; port : PORT | message € message_exists
e (message, (port, Send_once)) € reply_port_rel
& ((msg_contents(message)).header local_port = {port}

A (msg_contents(message)).header.local_rights

N{ Mmit_make_send_once, Mmt_move_send_once } # &)

Y task : TASK
| task ¢ task_exists
o task_received_msgs(task) = &

Review Note:
Must figure out what the axioms are on p ending_receives.

4.11 Processors and Processor Sets

Each host has a default processor set denoted by d efault. Furthermore, each host has a master
processor denoted by master_proc.

Mach Definition 89

__HostsAndProcessors
ProcessorsAndPorts
default : PROCESSOR_SET
master_proc : PROCESSOR

default € dom ps_control_pori_rel
master_proc € dom processor_port_rel

Each processor is a member of a single processor set. The relation member_rel indicates which
processors belong to each processor set. For convenience, the expressions processors(procset)
and proc_assigned_procset(proc) are used to denote, respectively, the set of processors that belong
to procset and the processor set to which proc belongs.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
54 Basic Kernel State Definition

Mach Definition 90

__ProcessorAndProcessorSet
ProcessorsAndPorts
member_rel : PROCESSOR «— PROCESSOR_SET
processors : PROCESSOR_SET — P PROCESSOR
proc_assigned_procset : PROCESSOR +— PROCESSOR_SET

dom member_rel C dom processor_port_rel
ran member_rel C dom ps—_control_port_rel

proc_assigned_procsel = member_rel
processors = (A procset : PROCESSOR_SET o member_rel™ ({procset}))

Each task is assigned to a single processor set. The relation task_assignment_rel indi-
cates the association between tasks and processor sets. For convenience, the expressions
have_assigned_tasks(procset) and task_assigned_to(task) are used to denote, respectively, the set
of tasks assigned to procset and processor set to which task is assigned.

Mach Definition 91

— TaskAndProcessorSet
SpecialTaskPorts
ProcessorsAndPorts
task_assignment_rel : TASK <= PROCESSOR_SET
have_assigned_tasks : PROCESSOR_SET — P TASK
task_assigned_to : TASK - PROCESSOR_SET

dom task_assignment_rel = ran self _task
ran task_assignment_rel C dom ps_control_pori_rel
task_assignment_rel = task_assigned_to

have_assigned_tasks = (X procset : PROCESSOR_SET

e task_assignment_rel™ ({procset}))

Similarly, Each thread is assigned to a single processor set. The relation
thread_assignment_rel associates threads with processor sets. For convenience, the expressions
have_assigned_threads(procset) and thread_assigned_to(thread) are used to denote, respectively,
the set of threads assigned to procset and processor set to which thread is assigned.

Each processor set has a set of enabled scheduling policies, denoted by enabled_sp(procset)
and a maximum priority for assigned threads, denoted by ps_maz_priority(procset). The set of
enabled scheduling policies for a thread’s processor set is used to constrain the policies that can
be assigned to that thread. The maximum scheduling priority for a processor set constrains
the priorities that can be assigned to a newly created thread associated with that processor set.

Mach Definition 92

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 55

_ ThreadAndProcessorSet
ProcessorSetErist
ProcessorsAndPorts
Special ThreadPorts
ThreadSchedPolicy
thread_assignmeni_rel : THREAD «+— PROCESSOR_SET
have_assigned_threads : PROCESSOR_SET — P THREAD
thread_assigned_to : THREAD - PROCESSOR_SET
enabled_sp : PROCESSOR_SET P SCHED_POLICY
ps—maz_priority : PROCESSOR_SET —+ 2

thread_assignmeni_rel = thread_assigned_to

have_assigned_threads = (A procset : PROCESSOR_SET
e thread_assignment_rel™ ({procset}])

dom thread_assignment_rel = dom thread_self
ran thread_assignment_rel C dom ps_control_port_rel
dom enabled_sp = dom ps_maz_priority = procset_exists
U(ran enabled_sp) C supported_sp B
ran ps_max_priority C Priority_levels

Each processor may have an active thread. The expression active_thread(proc) indicates the
thread (if any) that is active on proc.

Mach Definition 93

__ThreadsAndProcessors
ThreadErist

Frist

actwe_thread : PROCESSOR ~+ THREAD

dom active_thread C proc_exists
ran active_thread C thread_exists

4.12 Time

Each host provides a system clock. The current system time is denoted by host_time.
Mach Definition 94

HostTime
T@ost_time :N

4.13 Devices

Each device has an associated count indicating how many times the device has been opened
and not closed. We use d evice_open_count(dev) to indicate the count associated with dev. This
count is incremented each time dev is opened and decremented each time dew is closed. Each
device with a positive creation count has an associated device port that represents the device.

Mach Definition 95

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
56 Basic Kernel State Definition

— DeviceOpenCount
DevicesAndPorts
device_open_count : DEVICE — N

dom device_port = { dev : DEVICE | device_open_count(dev) > 0}

A kernel-space device driver may supply event counters for use by user-space device drivers.
An event counter is used as a semaphore for events produced by kernel-space drivers. The
counter is incremented when a relevant event occurs and decremented when a thread (e.g., a
user-space device driver) indicates via the evc_wait trap that it wishes to process an event.
Each task refers to an event by referencing its event counter. The appropriate event counter
is communicated to a thread in a driver-specific way” The expression EVENT_COUNTER
denotes the set of all event counters.

Mach Definition 96

[EVENT_COUNTER]

Each event counter may have at most one thread, denoted by thread_waiting(evc), waiting for
it. Furthermore, each thread may be waiting on at most one event counter. The number of
event that are queued and waiting to be processed by a thread is denoted by e vent_count(evc).
The expression supplying_device denotes the kernel-space device driver that supplied the event
counter.

Mach Definition 97

— Fvents
ThreadFrecStatus
thread_waiting : EVENT_COUNTER ~+ THREAD
event_count : EVENT_COUNTER + 2
supplying_device : EVENT_COUNTER - DEVICE

dom event_count = dom supplying_device
dom thread_waiting C dom event_count
ran thread_waiting C
{thread : THREAD | thread € thread_exists A Waiting € run_state(thread)}

Devices can be associated with memory objects that can then be mapped into address spaces.
We use mapped_devices to denote the set of devices that have been associated with memory
objects.

Mach Definition 98

MappedDevices
mapped_devices : P DEVICE

Each device has two associated queues of data records. We use device_in(dev) and
device_out(dev) to denote, respectively, data input and output through the device. Data
read from dev is dequeued from device_in(dev), and data written to dev is enqueued to
device_out(dev).

"Threads may also wait for events that occur while the system is operating in kernel space (e.g., another thread
becomes suspended). This is handled through a separate waiting mechanism that is not modeled in the FTLS.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 57

Mach Definition 99
[DEVICE_RECORD)
Mach Definition 100

DeviceData
device_in : DEVICE — seq DEVICE_RECORD
device_out : DEVICE — seq DEVICE_RECORD

Each device can have associated filters that are used to route data received through the device.
Each filter has an associated port to which data accepted by the filter is delivered. Further-
more, a priority can be associated with each port to indicate the ordering when there are
multiple ports associated with the filter. We use device_filter_info(dev) to indicate the set of
(device_filter, port, filter_priority) triples associated with dev.

Mach Definition 101

[DEVICE_FILTER, FILTER_PRIORITY]
DEVICE_FILTER_INFO == DEVICE_FILTER x PORT x FILTER_PRIORITY

Mach Definition 102

DeviceFilterInfo
device_filter_info : DEVICE — P DEVICE_FILTER_INFO

Each device has an associated status. We use d evice_status(dev) to denote dev’s status.
Mach Definition 103

[DEVICE_STATUS]
Mach Definition 104

DeviceStatus
Fievice_status : DEVICE — DEVICE_STATUS

Mach Definition 105

— Dewvices
DeviceOpenCount
FEvents
MappedDevices
DeviceData
DeviceFilterInfo
DeviceStatus

4.14 Summary

The data structures defined in the previous sections comprise the Mach system state. The type
Mach is used to denote the set of Mach system states.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
58 Basic Kernel State Definition

Mach Definition 106

Process = Threads A TaskPriority A TaskSuspendCount
A Emulation Vector

Ipc = PortNameSpace A RegisteredRights A Notifications
A PortSummary A PortClasses N Messages

Processor = HostsAndProcessors A ProcessorAndProcessorSet A TaskAndProcessorSet
A ThreadAndProcessorSet A ThreadsAndProcessors

Mach Definition 107

__Mach
Frist
Process
Ipc
Processor
MemorySystem
HostTime
Deuvices

manager = recetver o object_port

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

Section

CDRL A005
DTOS FTLS 59

5
DTOS State Extensions

This section describes extensions to the base Mach microkernel state that are needed to support
the DTOS kernel. The DTOS kernel is intended to support a wide range of policies. Thus, the
state components described in this section are independent of any specific access control policy.

In general, an access control policy consists of three components. First, security attributes must
be associated with the subjects accessing entities in the system. Second, security attributes
must be associated with the entities in the system that subjects access. Finally, a rule must
be defined that indicates the set of accesses that a subject with a given attribute can make to
an entity with a given attribute. To provide policy flexibility, the DTOS kernel abstracts the
security attributes associated with specific policies into sets ofsecurity identifiers. Although
the kernel relies upon a security server to define the policy to be enforced, the kernel maintains
a cache of accesses previously authorized by the security server.

In addition to providing a framework for access control policies, the DTOS kernel also enhances
the security of the Mach IPC mechanism.

The organization of this section is as follows:

m Section 5.1, Subject Security Information, describes the security information recorded
for subjects.

= Section 5.2, Object Security Information, describes the security information recorded
for objects.

m Section 5.3, Security Identifiers for Access Computations, describes some security
identifiers used only in access computations.

m Section 5.4, Permissions, describes the permissions enforced in DTOS.

m Section 5.5, Access Vector Cache, describes the DTOS kernel's access vector cache.

m Section 5.6, Message Security Information, describes the security information associ-
ated with messages to enhance the security of the Mach IPC mechanism.

m Section 5.7, Task Creation Information, describes information associated with tasks
to enhance the security of the Mach approach for process initiation.

m Section 5.8, Server Ports, describes ports used by the kernel for communication with
other servers.

= Section 5.9, Memory Region Protections, describes information associated with re-
gions to allow the DTOS kernel to enforce access.

5.1 Subject Security Information

Subjects in DTOS are threads executing within tasks. Each task has asubject security identifier
(SSI). The set SSI denotes the set of all SSls.

We will occasionally need to identify two distinct components of each SID, amandatory security
identifier (MID) and an authentication identifier (AID). We use the types MID and AID to
denote, respectively, MIDs and AIDs. The functions Ssi_to_m:d and Ssi_to_aid are used to
map SSIs to MIDs and AIDs.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
60 DTOS State Extensions

DTOS Kernel Definition 1

[SS1]

[MID, AID]

Ssi_to_mad : SSI — MID
Ssi_to_aid : SSI — AID

The expressions fask_sid(task), task_mid(task) and task_aid(task) are used to denote the SSI,
MID and AID associated with a task. The expression thread_sid(thread) denotes the SSI asso-
ciated with a thread. It is defined to be the SSI of its parent task.

DTOS Kernel Definition 2

—_SubjectSid
TaskErist
ThreadErist

TasksAndThreads

task_sid : TASK —+ SS51
task_mad : TASK —— MID
task_aid : TASK - AID
thread_sid : THREAD —+ 551

dom task_sid = dom task_mid = dom task_aid = task_exists
dom thread_sid = thread_exists
task_mid = Ssi_to_mud o task_sid
task_aid = Ssi_to_aid o task_sid
thread_sid = task_sid o owning_task

5.2 Object Security Information

Each port has an associated object security identifier (OSI) that represents the security at-
tributes associated with the port. Similarly, each memory region has an associated OSI. The
set 057 denotes the set of all OSls.

The functions Osi_to_mid and Osi_to_aid are used to map OSls to MIDs and AIDs.
DTOS Kernel Definition 3

[0SI]

Osi_to_mid : OS] — MID
Osi_to_aid : OSI — AID

The expressions port_sid(port), port_mid(port) and port_aid(port) are used to denote the OSI,
MID and AID associated with a port.

DTOS Kernel Definition 4

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 61

__PortSid

PortErist

port_sid : PORT -+ OS5I

port_mid : PORT — MID
port_aid : PORT — AID

dom port_sid = dom port_mid = dom port_aid = port_exists
port_mid = Osi_to_mad o port_sid
port_aid = Osi_to_aid o port_sid

Each task and thread has a self port on which the kernel receives requests to perform an action
on the task or thread. The OSI of the self ports is derived from the SSI of the corresponding
task. The expressions Task_port_sid(ssi) and Thread_port_sid(ssi) indicate the corresponding
OSls. When memory is allocated, it is labeled with an OSI that is derived from the SSI of the
owning task. The expression Default_vm_port_sid(ssi) indicates the derived OSI. Similarly,
when a port is created, it is labeled with an OSI derived from the SSI of the task in whose IPC
name space it is allocated. The expression Default_port_sid(ssi) indicates the derived OSI.

DTOS Kernel Definition 5

Task_port_sid : SST — 051
Thread_port_sid : SS5T — 051
Default_vm_port_sid : SST — OS5I
Default_port_sid : SST — OS5I

disjoint {ran Task_port_sid,ran Thread_port_sid,
ran Default_vm_pori_sid, ran Default_port_sid)

__ KernelPortSid
TasksAndThreads
Special PurposePorts
SubjectSid

PortSid

Y task : task_exists
o port_sid(task_self (task)) = Task_port_sid(task_sid(task))
V thread : thread_exists
e port_sid(thread_self (thread)) = Thread_port_sid(task_sid(owning_task(thread)))

The expressions page_sid(task, page_index), page_mid(task, page_index)
and page_aid(task, page_inder) are used to denote the OSI, MID and AID associated with a
page. Note that page_sid effectively associates an OSI with each allocated address in a task’s
address space. If a page is managed and the manager is not the default memory manager, then
the SID of the page is derived from the SID of the pager port of the object containing the page.
The derivation of page SIDs from pager port SIDs is modeled by the function Pp_to_page_sid.

DTOS Kernel Definition 6
| Pp_to_page_sid : OSI - OS5I

DTOS Kernel Definition 7

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
62 DTOS State Extensions

__PageSid

AddressSpace

Memory

TasksAndPorts

PortSid

page_sid : TASK x PAGE_INDEX —+ OSI

page_mid : TASK x PAGE_INDEX - MID
page_aid : TASK x PAGE_INDEX —+ AID

dom page_sid = dom page_mid = dom page_aid = allocated
page_mid = Osi_to_mid o page_sid
page_aid = Osi_to_aid o page_sid

(V task_va_pair : TASK x PAGE_INDEX ; memory : MEMORY ;
port : PORT

| (task_va_pair, memory) € mapped_memory
A (memory, port) € object_port
A receiver(port) # receiver(d efauli_mem_manager)

e page_sid(task_va_pair) = Pp_to_page_sid(port_sid(port)))

Editorial Note:
Need to figure out if their is a better way to check that the memory is not being paged by the default
memory manager.

DTOS Kernel Definition 8

— ObjectSid
PortSid
KernelPortSid
PageSid

dom Pp_to_page_sid C ran port_sid
ran Pp_to_page_sid C ran page_sid

5.3 Security Identifiers for Access Computations

Access computations in the DTOS kernel are generally made based upon the SSI of the task
accessing an object and the OSI of the accessed object. This section discusses a few special
cases in which other security identifiers are used.

Sometimes kernel requests can have side effects resulting in outcalls from the kernel, for
instance, to deliver dead name notifications. For fine grained control over such operations it is
desirable to distinguish between the kernel sending such a message to a port as a side effect
of another request and the client directly sending a message to the port. To provide for this,
such side effects are sometimes controlled based not upon the SSI of the client but upon an SSI
derived from the client’s SSI and indicating that it is the kernel acting on behalf of a client with
the given SSI. The function Derive_kernel_as maps an SSl s; to the derived SSI s, representing
the kernel acting on behalf of a task with SSI s;. We use kernel_as(task) to denote the derived
SSI indicating the kernel acting on behalf of a task task.

DTOS Kernel Definition 9

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 63

Derive_kernel_as : SSI — SST

__KernelAs
SubjectSid
kernel_as : TASK — SS51

kernel_as = task_sid § Derive_kernel_as

One of the features of Mach is that it allows tasks to perform operations on other tasks that
have not traditionally been provided by operating systems. For example, Mach allows tasks to
access memory regions in other tasks while one of the features of traditional operating systems
is the separation of address spaces. To provide finer control over task accesses, we define
Task_self _sid to be a value to be used in access computations governing accesses a task makes
to itself. Similarly, we use Thread_self _sid to be a value to be used in access computations
governing accesses a task makes to threads that it owns. The security policy should normally
be defined in such a way as to prevent any kernel entities from being assigned Task_self _sid or
Thread_self _sid as their SID.® Instead, these SIDs indicate to security servers that the kernel
requires an access computation to be performed between a task and the task itself or between
a task and one of the task’s threads. One potential use of this finer control would be to contain
a faulty task by preventing it from corrupting other tasks having the same SID.

We define task_target(tasky, tasks) to be the OSI of tasks’s self port if task; and task, are
different and Tusk_self_sid, otherwise. Analogously, we define thread_target(task, thread) to
be the OSI of thread’s self port if thread does not belong to task and Thread_self _sid, oth-
erwise. When task; attempts to operate on task,, the kernel enforces accesses on the pair
(task_sid(tasky), task_target(tasky, task>)). Analogously, operations that task performs on thread
are governed by the accesses recorded for (task_sid(task), thread_target(task, thread)). This al-
lows separate permissions sets to be applied when a task operates on itself versus operating
on another process with the same SSI.

DTOS Kernel Definition 10

Task_self _sid : OS]
Thread_self _sid : OSI

Task_self _sid # Thread_self _sid

DTOS Kernel Definition 11

8 This property is not guaranteed by the kernel. For example, amach_port_allocate_secure request may specify
a self SID as the SID for the newly created port. If the security server allows the client to add a name to the target
task and allows the target task to hold a receive right for a port with the specified SID, the request will succeed and
the port will be labeled with a self SID.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
64 DTOS State Extensions

_TargetSids
PortSid
TasksAndThreads

Special PurposePorts

task_target : TASK x TASK + 051
thread_target : TASK x THREAD — OS5I

{Task_self _sid, Thread_self _sid} Nran port_sid = &
dom task_target = TASK x task_exisls
dom thread_target = TASK x thread_exists
V taskq, tasks . TASK
o task_target(tasky, tasks)
= if task, = task, then Task_self_sid
else port_sid(task_self(task2))
Y task : TZSK; thread : THREAD
e thread_target(task, thread)
= if task = owning_task(thread) then Thread_self _sid
else pori_sid(thread_self (thread))

Editorial Note:

In the prototype Task_self _sid and Thread_self _sid are not implemented as constants. Rather, they
are derived from the corresponding subject SID in the same way as the derived SIDs Task_port_sid,
Thread_port_sid, Default_vm_port_sid and Defauli_pori_sid which are described above. Given the way
the self SIDs are used the two approaches are equivalent.

5.4 Permissions

The DTOS security policy constrains when clients may obtainservices. The security policy is
enforced by:

= associating a set of allowed permissions’ with each SSI1-OSI pair,

m associating a set of required permissions with each service, and

m granting service only when the required permissions are contained in the allowed per-
missions for the client to the target for the operation.

The set PERMISSION denotes the set of all permissions. This set contains permissions govern-
ing kernel services as well as permissions governing services provided by user space servers.

The set Kernel_permission is used to denote the subset of PERMISSION that governs kernel
services.

DTOS Kernel Definition 12

[PERMISSION]

| Kernel_permission : P PERMISSION

9 Note that the terms access vector, service vector, and permission set are used somewhat interchangeably.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 65

The elements of Kernel_permission are enumerated in subsections 5.4.1-5.4.14. The op-
erator Values_partition is formally defined in Appendix B. Informally, the expression
(valy, ... valy) Values_partition S denotes that the values valy, ..., val,, are unique values that
together comprise the set val_set.

5.4.1 IPC Permissions

The DTOS kernel enforces the following “IPC” permissions: Can_receive, Can_send,
Hold_receive, Hold_send, Hold_send_once, Interpose, Map_vm_region, Sei_reply, Specify,
Transfer_ool, Transfer_receive, Transfer_rights, Transfer_send, Transfer_send_once. \We use
Ipc_permaissions to denote this set of permissions.

DTOS Kernel Definition 13

Ipe_permussions : P PERMISSION
Can_recewwe, Can_send , Hold_receive,
Hold_send, Hold_send_once, Interpose,
Map_vm_region, Set_reply, Specify,
Transfer_ool, Transfer_receive, Transfer_rights,
Transfer_send, Transfer_send_once :

PERMISSION

{Can_receive, Can_send, Hold_receive, Hold_send, Hold_send_once, Interpose,
Map_vm_region, Set_reply, Specify, Transfer_ool, Transfer_receive,
Transfer_rights, Transfer_send, Transfer_send_once)

Values_partition Ipc_permissions

5.4.2 Port Permissions

The DTOS kernel enforces the following permissions on port requests: Add_name,
Alter_pns_info, Fxtraci_right, Lookup_ports, Manipulate_port_set, Observe_pns_info,
Port_rename, Register_notification, Register_ports, Remove_name. We use Port_permissions to
denote this set of permissions.

DTOS Kernel Definition 14

Port_permissions : P PERMISSION

Add_name, Alter_pns_info, Extract_right,
Lookup_ports, Manipulate_port_set, Observe_pns_info,
Port_rename, Register_notification, Register_ports,
Remove_name :

PERMISSION

(Add_name, Alter_pns_info, Extract_right, Lookup_ports,
Manipulate_port_set, Observe_pns_info, Port_rename,
Register _notification, Register_ports, Remove_name)

Values_partition Port_permissions

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
66 DTOS State Extensions

5.4.3 VM Permissions

The DTOS kernel enforces the following permissions on VM requests:
Access_machine_attribute, Allocate_vm_region, Chg_vm_region_prot, Copy_vm,
Deallocate_vm_region, Get_vm_region_info, Get_vm_statistics, Read_vm_region,
Set_vm_region_inherit, Wire_vm_for_task, Write_vm_region. We use Vm_permissions to denote
this set of permissions.

DTOS Kernel Definition 15

Vm_permissions : P PERMISSION

Access_machine_attribute, Allocate_vm_region, Chg_vm_region_prot,
Copy_vm, Deallocate_vm_region, Get_vm_region_info,
Get_vm_statistics, Read_vm_region, Set_vm_region_inherit,
Wire_vm_for_task, Write_vm_region :

PERMISSION

(Access_machine_atiribute, Allocate_vm_region, Chg_vm_region_prot,
Copy_vm, Deallocate_vm_region, Get_vm_region_info, Get_vm_statistics,
Read_vm_region, Set_vm_region_inherit, Wire_vm_for_task,
Write_vm_region)
Values_partition Vm_permissions

5.4.4 Memory Object Permissions

The DTOS kernel enforces the following permissions on memory requests: Have_execute,
Have_read, Have_write, Page_vm_region. We use Memory_object_permissions to denote this set
of permissions.

DTOS Kernel Definition 16

Memory_object_permissions : P PERMISSION
Have_execute, Have_read, Have_write,
Page_vm_region :

PERMISSION

(Have_execute, Have_read, Have_write, Page_vm_region)
Values_partition Memory_object _permissions

5.4.5 Pager Permissions

The DTOS kernel enforces the following permissions on pager requests: Change_page_locks,
Destroy_object, Get_attributes, Invoke _lock_request, Make_page_precious, Provide_data,
Remove_page, Revoke_ibac, Save_page, Set_attributes, Set_ibac_port, Supply_ibac. We use
Pager_permissions to denote this set of permissions.

DTOS Kernel Definition 17

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 67

Pager_permassions : P PERMISSION

Change_page_locks, Destroy_object, Get_attributes,

Invoke_lock_request, Make_page_precious, Provide_data,

Remove_page, Revoke_ibac, Save_page,

Set_attributes, Set_tbac_port, Supply_ibac :
PERMISSION

(Change_page_locks, Destroy_object, Get_atiributes, Invoke_lock_request,
Make_page_precious, Provide_data, Remove_page, Revoke_ibac, Save_page,
Set_attributes, Set_ibac_port, Supply_ibac)

Values_partition Pager_permissions

5.4.6 Thread Permissions

The DTOS kernel enforces the following permissions on thread requests: Abort_thread,
Abort_thread_depress, Assign_thread_to_pset, Can_switch, Can_swtch_pri, Depress_pri,
Get_thread_assignment, Get_thread_exception_port, Get_thread_info, Get_thread_kernel_port,
Get_thread_state, Initiate_secure, Raise_exception, Resume_thread, Sample_thread,
Set_maz_thread_priority, Sei_thread_exception_port, Set_thread_kernel_port, Set_thread_policy,
Set_thread_priority, Set_thread_state, Suspend_thread, Switch_thread, Terminate_thread,
Wait_eve, Wire_thread_into_memory. We use Thread_permissions to denote this set of
permissions.

DTOS Kernel Definition 18

Thread_permissions : P PERMISSION

Abort_thread, Abort_thread_depress, Assign_thread_to_pset,

Can_switch, Can_switch_pri, Depress_pri,

Get_thread_assignment, Get_thread_exception_port, Get_thread_info,
Get_thread_kernel_port, Gel_thread_state, Initiate_secure,

Raise_exception, Resume_thread, Sample_thread,

Set_maz_thread_priority, Set_thread_exception_port, Set_thread_kernel_port,
Set_thread_policy, Set_thread_priority, Set_thread_state,

Suspend_thread, Switch_thread, Terminate_thread,

Wait_eve, Wire_thread_into_memory :

PERMISSION

(Abort_thread, Abort_thread_depress, Assign_thread_to_pset, Can_swich,
Can_switch_pri, Depress_pri, Get_thread_assignment,
Get_thread_exception_port, Get_thread_info, Gel_thread _kernel_port,
Get_thread_state, Initiate_secure, Raise_exception, Resume_thread,
Sample_thread, Set_maz_thread_priority, Set_thread_exception_port,
Set_thread_kernel_port, Set_thread_policy, Set_thread_priority,
Set_thread_state, Suspend_thread, Switch_thread, Terminate_thread,
Wait_eve, Wire_thread_into_memory)

Values_partition Thread_permissions

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
68 DTOS State Extensions

5.4.7 Task Permissions

The DTOS kernel enforces the following permissions on task requests: Add_thread,
Add_thread_secure, Assign_task_to_pset, Change_sid, Chg_task_priority, Create_task,
Create_task_secure, Cross_contexti_create, Cross_contexi_inherit, Get_emulation,
Get_task_assignment, Get_task_boot_port, Get_task_exception_port, Gel_task_info,
Get_task_kernel_port, Get_task_threads, Make_sid, Resume_task, Sample_task, Set_emulation,
Set_ras, Set_task_boot_port, Set_task_exception_port, Set_task_kernel_port, Suspend_task,
Terminate_task, Transition_sid. We use Task_task_permissions to denote this set of permissions.

DTOS Kernel Definition 19

Task_task_permissions : P PERMISSION

Add_thread, Add_thread_secure, Assign_task_to_pset,

Change_sid, Chg_task_priority, Create_task,

Create_task_secure, Cross_context_create, Cross_context _inherit,
Get_emulation, Get_task_assignment, Get_task_boot_port,
Get_task_exception_port, Get_task_info, Get_task_kernel_port,
Get_task_threads, Make_sid, Resume_task,

Sample_task, Set_emulation, Set_ras,

Set_task_boot_port, Set_task_exception_port, Sei_task_kernel_port,
Suspend_task, Terminate_task, Transition_sid :

PERMISSION

(Add_thread, Add_thread_secure, Assign_task_to_pset, Change_sid,
Chg_task_priority, Create_task, Create_task_secure,
Cross_context_create, Cross_context_inherit, Get_emulation,
Get_task_assignment, Get_task_boot_port, Get_task_exception_port,
Get_task_info, Get_task_kernel_port, Get_task_threads, Make_sid,
Resume_task, Sample_task, Set_emulation, Set_ras, Set_task_boot_port,
Set_task_exception_port, Set_task_kernel_port, Suspend_task,
Terminate_task, Transition_sid)

Values_partition Task_task_permissions

We use Task_permissions to denote the union of Task_task_permissions, Pori_permissions, and
Vm_permissions.

DTOS Kernel Definition 20

Task_permissions : P PERMISSION
(Port_permissions, Vm_permissions, Task_task_permissions) partition Task_permissions

5.4.8 Host Name Port Permissions

The DTOS kernel enforces the following permissions on host name port requests: Create_pset,
Flush_permission, Get_audit_port, Gel_authentication_port, Get_crypto_port,
Get_default_pset_name, Get_host_control_port, Get_host_info, Get_host_name,
Get_host_version, Gei_negotiation_port, Gel_network_ss_port, Gel_security_master_port,
Get_security_client_port, Get_special_port, Get_time, Pset_names, Set_audit_port,
Set_authentication_port, Set_crypto_port, Set_negotiation_port, Set_network_ss_port,
Set_security_master_port, Set_security_client_port, Set_special_port. \We use
Host_name_pori_permissions to denote this set of permissions.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 69

DTOS Kernel Definition 21

Host_name_port_permissions : P PERMISSION
Create_pset, Flush_permission, Get_audit_port,
Get_authentication_port, Get_crypto_port, Gei_default_pset_name,
Get_host_control_port, Get_host_info, Get_host_name,
Get_host_version, Get_negotiation_port, Get_network_ss_port,
Get_security_master_port, Get_security_client_port, Get_special _port,
Get_time, Pset_names, Set_audit_port,
Set_authentication_port, Set_crypto_port, Set_negotiation_port,
Set_network_ss_port, Set_security_master_port, Set_security_client_port,
Set_special _port :

PERMISSION

(Create_pset, Flush_permission, Get_audit_port,

Get_authentication_port, Get_crypto_port, Gei_default _pset_name,

Get_host_control_port, Get_host_info, Get_host_name, Get_host_version,

Get_negotiation_port, Get_network_ss_port, Gel_security_master_port,

Get_security_client _port, Get_special _port, Get_time,

Pset_names, Set_audit_port, Set_authentication_port,

Set_crypto_port, Set_negotiation_port, Set_network_ss_port,

Set_security_master_port, Set_security_client_port, Set_special_port)
Values_partition Host_name_port_permissions

5.4.9 Host Control Port Permissions

The DTOS kernel enforces the following permissions on host control port requests:
Get_boot_info, Get_host_processors, Pset_ctrl_port, Reboot_host, Set_defauli_memory_mgr,
Set_time, Wire_thread, Wire_vm. We use Hosl_control_pori_permissions to denote this set of
permissions.

DTOS Kernel Definition 22

Host_control_port_permissions : P PERMISSION
Get_boot_anfo, Get_host_processors, Pset_ctrl_port,
Reboot_host, Set_default _memory_mgr, Set_time,
Wire_thread, Wire_vm :

PERMISSION

et_boot_info, Gel_host_processors, Pset_ctrl_port, Reboot_host,
Get_boot Get_host Pset_ctri t, Reboot_host
Set_default_memory_mgr, Set_time, Wire_thread, Wire_vm)
Values_partition Host_control_port_permissions

5.4.10 Processor Permissions

The DTOS kernel enforces the following permissions on processor requests:
Assign_processor_to_set, Get_processor_assignment, Get_processor_info, May_control_processor.
We use Processor_permissions to denote this set of permissions.

DTOS Kernel Definition 23

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
70 DTOS State Extensions

Processor_permissions : P PERMISSION
Assign_processor_to_set, Gel_processor_assignment, Gel_processor_info,
May_control_processor :

PERMISSION

(Assign_processor_to_set, Get_processor_assignment, Get_processor_info,
May_control_processor)
Values_partition Processor_permissions

5.4.11 Processor Set Name Port Permissions

The DTOS kernel enforces the following permissions on processor set name port requests:
Get_pset_info. We use Procset_name_port_permissions to denote this set of permissions.

DTOS Kernel Definition 24

Procset_name_port_permissions : P PERMISSION
Get_pset_anfo :
PERMISSION

(Get_pset_info)
Values_partition Procset_name_port_permissions

5.4.12 Processor Set Control Port Permissions

The DTOS kernel enforces the following permissions on processor set control port requests:
Assign_processor, Assign_task, Assign_thread, Chg_pset_maz_pri, Define_new_scheduling_policy,
Destroy_pset, Invalidate_scheduling_policy, Observe_pset_processes. \We use
Procset_control_port_permissions to denote this set of permissions.

DTOS Kernel Definition 25

Proeset_control_port_permissions : P PERMISSION
Assign_processor, Assign_task, Assign_thread,
Chg_pset_maz_pri, Define_new_scheduling_policy, Destroy_pset,
Invalidate_scheduling_policy, Observe_pset_processes :

PERMISSION

(Assign_processor, Assign_task, Assign_thread, Chg_pset_maz_pri,
Define_new_scheduling_policy, Destroy_pset,
Invalidate_scheduling_policy, Observe_psel_processes)

Values_partition Procset_control_port_permissions

We use Procsel_permissions to denote the union of Procset_name_pori_permissions and
Procset_control_port_permissions.

DTOS Kernel Definition 26

Procset_permissions : P PERMISSION

(Procset_name_port_permissions, Procset_control_port_permissions)
partition Procset_permissions

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 71

5.4.13 Device Permissions

The DTOS kernel enforces the following permissions on device requests: Close_device,
Control_pager, Get_device_status, Map_device, Open_device, Read_device, Set_device_filter,
Set_device_status, Write_device. We use Device_permissions to denote this set of permissions.

DTOS Kernel Definition 27

Device_permissions : P PERMISSION

Close_device, Control_pager, Get_device_status,

Map_device, Open_device, Read_device,

Set_device_filter, Set_device_status, Write_device :
PERMISSION

(Close_device, Control_pager, Get_device_status, Map_device, Open_device,
Read_device, Set_device_filter, Set_device_status, Write_device)
Values_partition Device_permissions

5.4.14 Kernel Reply Port Permissions

The DTOS kernel enforces the following permissions on requests sent to kernel reply ports:
Provide_permission. We use Kernel_reply_permissions to denote this set of permissions.

DTOS Kernel Definition 28

Kernel_reply_permissions : P PERMISSION
Provide_permission :

PERMISSION

(Provide_permission)
Values_partition Kernel_reply_permissions

We do not require that all of the above sets of permissions be non-overlapping. The only
such requirement is that the Ipc_permissions do not overlap with any of the other sets. This
is consistent with the current prototype in which permissions are simply integers specifying
positions in access vectors. Because there are different types of access vector depending upon
the type of target object, multiple permissions may specify the same access vector position.
Every vector contains the IPC permissions stored at the same positions.

DTOS Kernel Definition 29

Ipc_permissions

N (Memory_object _permissions U Pager_permissions
U Thread_permissions U Task_permissions
U Host_name_port_permissions U Host_control_port_permissions
U Processor_permissions U Procsel_permissions

U Device_permissions U Kernel_reply_permissions)
=

5.5 Access Vector Cache

The kernel receives an access decision from the security server as aRuling. Each ruling consists
of:

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
72 DTOS State Extensions

ssi — a subject security identifier

0st — an object security identifier

access_vector — a set of granted permissions between the ssi and os:

control_vector — the set of granted permissions which are allowed to be cached in the
kernel for later access

m expiration_value — the time at which the cached permissions expire

DTOS Kernel Definition 30

Ruling
sst : SST
ost = OS5I
access_vector : P PERMISSION
control_vector : P PERMISSION

erpiration_value : N

Review Note:
We need to be careful not to get bit by using ssi and os: in Ruling, since they are often used as “variables”
also. Or else we could rename them here.

Aruling is usable for a given ssi and os: if the ssi and osi match those in the ruling and the ruling
has not expired. The expression Usable_ruling(ssi, osi, time) denotes the set of all such rulings
with respect to ss:, osi and time, the time at which the ruling is consulted. When a ruling is
initially received by the kernel, the kernel need only check the access vector and expiration time
to see if a permission is granted. This is reflected by the function Ruling_allows(ruling, ssi, osi)
which returns the set of permissions in the access vector ofruling if ss: and os: are the same as
in ruling.

Editorial Note:
The prototype does not currently check the expiration time in these cases, but we plan to correct this.

DTOS Kernel Definition 31

Usable_ruling : SSI x OST x N— P Ruling
Ruling_allows : Ruling x SSI x OSI x N— P PERMISSION

Y ruling : Ruling; sst : SSI; osi : OSI; tsme : N; permission : PERMISSION
o (ruling € Usable_ruling(ssi, osi, time)
& (881 = ruling.ssi
A ost = ruling.osi
A time < ruling.ezpiration_value))
A permission € Ruling_allows(ruling, ssi, osi, time)
& (ruling € Usable_ruling(ssi, osi, time)
A permission € ruling.access_vector)

To enhance performance, the kernel is permitted to cache the rulings provided by security
servers. A cached ruling is usable for a given ssi, osi and permission if the ssi and os: match
those in the ruling, the permission is in the control_vector and the ruling has not expired.
The expression Usable_cached _ruling(ssi, osi, permission, time) denotes the set of all such rul-
ings. Once cached, a ruling grants a particular permission from ssi to osi if the ruling is

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 73

usable and the permission is included in the access_vector. This is reflected by the function
Cached_ruling_allows(ruling, ssi, osi, time), where time is the time at which the ruling is con-
sulted.

DTOS Kernel Definition 32

Usable_cached_ruling : S5 x 051 x PERMISSION x N— P Ruling
Cached_ruling_allows : Ruling x S5 x OS5I x N— P PERMISSION

Y ruling : Ruling; sst : SSI; osi : OSI; tsme : N; permission : PERMISSION
o (ruling € Usable_cached_ruling(ssi, osi, permission, time)
& (ruling € Usable_ruling(ssi, osi, time)
A permission € ruling.control_vector))
A (permission € Cached_ruling_allows(ruling, ssi, osi, time)
& (ruling € Usable_cached_ruling(ssi, osi, permission, time)
A permission € ruling.access_vector))

The kernel cache is a set of rulings, represented by cache. There may only be one unexpired
ruling in the cache for each (ssi, osi) pair. The function cache_allows(ssi, osi) returns the set of
permissions granted to the (ssi, osi) pair by the rulings in the cache according to the function
Cached_ruling_allows. The quadruple (ssi, osi, permission, ruling) is in cached _ruling_avail if and
only if ruling is in the cache and it is usable for ssi, os: and permission at the current time.

DTOS Kernel Definition 33

— KernelCache
cache : P Ruling

cache_allows : SSI x OSI — P PERMISSION
cached_ruling_avail : P(SSI x OSI x PERMISSION x Ruling)
HostTime

Y ruling,, ruling, : Ruling
| { ruling,, ruling, } C cache
A ruling,.sst = ruling,.ss
A ruling,.ost = ruling,.os
A ruling, .expiration_value > host_time
A ruling,.expiration_value > host_time
o ruling, = ruling,

V sst: SST; ost 2 OS]
e cache_allows(ssi, osi) = | J{ruling : Ruling | ruling € cache
e Cached_ruling_allows(ruling, ssi, osi, host_time)}

V sst @ SST; osi : OSI; permission : PERMISSION ; ruling : Ruling
e (ssi, osi, permission, ruling) € cached_ruling_avail
& (ruling € cache
N Usable_cached_ruling(ssi, osi, permission, host_time))

5.6 Message Security Information

Each existing message has an SSI associated with it that indicates the SSI of the task that
sent the message. The expression msg_sending_sid(message) indicates the SSI of the task that

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
74 DTOS State Extensions

sent message. In addition, certain messages have an associated SSI that indicates which tasks
may receive the message. The set msg_receiver_specified indicates the set of messages that have
a receiving SID specified, and msg_receiving_sid(message) indicates the receiving SSI for each
message in this set. As part of the processing of a message, the sender’s permissions to the
destination port are computed and attached to the message. The set msg_ruling_computed
denotes the set of messages for which the permissions have already been computed, and
msg_ruling(message) indicates the associated set of permissions for each such message. A
ruling must be computed for each message before the message can be enqueued at a port. An
“effective” sending SID and access vector may optionally be specified by the sender of a mes-
sage. The expressions msg_specified_sid(message) and msg_specified_vector(message) indicate,
respectively, the “effective” SID and access vector specified by the sender.

Editorial Note:

Need to think about how to model the specified vectors. The current specification ignores the cache
control and notification vectors. The prototype currently has all three vectors represented explicitly. It
has been implemented to allow the number of vectors to be easily changed.

DTOS Kernel Definition 34

— DtosMessages

MessageFxist

MessageQueues

msg_sending_sid : MESSAGE -+ 551

msg_receiver_specified : P MESSAGE

msg_recetving_sid : MESSAGE — 551

msg_ruling_computed : P MESSAGE

msg_ruling : MESSAGE - Ruling

msg_specified_sid : MESSAGE -+ 551
msg_specified_vector : MESSAGE + P PERMISSION

dom msg_sending_sid = message_exists

dom msg_receiving_sid = msg_receiver_specified C message_exists
dom msg_ruling = msg_ruling_computed C message_exists

dom containing_port C msg_ruling_computed

dom msg_specified_sid C message_exists

dom msg_specified_vector C message_exists

5.7 Task Creation Information

Each task has a state used in controlling the secure initiation of threads within that task.
The type TASK_CREATION_STATE is comprised of the possible values of this state. The
recognized values of this type are:

m Tes_task_empty — indicates a task that was created usingtask_create_secure and does
not yet have any threads.

m Tes_thread_created — indicates a task created using task_create_secure for which a
thread has been created using thread_create_secure but has not had its initial state
set.

83-0902024A001 Rev A Secure Computing Corporation

1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 75

m Tes_thread_state_set — indicates a task created using task_create_secure for which a
thread has been created using thread_create_secure that has had its initial state set
using thread_set_state_secure but has not been resumed (i.e., started).

m Tes_task_ready —- indicates either a task that was not created usingtask_create_secure
or a task that was created using task_create_secure and which has a thread
that was created using thread_create_secure, has had its state set using
thread_set_state_secure, and has been resumed using thread_resume_secure.

These states are used to ensure that processes initiated usingtask_create_secure follow the
normal process initiation sequence of:

Create the task.

Create a thread within the task.
Set the state of the thread.
Resume the thread.

PodPR

Review Note:
The above, particularly the description of Tcs_task_ready, must be checked against the prototype

This allows an untrusted process to create a trusted process usingtask_create_secure while
prohibiting the untrusted process from (for example) changing the state of threads in the
trusted process after the trusted process has started execution.

The expression task_creation_state(task) denotes the creation state of task.
DTOS Kernel Definition 35

TASK_CREATION _STATE ::= Tcs_task_empty | Tes_thread_created
| Tes_thread_state_setl | Tes_task_ready

_ TaskCreationState
TaskFExist
task_creation_state : TASK — TASK_CREATION_STATE

dom task_creation_state = task_exists

The Mach model of process creation uses an existing task to serve as a “template” for each
new task. This task is the par ent _t ask parameter to task_create. A newly created task
inherits parts of its environment, such as portions of its address space, from the “parent”
task. To simplify the statement of the security requirements on task creation, we introduce
parent_task(task) to denote task’s parent.t’

DTOS Kernel Definition 36

ParentTask
ligarent_task : TASK + TASK

19Note that this information is not actually recorded in the current design. Since we only use this information
for stating requirements on task creation and this information is available at this point in the processing in the
implementation, this deviation between the model and the implementation is tolerable.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
76 DTOS State Extensions

5.8 Server Ports

The kernel records the ports to be used for communications with certain servers:

m security_server_master_port denotes the port used by the kernel to make requests of the
security server.

m security_server_client_port denotes the port used by non-kernel clients to make requests
of the security server.

m authentication_server_port denotes the port used to make requests of the authentication

server.

aundit_server_port denotes the port used to make requests of the audit server.

crypto_server_port denotes the port used to make requests of the crypto server.

negotiation_server—_port denotes the port used to make requests of the negotiation server.

network_ss_port denotes the port used to make security requests over the network.

DTOS Kernel Definition 37

__ServerPorts
security_server_master_port : PORT
security_server_client_port : PORT
authentication_server_port : PORT
audit_server_port : PORT
crypto_server_port : PORT
negotiation_server_port : PORT
network_ss_port : PORT

When the kernel requests an access computation from the Security Server, it specifies a reply
port to which the computed accesses should be sent. We use kernel_reply_poris to denote the
set of ports that the kernel has specified as reply ports for requests to the Security Server.

DTOS Kernel Definition 38
_ KernelReplyPorts

PortErist
kernel_reply_ports : P PORT

kernel_reply_ports C port_exists

5.9 Memory Region Protections

The current protection of a region limits a task’s access to that region. It is calculated as the
intersection of the Mach protection together with the accesses allowed for a task to a memory
region by the relevant access vector. We use protection(task, index) to denote current protections
of the region denoted by a given task-index pair.'!

Mach Definition 108

11 The prototype does not currently implement the enforcement of read-only access. The low-level memory routines
in the prototype treat read and execute interchangeably.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 77

__ Protection
MachProtection
protection : (TASK x PAGE_INDEX) - P PROTECTION

dom protection = dom mach_protection

Y task_page_index : TASK x PAGE_INDEX

| task_page_index € dom protection

e protection(task_page_indexr) C mach_protection({ask_page_indez)

5.10 Summary of DTOS Kernel State

The DTOS kernel state is the Mach kernel state augmented with the access vector cache and
the security information associated with subjects, objects, and messages.

DTOS Kernel Definition 39

__DtosAdditions
SubjectSid
ObjectSid
TargetSids
KernelAs
KernelCache
DitosMessages
TaskCreationState
ParentTask
ServerPorts
KernelReplyPorts
Protection

DTOS Kernel Definition 40

Dtos

Mach
DtosAdditions

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
78 Kernel Execution Model

Section 6
Kernel Execution Model

This section describes the computational model used to represent the DTOS kernel requests
and the additional data structures that are required to support this computational model. The
organization of this section is as follows:

m Section 6.1, Execution Summary, gives a high level overview of the execution model
and its data structures. The following sections give detailed descriptions of transitions
which occur in the processing of all requests.

m Section 6.2, Utility Transitions, discusses several utility transitions that are used in
various specifications.

m Section 6.3, Trap Invocation, discusses the transitions which occur at the start of any
request.

m Sections 6.4 through 6.6 describe the initial processing common to all kernel requests
which are made through the mach_msg trap.

m Section 6.7, Definitions, defines the data structures used to implement the transitions
discussed in the previous sections.

6.1 Execution Summary

The DTOS execution model centers on the selection of a set of common “break points” in the
processing of a kernel request. The break points are chosen to highlight significant processing
events such as request invocation and service checking. We address the issue of atomicity by
selecting an appropriate number and type of break points. One advantage of this approach is
flexibility with respect to the level of detail in the model; we can easily change the amount of
concurrency and level of detail by redefining the break points and the transitions which govern
them.

Given a set of break points, every kernel request can be viewed as a sequence of transitions
describing how processing moves from one break point to the next. In order to specify these
transitions we need to know the current execution state for each thread. In the model, we
maintain the execution status of each existing thread by setting the values of a function called
breaks. The domain of this function is the set of existing threads and the values indicate what
type of transitions have occurred as well as what information the thread needs to resume
processing. In a sense the breaks function is analogous to a processor’s stack where information
is stored between context switches, although the particular break points modeled bybreaks do
not in general coincide with actual context switches.

Every thread executing in user space maintains a value of Bk_user_space. To enter kernel space
a thread issues an instruction to trap into kernel code. We model such a transition by changing
the relevant value of the function breaks from Bk_user_space to Bk_new_trap. Similarly, we
model a transition where a thread starts at a break point labeled Bk_poimnt_A and ends at
a break point labeled Bk_point_B by changing the relevant value of the function breaks from
Bk_poini_A to Bk_point_B. The following sections describe the specific break points, their
interpretations in the execution model, the information needed to resume processing, and the
flow of processing from one break point to the next.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 79

In the Mach kernel, many different requests share common features of processing. Another
advantage of our model of execution is that it is easy to specify transitions which are common to
many requests in a reusable manner. In general we begin by discussing transitions which are
common to all requests and then discuss specialized transitions and finally discuss the transi-
tions which are specific to a particular request. This section details the common transitions,
transitions common to a class of requests are discussed in request chapter introductions, while
the request specific transitions are specified in individual request sections.

Now we describe the data structures constituting the execution model. The values of breaks
are elements of the free type BREAK_STATUS. These values indicate the current processing
status of a thread together with the environment needed to resume processing. The elements of
BREAK_STATUS are discussed in the following sections as preconditions and postconditions
to transitions. The formal definition of BREAK_STATUS is given in Section 6.7.5. We use the
schema Breaks to define the breaks function.

__Breaks
ThreadExist
breaks : THREAD —+ BREAK_STATUS

dom breaks = thread_exists

The state for the DTOS execution model consists of the components present in the DTOS kernel
state together with the function breaks.

DtosExec

Dtos
Breaks

We introduce a special schema Transition which serves as the signature for every main tran-
sition. This schema introduces the DTOS kernel state and declares four variables. The first,
cpu??, is the processor on which the transition is occurring. The other three are derived from
cpu?? and are included as aliases to commonly used state elements. The variable curr—_th?7 is
the thread which is currently executing oncpu??, curr—task?? is curr_th?7's parent task, and
curr_bk?? is the execution status of curr_th?7.12

__Transition
A DiosErec
cpu?? : PROCESSOR
curr—_th?? : THREAD
curr—_task?? : TASK
curr_bk?7? : BREAK_STATUS

cpu?? € dom active_thread

curr_th?? = active_thread(cpu??)
curr_task?? = owning_task(curr_th??)
curr_bk?? = breaks(curr_th??)

12The double questionmark decoration is used to provide a distinct look to these four components, since they have
an interpretation distinct from either elements of the system state or inputs or outputs.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
80 Kernel Execution Model

6.2 Utility Transitions

We begin our discussion of break points by specifying several transitions, shown in Figure 1,
which are used as utilities. Each box in the diagram represents a complete transition; the
first line in each box gives the name of the corresponding transition schema while the next
two lines describe the break type of the precondition and postcondition, respectively. For
example, the right-most box in Figure 1 describes the transition Ruling/nCache which has as
precondition the existence of a break of type Bk_check_pending, and produces a break of type
Bk_have_ruling as a postcondition. In these diagrams, a solid arrow from TransitionOne to
TransitionTwo indicates that TransitionOne precedes TransitionTwo and no other transitions
from this request intervene (of course concurrency allows transitions from other requests to
occur.) By contrast, a dashed line indicates that intervening requests may occur. For example,
the line from RulingNotinCache t0 RulingObtained is dashed to reflect the fact that when the
kernel waits for a ruling from the security server the most general interaction could involve
repeated failures and retries.

B TransitionName
pre_break
post_break

RulingNotInCache

check_pending
ruling_pending
1
' RulinginCache
' check_pending
' have ruling
Y
Return RulingObtained
return ruling_pending
user_space have ruling

.

Figure 1: Utility Transitions

6.2.1 The Return Utility

Here we discuss the transition associated with request termination. The final transition in the
processing of an IPC based request occurs when the kernel builds a return message containing
status information and a specific kernel reply. We model such a transition with the schema
Return. The precondition for this transition is the existence of a break of type Bk_return and
the post condition is the creation of a break of type Bk_user_space signaling the fact that the
thread has left kernel processing. The break Bk_user_space does not store any environment
parameters (since no further processing is necessary) while Bk_return maintains the following
information:

m reply_to_port — the port where the return message should be enqueued (if dead or null
Nno message is sent),
m operation — the operation identifier for the terminating request,

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 81

m reply — an element of the type KFRNEL_REPLY representing request specific output
parameters supplied by the kernel,

m return —an element of the type KERNEL_RETURN describing the error status of request
processing.

The kernel uses these parameters to build the return message. We model message construc-
tion with a set of functions: OQuiputs_to_body, Reply_size, Reply_complex, and Reply_op. These
functions and the types KFRNEL_REPLY and KERNEL_RETURN are discussed in detail in
Section 6.7.1. It is worth noting that this reply message is not sent viamach_msg; rather the
kernel builds the message and directly enqueues it atreply_to_port.

Editorial Note:
We do not currently specify enqueueing of the message.

__Return
Transttion

I message : MESSAGE; int_msg : InternalMessage;
reply_to_port : PORT; operation : OPERATION;
reply : KERNEL_REPLY ; return : KERNEL_RETURN
o curr_bk?? = Bk_return(reply_to_port, operation, reply, return)
A message ¢ message_exists
A message—_exists’ = message_ewists U { message }
A msg_contents(message) = int_msyg
A wnt_msg.header.local_rights = &
A wnt_msg.header.complex
= Reply_complex (operation, Outputs_to_body(reply, return))
A wnt_msg.header.size
= Reply_size(operation, Outputs_to_body(reply, return))
A wnt_msg.header.remote_port = reply_to_port
A wnt_msg.header.local_port = &
A int_msg.header.operation = Reply_op(operation)
A int_msg.body = Outputs_to_body(reply, return)
A int_msg.option = { Mach_send_msg }
A breaks’ = breaks & { curr_th?? — Bk_user_space }

6.2.2 Permission Checking

Next we define the set of transitions involved in specifying a permission check. There are two
possible transitions at the start of a permission check: Ruling/nCache or RulingNotInCache. The
precondition for each of these transitions is the existence of a break of type Bk_check_pending.
The transition RulinglnCache examines the cache, determines that a cached ruling is available
for the permission check, and creates a new break of type Bk_have_ruling. The transition
RulingNotInCache examines the cache, determines that a cached ruling is not available, and
creates a new break of type Bk_ruling_pending. In this case the kernel continues processing by
consulting the Security Server. We model this transition by the schemaRulingObtained which
has as precondition the existence of a break of type Bk_ruling_pending and which creates a new
break of type Bk_have_ruling.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
82 Kernel Execution Model

The permission checking transitions need to maintain several environment parameters. These
are interpreted as:

ssi — the subject SID of the check,

ost — the object SID of the check,

perm — the required permission,

env — the stored environment needed to resume processing,
op—_allowed — the boolean flag determining permission.

The first four of these are used in several places so we combine them in a structure called
CheckPending:

CheckPending
ss1: SST

ost : OST
perm : PERMISSION
env : ENVIRONMENT

There are three distinct contexts in which a permission check may be required: at the beginning
of a system trap (e.g. mach_thread_self), at the beginning of an IPC based request (e.g. the
service check for thread_get_state), or later in the processing of an IPC based request (e.g.
the deferred check in thread_get_special_port.) As such, the parameter env needs to store
one of three different types of data. To handle these three cases we define a free type called
ENVIRONMENT, which is described in Section 6.7.4.

The first permission checking utility transition is RulinginCache. When a permission check
is initiated, the kernel consults the cache to determine if there is an applicable ruling. The
schema RulinglnCache models the case where a permission check has been requested, and the
kernel verifies that the cache contains an applicable ruling. The precondition of RulinglnCache

is the existence of a break of type Bk_check_pending, reflecting the condition that the processing
of some request is waiting for a permission check. The postcondition, Bk_have_ruling, reflects

the fact that an available ruling was found; in this case the result of the permission check is
stored in the parameter perm. The parameter env is passed along unchanged.

__ RulingInCache
Transition

3 CheckPending; ruling : Ruling; op_allowed : BOOLEAN
o curr_bk?? = Bk_check_pending(ssi, osi, perm, env)
A (ssi, osi, perm, ruling) € cached_ruling_avail
A op_allowed
=1if perm € Cached_ruling_allows(ruling, ssi, osi, host_time)
then True
else False
A breaks’ = breaks & { curr—th?? — Bk_have_ruling(perm, op_allowed, env) }

The schema RulingNotinCache models the case where a permission check has been requested
and the kernel has determined that the cache does not contain an applicable ruling. Again
the precondition is the existence of a break of type Bk_check_pending, but in this case the
postcondition is a break of type Bk_ruling_pending reflecting the fact that the kernel is waiting
for a ruling from the Security Server. As before, the parameter env is passed along unchanged.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 83

— RulingNotinCache
Transition

3 CheckPending
o curr_bk?? = Bk_check_pending(ssi, osi, perm, env)
A (VY ruling : Ruling | ruling € cache
o ruling ¢ Usable_cached_ruling(ssi, osi, perm, host_time))
A breaks' = breaks @ { curr_th?? v Bk_ruling_pending(ssi, osi, perm, env) }

The schema RulingObtained models a transition where the kernel receives a valid ruling from
the Security Server. The precondition is the existence of a break of type Bk_have_ruling and
the postcondition is the creation of a new break of type Bk_have_ruling. The result of the
permission check is stored in the parameter perm. As before, the parameter env is passed along
unchanged.

Editorial Note:
The ruling obtained from the Security Server is modeled as a kernel input, but we do not specify how
ruling? gets added to the cache.

— RulingObtained
Transition
ruling? : Ruling

3 CheckPending; op_allowed : BOOLEAN
o curr_bk?? = Bk_ruling_pending(ssi, osi, perm, env)

A ruling? € Usable_ruling(ssi, osi, host_time)

A op_allowed
= 1if perm € Ruling_allows(ruling?, ssi, osi, host_time)
then True
else False

A breaks' = breaks @ { curr_th?? — Bk_have_ruling(perm, op_allowed, env) }

It is important to note that there are in fact many transitions between RulingNotInCache and
RulingObtained including the sending of a message to the security server and receipt of a
response.

6.3 Trap Invocation

All kernel requests are initiated through invocation of a trap while a thread is executing in
user space. The thread must specify the particular trap identifier as well as some collection of
parameters.

The precondition for this transition is the existence of a break of type Bk_user_space indicating
that the thread is currently executing in user space. The postcondition is the creation of
a new break of type Bk_new_trap. A break of type Bk_new_trap maintains two parameters:
trap_id? identifies the type of trap being invoked and user_spec? contains components for the
user supplied parameters. These types are described in Section 6.7.2 and Section 6.7.3.1.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005

84 Kernel Execution Model

_Invoke

Transition

trap_ud? : TRAP_ID
user_spec? : UserSpecified

curr_bk?? = Bk_user_space
trap_ad? € Trap_ids
breaks’ = breaks ® { curr_th?? v Bk_new_trap(trap_id?, user_spec?) }

6.4 Initial mach_msg processing

In this section we discuss the transitions shown in Figure 2 which specify the early processing
associated with the invocation of amach_msg trap.

Invoke id indicates MachMsgTrap GetKernelMsg kernd is
user_space Mach msg new_trap send mach_msg receiver
new_trap > mach_msg > have kernel_msg >

system . kernel not
receive .
trap receiver
v v
trap-specific ReceiveM essage SendMessage
processing mach_msg have kernel_msg
rcv_message send_message
MachMsgRev MachMsgSend
in IPC section in IPC section

Figure 2: mach_msg Trap Invocation

If {rap_id? indicates that the new break is Mach_msg_trap processing continues with
MachMsgTrap; the precondition is the existence of a break of type Bk_new_trap and the post-
condition is the creation of a new break of type Bk_mach_msg. The break Bk_new_trap carries
the trap identifier, Mach_msg_trap, as well as the user parameters user_spec which in this case

contains the user space message.

_ MachMsg

Transttion

Juser_spec : UserSpecified
o curr_bk?? = Bk_new_trap(Mach_msg_trap, user_spec)
A breaks’ = breaks & { curr_th?? — Bk_mach_msg(user_spec) }

Now we have two cases: this is a request to receive a message or a request to send a message.

Processing to receive a message is initiated in the transition Receive Message. A client requests
to receive a message by including Mach_rcv_msg in the set of options. The precondition also

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 85

includes the existence of a break of type Bk_mach_msg. The postcondition is the creation of a
new break of type Bk_rcv_message. Subsequent processing of a receive request is described in
Section C.1.

— RecerveMessage
Transition

Juser_spec : UserSpecified
o curr_bk?? = Bk_mach_msg(user_spec)
A Mach_rcv_msg € user_spec.options
A Mach_send_msg ¢ user_spec.oplions
A breaks' = breaks @ { curr_th?? — Bk_rcv_message(user—spec) }

Otherwise this is a request to send a message, in which case processing continues with the con-
version of the user space message into an internal representation. The transitionGetKernelMsg

models a transition where the kernel resolves local name references to port references and vir-
tual memory addresses to physical addresses. Here the precondition is the existence of a
break of type Bk_mach_msg and the postcondition is a new break of type Bk_have_kernel_msg.

The kernel message is modeled by an element of type InternalMessage; this is discussed in

Section 6.7.3.2.

Editorial Note:
Currently this is modeled as a “black box” transition, but the utilities exist (in the IPC section) to specify

the conversion.

— GetKernelMsg
Transition

Juser_spec : UserSpecified; int_msg : InternalMessage
o curr_bk?? = Bk_mach_msg(user_spec)
A Mach_send_msg € int_msg.option
A breaks' = breaks
@1 curr_th?? — Bk_have_kernel_msg(int_msyg) }

Now there are two cases to consider depending on whether or not the kernel is the receiver for
the message.

If the kernel is not the receiver, this is a request to send a message and we model con-
tinued processing with the transition SendMessage. The precondition is the existence of a
break of type Bk_have_kernel_msg and the postcondition is the creation of a new break of type
Bk_send_message. Subsequent processing of a send request are described in Section C.1.

—_SendMessage
Transition

Jint_msg : InternalMessage
o curr_bk?? = Bk_have_kernel_msg(int_msyg)
A kernel # receiver(int_msg.header.remote_port)
A breaks' = breaks @ { curr_th?? + Bk_send_message(int_msg) }

The case in which the kernel is the receiver is considered further in the next section.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
86 Kernel Execution Model

6.5 Service Checks for IPC Based Kernel Requests

Kernel requests which are received through themach_msg trap generally must pass through
an initial service check to determine if the client has permission to make the request. This is
performed whenever the permission required by the request is dependent only upon the client,
the port provided as the “target” port in the request and the operation identifier. For a few
requests, this information is not sufficient and the permission check is deferred.

Figure 3 shows the transitions described within this section.

kernd is ServicePending request has a CheckDeferred

receiver have_kernel_msg | geferred check | Service pending
service_pending > have permission

request hasa
service check further request
specific processing

\ 4
Servi(.:eCheck. permission Pa&Servi(?eCheck
service_pending utilities have ruling

check pending [~---"---- > have permission

1
1
' pgrmlwon
' utilities

1

A 4
Fail ServiceCheck to

have ruling Return
return

Figure 3: Message Transmission

The kernel prepares for the permission check by determining the operation that is being re-
guested. We model this processing with the transition Service Pending. The precondition is the
existence of a break of type Bk_have_kernel_msg and the postcondition is the creation of a new
break of type Bk_service_pending. As before, the parameter int_msg is carried along for future
use. In addition, this transition determines the operation and stores the value in theoperation
parameter of Bk_service_pending.

__ServicePending
Transition

Jint_msg : InternalMessage
o curr_bk?? = Bk_have_kernel_msg(int_msg)
A kernel = receiver(int_msg.header.remote_port)
A breaks' = breaks
@1 curr_th?? — Bk_service_pending (int_msg, int_msg.header.operation) }

Next the kernel determines whether or not the client has permission to request the opera-
tion. Each operation typically has an associated primary permission that a client must have
in order to successfully call the operation. Checking that the client has this primary per-
mission is referred to as making the service check. For example, the primary permission

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 87

associated with the thread_create request is Add_thread. The thread_create request does
not have any other permissions associated with it. As another example, the primary permis-
sion associated with the mach_port_allocate request is Add_name. However, there are other
permissions such as Hold_receive that are also relevant to the mach_port_allocate request.
The expression Required_permission(operation) denotes the primary permission, if any, associ-
ated with operation operation. For certain operations the service check is deferred because
the required permission depends on a parameter that must first be processed. Once the pa-
rameter has been extracted from the message the appropriate permission check is performed.
The set Service_check_deferred is the set of all such operations. No operation in the domain of
Required_permission can be in the set Service_check_deferred.

DTOS Kernel Definition 41

Required_permission : OPERATION —+ PERMISSION
Service_check_deferred : P OPERATION

Service_check_deferred N dom Required_permission = &

The schema CheckDeferred models a transition in which the service check for a request is
deferred until further processing can extract the appropriate parameters for the check. The
precondition is the existence of a break of type Bk_service_pending and the resulting break,
Bk_have_permission, takes an element of type PERMISSION as one of its arguments. We
introduce a dummy permission called permission_deferred to act as the desired permission in a
deferred service check.

| permission_deferred : PERMISSION

__CheckDeferred

Transttion

Jint_msg : InternalMessage; operation : OPERATION
o curr_bk?? = Bk_service_pending(int_msyg, operation)
A operation € Service_check_deferred
A breaks’ = breaks
@1 curr_th?? — Bk_have_permission(ini_msg, permission_deferred) }

If the service check is not deferred, the schema Service Check models a transition where the
current thread waits for the kernel to obtain a ruling from the cache or from the secu-
rity server. The precondition is the existence of a break of type Bk_service_pending and
the resulting break, Bk_check_pending, contains the parameters for the permission check.
The break Bk_check_pending requires an element of type ENVIRONMENT; the expression
F_kern(int_msg) packages the internal message into an element of this type. The function
F_kern is discussed in Section 6.7.4.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
88 Kernel Execution Model

_ ServiceCheck

Transttion

Jint_msg : InternalMessage; operation : OPERATION,

sst 2 SST; ost: OSIT; perm : PERMISSION
o curr_bk?? = Bk_service_pending(int_msyg, operation)

A operation ¢ Service_check_deferred

A ssi = task_sid(curr_task??)

A osi = port_sid(int_msg.header.remote_port)

A perm = Required_permission(operation)

A breaks' = breaks

@1 curr—th?? — Bk_check_pending(ssi, osi, perm, E_kern(int_msg)) }

Editorial Note:

The OSI in the previous might need more elaboration depending upon the use of the “self” SIDs. Also,
if we ever began to correctly consider specified sender SIDs, that would need to be taken care of around
this point in the processing.

After obtaining a ruling, the kernel examines the access vector to determine if the operation
is allowed. If the check fails, the kernel builds a return message by extracting information
from the internal message. The local_port component of the message header specifies the
reply port (Ip_null indicates that no reply should be sent.) In the case of a failed permission
check we use the element Null_reply of type KERNEL_REPLY to represent an empty kernel
reply and the kernel returns the special value Kern_insufficient_permission. \We model this
processing with the transition FailService Check. The precondition is the existence of a break of
type Bk_have_ruling indicating that the permission checking transition(s) have occurred. The
postcondition is either Bk_return in the case where a return message has been requested or
Bk_user_space for an immediate return to user space.

| Null_reply : KERNEL_REPLY

__ FailServiceCheck

Transttion

Iperm : PERMISSION ; op_allowed : BOOLEAN; int_msg : InternalMessage;
reply_to_port : PORT; operation : OPERATION;
reply : KERNEL_REPLY ; return : KERNEL_RETURN
o curr_bk?? = Bk_have_ruling(perm, op_allowed, E_kern(int_msg))
A op_allowed = False
A reply_to_port = int_msg.header.local_port
A operation = int_msg.header.operation
A reply = Null_reply
A return = Kern_insufficient_permission
A reply_to_port = Ip_null = breaks’ = breaks
&{ curr_th?? — Bk_user_space }
A reply_to_port # Ip_null = breaks’ = breaks
@1 curr_th?? — Bk_return(reply_to_port, operation, reply, return) }

Editorial Note:

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 89

The schema is not exactly coherent with the rest of the model. This is because the state model consider
local_port to be a set of ports (zero or one element) rather than allowing it to take null values as it should
and as is assumed here.

The transition PassServiceCheck models the case were a ruling has been obtained and the
operation is allowed. The precondition is the existence of a break of type Bk_have_ruling;
such a break can only be produced be the permission checking utilities so this ensures that
a permission check has occurred. The postcondition is the creation of a new break of type
Bk_have_permission. The internal message is carried along as a parameter throughout the
permission check as an element of type FNVIRONMENT (in this case £ _kern(int_msg)); in this
transition we convert back to an element of type InternalMessage.

__PassServiceCheck
Transttion

Iperm : PERMISSION ; op_allowed : BOOLEAN; int_msg : InternalMessage
o curr_bk?? = Bk_have_ruling(perm, op_allowed, E_kern(int_msg))
A op_allowed = True
A breaks' = breaks
@1 curr_th?? — Bk_have_permission(inti_msg, perm) }

In summary, if the service check passes or has been deferred there will be a break of type
Bk_have_permission. Further processing is described in the next section.

6.6 Request Validation

The final request processing steps which are generally common to all IPC based kernel requests
is validation of the request and extraction of the request parameters from the message body.
These transitions are shown in Figure 4.

valid ValidRequest ExtractRequest »
continued operation h:’_zjﬂ m;" on \r/]al |d_requ: ?:g;?is; ;Jiesm c
i — | vdid_requ ave _requ —
from previous et sotions
invaid
operation
InvalidRequest to
have_permission Return
return

Figure 4: Request Validation

If the service check passes or is deferred the kernel next verifies that the specified operation
is an allowed Mach operation. The set Allowed_kernel_ops denotes the set of recognized Mach
operations.

| Allowed_kernel_ops : P OPERATION

If the kernel determines that operation is not an allowed kernel operation, an error message is
generated and sent to the reply port. Again the kernel sends an empty reply, and if the reply port

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
90 Kernel Execution Model

is null no message is sent. The kernel reply is the special value M/G_BAD_ID. This is modeled
by the transition /nvalidRequest. The precondition is a break of type Bk_have_permission and
the two possible postconditions are Bk_user_space for a return without message or Bk_return
for a return with message.

| MIG_BAD_ID : KERNEL_REPLY

—_InvalidRequest
Transition

Jint_msg : InternalMessage; perm : PERMISSION ;
reply_to_port : PORT; operation : OPERATION;
reply : KERNEL_REPLY ; return : KERNEL_RETURN
o curr_bk?? = Bk_have_permission(ini_msg, perm)
A operation = int_msg.header.operation
A operation ¢ Allowed_kernel_ops
A reply_to_port = int_msg.header.local _port
A reply = MIG_BAD_ID
A return = Kern_invalid_value
A reply_to_port = Ip_null = breaks’ = breaks
&{ curr_th?? — Bk_user_space }
A reply_to_port # Ip_null = breaks’ = breaks
@1 curr_th?? — Bk_return(reply_to_port, operation, reply, return) }

Editorial Note:

The schema is not exactly coherent with the rest of the model. This is because the state model consider
local_port to be a set of ports (zero or one element) rather than allowing it to take null values as it should
and as is assumed here.

If the request is valid, we model processing with ValidRequest. The precondition is the existence
of a break of type Bk_have_permission and the postcondition Bk_valid_request indicates that the
operation is allowed.

— ValidRequest

Transttion

Fint_msg : InternalMessage; perm : PERMISSION
o curr_bk?? = Bk_have_permission(ini_msg, perm)
A wnt_msg.header.operation € Allowed_kernel_ops
A breaks' = breaks @ { curr_th?? v Bk_valid_request(int_msg) }

Finally, if the operation is valid, the kernel extracts the request parameters. We model
this with the transition EztractRequest. The precondition is the existence of a break of type
Bk_valid_request and the postcondition Bk_have_request, which maintains an element of type
Request, indicates that a request has been extracted. The componenets of Request are discussed
in Section 6.7.3.3.

Editorial Note:

This is modeled as a “black box” conversion. Potentially there are many different extraction transitions,
depending on the types of the parameters. At some point it is also important to deal with the possibility
that the extraction code (MIG) gets too confused about the types.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS

91

_ FxtractRequest
Transition

Fini_msg : InternalMessage; request : Request
o curr—_bk?? = Bk_valid_request(int_msg)
A breaks’ = breaks & { curr_th?? — Bk_have_request(request) }

Further request processing is discussed in the chapter introductions and request sections.

6.7 Definitions

In this section we define the types and constructors used to describe the break points.

6.7.1 Reply Messages

First we discuss the functions and types connected with kernel reply messages. We have two
types to represent the information returned by the kernel in reply messages. The elements of
KERNEL_REPLY represent the various types of output that the kernel can supply to a client
through a reply message. Elements of type KERNEL_REPLY are request dependent, so here
we define KERNEL_RFEPLY as an abstract set; particular elements are discussed in the request

specifications.

[KERNEL_REPLY]

The set KERNFL_RETURN is an enumerated type representing the possible return statuses

that a request can generate. The set of statuses in DTOS consists of:

m Kern_success — the request was successful,
m Kern_failure — an implementation dependent failure occurred,

m Kern_invalid_argument — an attempt was made to perform an operation on the wrong
type of entity; for example, an attempt was made to perform a task operation on a thread,
m Kern_protection_failure — an attempt was made to access memory in violation of the

protections in force,
m Kern_invalid_address — an invalid address was specified,

m Kern_no_space — an attempt was made to allocate space in a task whose address space

or name space was full,

m Kern_invalid_host — an attempt was made to perform a host operation on an entity other

than a host,

Kern_invalid_right — the wrong type of port right was provided,

Kern_invalid_value — a parameter value that was out of range was provided,
Kern_name_exists — an attempt was made to reuse a name that was already used in
target task’s address space,

Kern_invalid_name — a name provided as a port right was not currently in use,

Kern_resource_shortage — insufficient resources were available for service to be provided,

the

m Kern_not_in_set — a name provided as the element of a port set was not in any port set,
m Kern_urefs_overflow — an operation was attempted that would cause a user reference

count to overflow,
m Kern_memory_present —

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
92 Kernel Execution Model

Review Note:
Need to determine what this is used for if it is really used

m Kern_invalid_task — an attempt was made to perform a task operation on an entity other
than a task,

Kern_eml_bad_cnt — an invalid syscall number was specified for an emulation vector
entry,

Kern_invalid_capability — a provided name is not a right of the appropriate type,
Kern_insufficient _permission — a security checked failed in the processing of the request.

[KERNEL_RETURN]

Kern_success : KERNEL_RETURN
Kern_failure : KERNEL_RETURN
Kern_invalid_argument : KERNEL_RETURN
Kern_protection_failure : KERNEL_RETURN
Kern_invalid_address : KERNEL_RFETURN
Kern_no_space : KERNEL_RETURN
Kern_invalid_host : KERNFEL_RETURN
Kern_resource_shortage : KERNEL_RETURN
Kern_invalid_right : KERNEL_RETURN
Kern_invalid_value : KERNFEL_RETURN
Kern_name_exists : KERNFEL_RETURN
Kern_invalid_name : KERNEL_RETURN
Kern_not_in_set : KERNFEL_RETURN
Kern_urefs_overflow : KERNEL_RETURN
Kern_true : KERNEL_RETURN

Kern_false : KERNEL_RETURN
Kern_memory_present : KERNEL_RETURN
Kern_invalid_task : KERNEL_RETURN
Kern_insufficient_permission : KERNEL_RETURN
Kern_eml_bad_cent : KERNEL_RETURN
Kern_invalid_capability : KERNEL_RETURN

Values_disjoint (Kern_success, Kern_failure, Kern_invalid_argument,
Kern_protection_failure, Kern_invalid_address, Kern_no_space, Kern_invalid_host,
Kern_resource_shortage, Kern_invalid_right, Kern_invalid_value, Kern_name_ezists,
Kern_invalid_name, Kern_not_in_set, Kern_urefs_overflow,

Kern_true, Kern_false, Kern_memory_present,
Kern_eml_bad_cnt, Kern_invalid_task,
Kern_insufficient_permission, Kern_invalid_capability)

Note that all but Kern_insufficieni_permission are Mach status codes, while
Kern_insufficient _permission is a DTOS addition.

Next we define several functions which package the return parameters into a mes-
sage. The expression Outputs_to_body(reply, return) converts a group of output param-
eters reply and a status return to the message body structure, and the expression
Reply_size(operation, Outputs_to_body(reply, return)) denotes the size of a message carrying reply
and return as output from a request of type operation.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 93

Outputs_to_body : KERNEL_REPLY x KERNEL_RETURN — INTERNAL_BODY
Reply_size : OPERATION x INTERNAL _BODY — N

As with general messages in Mach, a reply message can be either simple or com-
plex as specified by the complexz field of the message header. The expression
Reply_complex(operation, Outputs_to_body(reply, return)) denotes the value that should be as-
signed to this field when returning reply and return as output from a request of type operation.

| Reply_complex : OPERATION x INTERNAL_BODY — P COMPLEX_OPTION

The kernel also needs to assign a value to the operation field of the reply message. The
expression Reply_op(operation) denotes the value that is used to indicate a reply message for a
request of type operation.'3

| Reply_op : OPERATION — OPERATION

6.7.2 Trap Identifiers

We define the set TRA P_ID which represents the set of all trap operations. The set of identifiers
used to represent traps is Trap_ids.

[TRAP_ID]
FEve_wait_trap, Mach_thread_self _trap, Swich_trap, Swich_pri_trap,

Thread_switch_trap, Mach_msg_trap : TRAP_ID
Trap_ids : P TRAP_ID

(Eve_wait_trap, Mach_thread_self _trap, Swtch_trap, Swich_pri_trap,
Thread_switch_trap, Mach_msg_trap) Values_partition Trap_ids

6.7.3 Environment Parameters

As processing of a request progresses, the parameters involved are subject to several transfor-
mations. To handle various data contexts we model three types of parameters: user specified
parameters, kernel parameters, and abstract request parameters. In this section we define
structures which represent these types of data.

As an example, there are three distinct contexts in which a permission check may be required:
at the beginning of a system trap (e.g. mach_thread_self), at the beginning of an IPC based
request (e.g. the service check for thread_get_state), or later in the processing of an IPC
based request (e.g. the deferred check in thread_get_special_port.) As such, the parameter
env supplied to the permission checking utilities needs to store one of three different types of
data. To handle these three cases we define a free type called ENVIRONMENT, which uses
three different constructor functions to store the three types of parameters.

6.7.3.1 User Parameters In the case of a system trap, we use the structure UserSpecified. The
components consist of all possible user inputs for the various traps. Most of these inputs come
from Mach_msg_trap. The components have the following interpretations:

13 The current implementation defines Reply_op(operation) to be operation + 100.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005

94 Kernel Execution Model
m trap_id — the identifier of the originating trap,
m priority — the priority argument to the swtch_pri trap,
m thread_switch_name — the name argument to the thread_switch trap,
m thread_switch_option — the option to the thread_switch trap,
m timeout — a timeout parameter, used by the thread_switch and mach_msg traps,
m message — the user message being sent via mach_msg,
m options — the send/receive options specified in the mach_msg trap,
m send_size — the size of a message being sent,
m receive_size — the maximum size message that can be received,
m receiver — Where return messages will be received,
m notify — where to send notifications.

The type THREAD_SWITCH _OPTION consists of the following three values:

THREAD_SWITCH_OPTION ::= Thread_switch_none | Thread_switch_depress

| Thread _switch_wail

__ UserSpecified
trap_td : TRAP_ID
priority : 2
thread_switch_name : NAME
thread_switch_option : THREAD_SWITCH_OPTION
timeout : N
message : Message
options : P MACH_MSG_OPTION
send_size : N
receive_size : N
recewver : NAME
notify : NAME

6.7.3.2 Kernel Parameters In the case of a service check, the user space parameters contained
in an IPC message have been converted into internal representations—names have become
ports and virtual memory references have become physical addresses. We model this by storing
the relevant processing information in a structure of type InternalMessage, which is described
in Section 4.10.8.

6.7.3.3 Request Parameters In the case of a deferred check, the kernel has performed addi-
tional processing on the message parameters to extract the request parameters. We use an
element of type Request to represent the parameters of the abstract service being requested.
These values are obtained from the contents of the message and the port through which the
message was received. The components have the following interpretations:

operation — the type of operation specified in the message,

service_port — the port through which the message was received,

pe — service_port’s class (task, thread, memory control, ...),

reply_to_port — a set containing the port to which the reply message should be sent, the
empty set indicates no reply should be sent,

message — the received message,

m sending_sid — the SID of the subject that sent the message ,

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 95

m receiver_specified — a Boolean indicating whether an intended receiving SID is specified,
m receiving_sid — the intended receiving SID (if any).

BOOLEAN ::= True | False

— Request
operation : OPERATION
service_port : PORT
pc: PORT_CLASS
reply_to_port : P PORT
message : MESSAGE
sending_sid : SST
recewwer_specified : BOOLEAN
recetving_sid : SST

6.7.4 Environment

The three preceding data types are used to build the free type FNVIRONMENT, which is used
to store parameters between transition breaks:

ENVIRONMENT ::= E_user{UserSpecified))
| E_kern{{InternalMessage))
| E_req{{ Request))

6.7.5 Break Status

Finally, we give the formal definition of the free type BREAK_STATUS. All of the constructor
functions defining BREAK_STATUS have been discussed in the preceding sections. They
consist of:

m Bk_return indicates that a return message is being built and processing is terminating
(Section 6.2),

m Bk_check_pending indicates that a thread is waiting to check whether a usable ruling for
a given permission is available in the cache (Section 6.2),

m Bk_ruling_pending indicates that a thread is waiting for a ruling to be received from the

Security Server (Section 6.2),

Bk_have_ruling indicates that a thread has obtained a ruling and permission (Section 6.2),

Bk_user_space indicates that a thread is executing in user space (Section 6.3),

Bk_new_trap indicates that a thread has issued a trap into kernel space (Section 6.3),

Bk_mach_msg indicates that a thread has issued a trap of type Mach_msg_trap (Sec-

tion 6.4),

Bk_rcv_message indicates that a thread is waiting to receive a message (Section 6.4),

m Bk_have_kernel_msg indicates that a user space message has been converted to an internal
kernel message (Section 6.4),

m Bk_send_message indicates that a thread is waiting to send a message and the kernel is
not the receiver (Section 6.4),

m Bk_service_pending indicates that a thread has sent a message to the kernel and is waiting
for an IPC based request to be performed (Section 6.5),

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
96 Kernel Execution Model

m Bk_have_permission indicates that a permission check has terminated and the operation
is allowed (Section 6.5),

m Bk_walid_request indicates that the indicated operation is a recognized Mach operation
(Section 6.6),

m Bk_have_request indicates that the MIG interface has extracted the internal request pa-
rameters (Section 6.6).

The following abbreviations are used for some of the parameters in the constructor functions.
Values of type BK_PERM _REQUEST indicate the permission check for which a given request
is waiting. Values of type BK_PFERM _RESULT indicate the permission check and its results
for a given request. Values of type BK_RETURN contain the information necessary to build a
return message.

BK_PERM _REQUEST == SSI x OSI x PERMISSION x ENVIRONMENT
BK_PERM _RESULT == PERMISSION x BOOLFEAN x ENVIRONMENT
BK_RETURN == PORT x OPERATION x KERNEL_REPLY x KERNEL_RETURN

The type BREAK_STATUS is defined by:

BREAK_STATUS ::= Bk_return(BK _RETURNY)
| Bk_check_pending (BK_PERM _REQUESTY)
| Bk_ruling_pending (BK _PERM _REQUEST))
| Bk_have_ruling(BK_PERM_RESULTY
| Bk_user_space
| Bk_new_trap{ Trap_ids x UserSpecified))
| Bk_mach_msg{ UserSpecified))
| Bk_rcv_message { UserSpecified))
| Bk_have_kernel_msg{InternalMessage))
| Bk_send_message {InternalMessage))
| Bk_service_pending {InternalMessage x OPERATIONY)
| Bk_have_permission{InternalMessage x PERMISSION })
| Bk_valid_request{(InternalMessage))
| Bk_have_request{ Request))

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 97

Section 7
System Trap Requests

7.1 Introduction to System Trap Requests

This chapter describes the system trap requests in DTOS.

7.1.1 Kernel Processing

Every trap begins with the transition Inwvoke which produces a new break of type
Bk_new_trap(trap_id?, user_spec?). Typically there are no user inputs, but several traps (e.g.
thread_switch) require one or more inputs. These parameters are stored in components of the
user_spec? structure. Permission checks are handled by the utilities discussed in Section 6.2.

When a trap produces an error, it does not affect the system state. We define the following
transition to describe the situation where trap processing encounters an error and execution
leaves kernel space without changing the state.

— TrapOnlyObserves
= Dios
Transition

breaks' = breaks @ { curr_th?? — Bk_user_space }

We now describe the individual system trap requests.

7.1.2 Adding a Send Right

Editorial Note:

The following schema is used both in this chapter and the thread requests chapter. As currently used, it
forces us to violate the goal of having a common signature for all state transition schemas. It is not clear
that there is a simple way to avoid this, or whether this indicates a weakness in Z or in our use of Z.

The following schema describes a successful addition of a send right with name equal toname
for the port port to the port name space for task task. This action is one result of several thread
requests.

The name for the new right cannot already name a send-once right, dead name or port set. If
it does name either a send or receive right, this right must be forport. If it is does not already
name a send right, then a send right for port port with name name is added to the port name
space for task with a user reference count of 1. If it already names a send right belonging to
task, the user reference count for this send right is incremented by 1.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
98 System Trap Requests

__AddSendRight
A PortNameSpace
A SendRightsCount
name : NAME
task : TASK
port : PORT

(task, name) & so_right U dead_namep U port_set_namep

(task,name) € s_r_right = named_port(task, name) = port
(task,name) & s_right

= port_right_rel' = port_right_rel U {(task, port, name, Send, 1)}
(task, na?ne) € s_right

= port_right_rel' = port_right_rel

_\ {(task, port, name, Send, s_right_ref _count(task, name))}
U {(task, port, name, Send, s_right_ref _count(task, name) + 1)}

7.2 mach_thread_self

The request mach_thread_self places a send right for a thread’'s kernel port in the name
space of the owning task of the thread. It is a system trap.

7.2.1 Kernel Interface

mach_port_t mach_thread_self

0

7.2.1.1 Input Parameters No input parameters are provided to the kernel for a mach_—
thread_self request.

7.2.1.2 Output Parameters The following output parameters are returned by the kernel for a
mach_thread_self request:

m kernel_port_name! — the name for a send right to the thread’s kernel port in the port
name space of the thread’'s owning task

MachThreadSelf OQutputs
kernel_port_name!: NAME

7.2.2 Request Criteria

The following criteria are defined for the mach_thread_self request.

m C1 — Permission Get_thread_kernel_port has been obtained.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 99

— Cl1MachThreadSelfGetThreadKernelPort

Transttion

Jenv : ENVIRONMENT
o curr—_bk?? = Bk_have_ruling(Get_thread_kernel_port, True, env)

__NotClMachThreadSelfGetThread KernelPort

Transttion

Jenv : ENVIRONMENT
o curr_bk?? = Bk_have_ruling(Get_thread_kernel_port, False, env)

s C2 — The sself port for the current thread is not Ip_dead.
__ C2MachThreadSelfKernelPortNotDead

Transttion

thread_sself (curr_th??) # Ip_dead

NotC2MachThreadSelfKernelPortNotDead
= Transition A = C2MachThreadSelfKernelPortNotDead

m C3 — The sself port for the current thread is not Ip_null.
— C3MachThreadSelfKernelPortNotNull

Transttion

thread_sself (curr_th??) # Ip_null

NotC3MachThreadSelfKernelPortNotNull
= Transition A = C3MachThreadSelfKernelPortNotNull

s C4 — Either the current task already holds a send or receive right to the thread's
sself port (so that a new IPC entry need not be created), or the kernel has the avail-
able resources to create an IPC entry in the current task’s name space. We do not
actually model the consumption of resources by the kernel. So, we will use the set
Resources_available_to_create_ipc_entry to indicate the set of states where there are suffi-
cient resources to create an IPC entry.

| Resources_available_to_create_ipc_entry : P DiosFEzec

— C4MachThreadSelfResourcesAvailable

Transttion

((Fname : NAME; i : Ny; right : {Send, Receive}
o (curr_task??, thread _sself (curr_th??), name, right, i)
€ port_right_rel)
V 0 DtosErec € Resources_available_to_create_ipc_entry)

NotC4MachThreadSelfResourcesAvailable
= Transition A = C4MachThreadSelfResourcesAvailable

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
100 System Trap Requests

s C5 — Permission Hold_send has been obtained.

— CbMachThreadSelfHoldSend

Transttion

Jenv : ENVIRONMENT
o curr_bk?? = Bk_have_ruling(Hold_send, True, env)

— NotCbMachThreadSelfHoldSend

Transttion

Jenv : ENVIRONMENT
o curr_bk?? = Bk_have_ruling(Hold_send, False, env)

7.2.3 Return Values

Table 1 describes the values returned at the completion of the request and the conditions under
which each value is returned. We note that C2 and C3 may not both be false simultaneously.

| kernel_port_name! | C1 | Cc2 | C3 | Ca | C5 |
name T T T T | T
Mach_port_null T T T T E
Mach_pori_null T T T F -
Mach_port_null T T F - -
Mach_port_dead T F T - -
Return_status_to_name(Kern_insufficient _permission) F - - - -

Table 1: Return Values for mach_thread_self

We call attention here to the fact that C1 — C4 are checked in the the transition
MachThreadSelfMiddle (see below) while only C5 is checked in transition MachThreadSelfEnd.
These are distinct transitions between which an arbitrary number of other transitions may
occur. Furthermore, C5 is checked only if in some earlier transition for that trap re-
quest C1 — C4 are all true. We also note that name is constrained by AddSendRight when
RVMachThreadSelfGood is combined with MachThreadSelfState.

— RVMachThreadSelfGood
CbMachThreadSelfHoldSend
MachThreadSelf OQutputs
Transition
name : NAME

kernel_porti_name! = name
breaks’ = breaks © { curr_th?? +— Bk_user_space }

— RVMachThreadSelfNoHoldSend
NotCbMachThreadSelfHoldSend
MachThreadSelf OQutputs

kernel_port_name! = Mach_port_null

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 101

— RVMachThreadSelfResourceShortage
Cl1MachThreadSelfGet Thread KernelPort
C2MachThreadSelfKernelPortNotDead
C3MachThreadSelfKernelPort Not Null
NotC4MachThreadSelfResourcesAvailable
MachThreadSelf OQutputs

kernel_port_name! = Mach_port_null

— RVMachThreadSelfKernelPortNull
Cl1MachThreadSelfGet Thread KernelPort
NotC3MachThreadSelfKernelPortNotNull
MachThreadSelf OQutputs

kernel_port_name! = Mach_port_null

— RVMachThreadSelfKernelPortDead
Cl1MachThreadSelfGet Thread KernelPort
NotC2MachThreadSelfKernelPortNotDead
MachThreadSelf OQutputs

kernel_port_name! = Mach_port_dead

| Return_status_to_name : KERNEL_RETURN — NAME

— RVMachThreadSelfNoGet ThreadKernelPort
NotC1MachThreadSelfGet Thread KernelPort
MachThreadSelf OQutputs

kernel_port_name! = Return_status_to_name(Kern_insufficient_permission)

7.2.4 State Changes

A successful mach_thread_self request results in the addition of a send right for the kernel
port, port, of curr_th?7 into the port name space of the task, task, containing curr_th7?7. This is
accomplished by schema AddSendRight which describes the relationships between name, task,
and port when a send right is successfully added to a name space.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
102 System Trap Requests

— MachThreadSelfState
Transition
ThreadInvartants
ThreadErist
PortErist
TaskErist
DeadRights
Threads

Special ThreadPorts
Thread AndProcessorSet
AddSendRight

[x1 [11 [x] a1 [a] [1] (1]

task = curr_task??
port = thread_sself (curr_th??)

Bort_set_rel/ = Bort_set_rel

7.2.5 Complete Request

Here we discuss the transitions shown in Figure 5 which describe the general form of the
mach_thread_self request.

1. Amach_thread_self request is invoked through a system trap that has thetrap_id7 field
set to Mach_thread_self _trap.

__Invoke MachThreadSelf
Invoke

trap_1d? = Mach_thread_self _trap

2. MachThreadSelfPerm CheckG'TKP suspends processing to wait for the availability of a rul-
ing on the Get_thread_kernel_port permission. The permission check is handled by the
utilities described in Section 6.2 and consists of one or two transitions depending upon
the availability of a ruling in the cache.

Editorial Note:
This should eventually be covered by generic trap processing if possible.

— MachThreadSelfPermCheckGTKP

Transttion

3 CheckPending; user_spec : UserSpecified
o curr_bk?? = Bk_new_trap(Mach_thread_self _trap, user_spec)
A ssi = thread_sid(curr_th??)
A ost = Thread_self _sid
A breaks' = breaks
@1 curr_th?? — Bk_check_pending(ssi, osi, Get_thread_kernel_port, E_user(user_spec)) }

3. Either MachThreadSelfMiddle Bad or MachThreadSelfMiddleGood occurs. This models a
transition where a ruling on the Get_thread_kernel_port permission has been obtained

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005

DTOS FTLS 103
InvokeM achThreadSelf
user_space
new_trap
v
MachThreadSel fPermCheck GTKP MachThreadSalfMiddleBad
new trap booooo_________ -
check_pendin have_ruling
P 9 T user_space
A4
MachThreadSelfMiddleGood MachThreadSelfEndBad
have ruing Lo __________ have_ruling
check_pending user_space
Y
MachThreadSelfEndGood
have ruling
user_space

Figure 5: mach_thread_self Processing

from the cache or Security Server. ConditionsC1-C4 are checked. If any of them is false,
no state changes are made, an error value is returned and processing terminates with
this step.

MachThreadSelfMiddle Bad
= (RVMachThreadSelfResourceShortage
V RVMachThreadSelfKernelPort Null
V RVMachThreadSelfKernelPortDead
V RVMachThreadSelfNoGetThread KernelPort)
A TrapOnlyObserves

If the four conditions are all true, then trap processing is suspended (via
MachThreadSelfPermCheckHS) while waiting to check on the availability of a ruling for
the Hold_send permission.

Editorial Note:

The value used for os: in the following schema is not in agreement with the requirements in the
FSPM which state that the os: should be port_sid(port). However, this is the value that is being
used in the prototype as of 17 May 1996. CAR# 5024 describes this discrepancy.

Secure Computing Corporation
CAGE Code OHDC7

83-0902024A001 Rev A
1.21, 4 December 1996

CDRL A005
104 System Trap Requests

Also, env should not be a free variable but should be explicitly specified, in this case most likely as
the “empty” environment.

— MachThreadSelfPermCheckHS

Transttion

3 CheckPending; env : ENVIRONMENT; port : PORT
e 551 = thread_sid(curr—_th??)
A port = thread_sself (curr_th??)
A osi = if (curr_th??, port) € thread_self
then Thread_self _sid
elseif (curr_task??, port) € task_self
then Task_self _sid
else port_sid(port)
A breaks’ = breaks
@1 curr_th?? — Bk_check_pending(ssi, osi, Hold_send, env) }

MachThreadSelfMiddle Good
= Cl1MachThreadSelfGet Thread KernelPort
A C2MachThreadSelfKernelPortNotDead
A C3MachThreadSelfKernelPortNotNull
A CdMachThreadSelfResourcesAvailable
A MachThreadSelfPermCheckHS

4. Either MachThreadSelfEndGood or MachThreadSelfEndBad occurs. This models a transition
where a ruling on the Hold_send permission has been obtained from the cache or the
Security Server. The Hold_send permission is checked. If it is granted, the state changes
in MachThreadSelfState occur, and the name of the new send right is returned.

MachThreadSelfEndGood = RVMachThreadSelfGood A MachThreadSelfState

Otherwise, Mach_port_null is returned and no state changes occur.

MachThreadSelfEndBad = RVMachThreadSelfNoHoldSend A TrapOnlyObserves

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 105

Section 8
Port Requests

8.1 Introduction to Port Requests

This chapter describes the port kernel requests in DTOS.

8.1.1 Request Identifiers

We first define the identifier that is used to represent each port request. The kernel accepts all
port requests through task self ports.

Mach_port_allocate_id, Mach_port_allocate_secure_id, Mach_port_allocate_name_id,
Mach_port_allocate_name_secure_id, Mach_port_deallocate_ud,
Mach_port_destroy_id, Mach_port_extract_right_id,
Mach_port_get_receive_status_id, Mach_port_get_refs_id,
Mach_port_get_set_status_id, Mach_port_insert_right_ud,
Mach_port_mod_refs_id, Mach_port_move_member_id, Mach_port_names_id,
Mach_port_rename_id, Mach_port_request_notification_id,
Mach_port_set_mscouni_id, Mach_port_set_qlimit_id, Mach_port_set_seqno_ud,
Mach_port_type_id, Mach_port_type_secure_id : OPERATION

Port_operations : P OPERATION

(Mach_port_allocate_id, Mach_port_allocate_secure_id, Mach_port_allocate _name_id,
Mach_port_allocate_name_secure_id, Mach_port_deallocate_ud,
Mach_port_destroy_id, Mach_port_extract_right_id,
Mach_port_get_receive_status_id, Mach_port_get_refs_id,
Mach_port_get_set_status_id, Mach_port_insert_right_ud,
Mach_port_mod_refs_id, Mach_port_move_member_id, Mach_port_names_id,
Mach_port_rename_id, Mach_port_request_notification_id,
Mach_port_set_mscouni_id, Mach_port_set_qlimit_id, Mach_port_set_seqno_ud,
Mach_port_type_id, Mach_port_type_secure_id)

Values_partition Port_operations
Port_operations C Allowed_mach_services(Pe_task)

8.1.2 Required Permissions

For each operation there is a primary permission that is required to perform the operation. We
define here the portion of the Required_permission function that pertains to port requests.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
106 Port Requests

{(Mach_port_allocate_id, Add_name),
(Mach_port_get_receive_status_id, Observe_pns_info),
(Mach_port_get_refs_id, Observe_pns_info),
(Mach_port_get_set_status_id, Observe_pns_info),
(Mach_port_names_id, Observe_pns_info),
(Mach_port_rename_id, Port_rename),
(Mach_port_set_mscount_id, Alter_pns_info),
(Mach_port_set_glimit_id, Alter _pns_info),
(Mach_port_set_seqno_id, Alter_pns_info)}

C Required_permission

8.1.3 Invariant Information

Review Note:
This section will be completed in a future draft when all of the port requests are completed.

8.1.4 General Information

This section contains bits of information which are common to several port requests.

Review Note:
In a future draft, it may be appropriate to move some of this information to the state chapter.

The names Mach_port_dead and Mach_port_null are referred to in this chapter as
Reserved_names.

‘ Reserved_names : P NAME
Reserved_names = { Mach_port_dead, Mach_pori_null}
Mach_port_null # Mach_port_dead

Parameters to several of the port requests include a type of right which includes not only send,
send-once and receive rights but also dead rights and port sets. These parameters are given
the type RIGHT_TYPE.

[RIGHT_TYPE]

Mach_port_right_send, Mach_port_right_receive, Mach_port_right_send_once,
Mach_port_right_port_set, Mach_port_right_dead_name : RIGHT _TYPE

Values_disjoint(Mach_port_righi_send, Mach_port_right_receive,
Mach_port_right_send_once, Mach_port_right_port_set,
Mach_port_right_dead_name)

The mach_port_request_notification request has a parameter of type MACH_MSG_ID
which indicates which of the three types of notification is being requested.

[MACH_MSG_ID]

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 107

Mach_notify_port_destroyed, Mach_notify_no_senders, Mach_notify_dead_name : MACH_MSG_ID
Values_disjoint(Mach_notify_port_destroyed, Mach_notify_no_senders, Mach_notify_dead_name)

The mach_port_get_receive_status request returns a record PortStatus consisting of the
following information:

m port_set_name — if the receive right is a member of a port set, the name of this port set;
otherwise, the name Mach_port_null

m make_send_count_value — the make-send count for the port

m port_destroyed_notification_requested — takes on the value True if a port-destroyed notifi-
cation request is currently active for the port; otherwise False

m no_more_senders_notification_requested — takes on the value True if a no-more-senders
notification request is currently active for the port; otherwise False

m msg_count_value — the number of messages queued at the port

m ¢limit_value — the limit on the number of messages which can be queued to the port

m sequence_no_value — the current sequence number for the port

m number_of _send_once_rights — the number of send-once rights which exist to the port

m any_send_rights — takes on the value True if there exist send rights to the port; otherwise
False
__PortStatus

port_set_name : NAME

make_send_count_value : N
port_destroyed_notification_requested : BOOLEAN
no_more_senders_notification_requested : BOOLEAN
msg—count_value : N

glimit_value : N

sequence_no_value : 2

number_of _send_once_rights : N

any_send_rights : BOOLEAN

The mach_port_names, mach_port_type, and mach_port_type_secure requests return
a mask PortType Mask consisting of the following flags:

mach_port_type_send — equal to True if and only if the name is a send right
mach_port_type_receive — equal to True if and only if the name is a receive right
mach_port_type_send_once — equal to True if and only if the name is a send-once right
mach_port_type_port_set — equal to True if and only if the name is a port set
mach_port_type_dead_name — equal to True if and only if the name is a dead name
mach_port_type_dead_name_request — equal to True if and only if there is an outstanding
dead name notification request for the name

m mach_port_type_msg_accepted_request — equal to True if and only if the name is not avail-
able for use as a send right since it has been used to force a message on a message
queue

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
108 Port Requests

__PortTypeMask
mach_port_type_send : BOOLEAN
mach_port_type_receive : BOOLEAN
mach_port_type_send_once : BOOLEAN
mach_port_type_pori_set : BOOLEAN
mach_port_type_dead_name : BOOLEAN
mach_port_type_dead_name_request : BOOLEAN
mach_port_type_msg_accepted_request : BOOLEAN

8.1.5 Parameter Packaging Functions

When invoking a kernel request, the following functions package the input parameters into a
message body:

Mach_port_allocate_inputs_to_body : RIGHT_TYPE — MESSAGE_BODY
Mach_port_extract_right_inputs_to_body

: NAME x MACH_MSG_TYPE — MESSAGE_BODY
Mach_port_get_receive_status_inputs_to_body : NAME — MESSAGE_BODY
Mach_port_get_refs_inputs_to_body : NAME x RIGHT_TYPE — MESSAGE_BODY
Mach_port_get_set_status_inputs_to_body : NAMFE — MESSAGE_BODY
Mach_port_insert_right _inputs_to_body

: NAME x NAME x MACH_MSG_TYPE — MESSAGE_BODY
Mach_port_move_member_inputs_to_body : NAME x NAMFE — MESSAGE_BODY
Mach_port_rename_inputs_to_body : NAME x NAME — MESSAGE_BODY
Mach_port_request_notification_inputs_to_body

: NAME x MACH_MSG_ID xNx NAME x MACH_MSG_TYPFE — MESSAGE_BODY
Mach_port_set_mscount_inputs_to_body : NAME x N— MESSAGE_BODY
Mach_port_set_qlimit_inputs_to_body : NAME x N— MESSAGE_BODY
Mach_port_set_seqno_inputs_to_body : NAME x N— MESSAGE_BODY

When creating a reply message from a request, the following functions package the output
parameters into a kernel reply:

Mach_porit_allocate_outputs_to_reply : NAME — KERNEL_REPLY
Mach_port_extract_right_outputs_to_reply

: PORT x MACH_MSG_TYPE — KERNEL_REPLY
Mach_port_get_receive_status_outputs_to_reply : PortStatus — KERNEL_REPLY
Mach_port_get_refs_outputs_to_reply :N— KERNEL_REPLY
Mach_port_get_set_status_outpuis_to_reply : P NAME xN— KERNEL_REPLY
Mach_port_names_outputs_to_reply

:seq NAME x N x seq PortTypeMask x N— KERNEL_REPLY
Mach_port_request_notification_outputs_to_reply : PORT — KERNEL_REPLY

When receiving a reply message from the kernel the following functions unpack the message
body to obtain the output parameters (including the return status):

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 109

Body_to_mach_port_allocate_outputs

: MESSAGE_BODY — KERNEL_RETURN x NAME
Body_to_mach_port_extract_right_outputs

: MESSAGE_BODY — KERNEL_RETURN x NAME x MACH_MSG_TYPE
Body_to_mach_port_get_receive_status_outputs

: MESSAGE_BODY — KERNEL_RETURN x PortStatus
Body_to_mach_port_get_refs_outputs : MESSAGE_BODY — KFERNEL_RETURN x N
Body_to_mach_port_get_set _status_outputs

: MESSAGE_BODY — KERNEL_RETURN x P NAME x N
Body_to_mach_port_insert _right _outputs : MESSAGE_BODY — KERNFEL_RETURN
Body_to_mach_port_move_member_outputs

: MESSAGE_BODY — KERNEL_RETURN
Body_to_mach_port_names_outputs

: MESSAGE_BODY

—KERNEL_RETURN x seq NAME x N x seq PortTypeMask x N

Body_to_mach_port_rename_outputs : MESSAGE_BODY — KERNEL_RETURN
Body_to_mach_port_request_notification_outputs

: MESSAGE_BODY — KERNEL_RETURN x NAME
Body_to_mach_pori_set_mscount_outputs : MESSAGE_BODY — KERNEL_RETURN
Body_to_mach_porit_set_qglimit_outputs : MESSAGE_BODY — KERNEL_RETURN
Body_to_mach_port_set_seqno_outputs : MESSAGE_BODY — KERNEL_RETURN

8.1.6 Kernel Processing

The initial kernel processing of any request, when removing the request from the bag of
validated requests, is described by the ProcessRequest schema in Section 6. In this section, we
consider additional initial processing which is shared by all port requests.

The service port through which a port request is received must be the self port for some task.
If it is not, then the request immediately terminates and returns Kern_invalid_task.

__ ProcessPortRequestBad
ProcessRequest
SpecialTaskPorts
return! : KERNEL_RETURN

operation? € Port_operations
service_port? ¢ dom self _task
return! = Kern_invalid_task

PortRequestBad = ProcessPortRequestBad >> RequestNoOp

Otherwise, the task owning the self port is identified and the kernel continues to process the
request.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
110 Port Requests

__ ProcessPortRequestGood
ProcessRequest
SpecialTaskPorts
task? : TASK

operation? € Port_operations
service_port? € dom self _task
task? = self _task(service_port?)

Review Note:

Several of the port requests have the potential of returning Kern_resource_shortage. The model cannot
accurately reflect when this is returned, so the original plans were to include another version of the “bad”
schema here which dealt with those cases. However, this has not been done.

Review notes have been added to each of the individual requests for which Kern_resource_shortage is a
possible return value.

8.1.7 Notifications

Several of the port requests can result in the sending of notifications, messages which inform
about some change to the state of a port or port right. There are six kinds of notifications:

dead-name A dead-name notification for a port right is registered bymach_msg or mach_—
port_request_notification. The notification is sent if the port right becomes dead due
to the destruction of the port.

port-deleted A port-deleted notification is registered whenever a dead-name notification is
registered. The notification is sent if the port right becomes unusable due to the right
itself being destroyed or moved.

msg-accepted A msg-accepted notification for a port right is registered when the port right is
used to forcibly enqueue a message on a port using mach_msg. The notification is sent
when the message is removed from the queue (either to be received or destroyed).

no-senders A no-senders notification for a port is registered usingmach_port_request_—
notification. The notification is sent when the last send or send-once right for the port
is destroyed (with one exception depending upon the parameter sync to mach_port_—
request_notification; see Section 8.8).

port-destroyed A port-destroyed notification for a port is registered using mach_port_—
request_notification. The notification is sent when the port would otherwise be de-
stroyed, and contains a receive right for the port, thus saving it from destruction.

send-once A send-once notification for a port is sent whenever a send-once right is destroyed
without being used to send a message.

Note that the kernel cannot guarantee to send notifications. It can fail to send a notification,
for instance if it determines that an attempt to send the notification could result in an infinite
loop.

Editorial Note:

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 111

Port-destroyed notifications could interact in interesting ways with the kernel’s ability to identify “circu-
larities” of receive rights in transit.

A cicrularity in receive rights exists when the receive right for port 1 is contained in a message destined
for port 2, the receive right for port 2 is contained in a message destined for port 3, ... and the receive
right for port N is contained in a message for port 1. If this occurs, then none of the messages can be
received and the kernel sets out to clean them all up.

However, if the kernel cleans out a message and finds a receive right with a registered port-destroyed
notification port, it instead sends the receive right to that port, saving the right from destruction. This
breaks the circle, so other messages in the circle may once again be reachable.

We have not spent any time trying to determine how this interesting case is handled. It should be
considered when port-destroyed notifications are modeled.

Sending of each kind of notification is modeled in the following sections.

Review Note:
For now, only dead-name notifications will be considered. When other types of notifications are considered,
processing which is common to multiple notifications should be moved to this introductory section.

8.1.7.1 Dead Name Notifications The internal message header for a dead-name notification
message is filled in as follows:

m The local_port and local_rights fields are empty since there is no expected reply from a
dead-name notification.

m The remote_port and remote_rights fields contain a send-once right to the notification port.
= The size field contains the size of a dead-name notification, which is a constant.

m The msg_sequence_no field is initialized to zero. This field is ignored until the message is
received.

m The operation field contains the identifier Ipc_notify_dead_name_id.

m The complex field is empty since the body of a dead-name notification contains no port
rights or out-of-line memory.

Dead_name_notification_header : PORT — MachInternalHeader
Dead_name_notification_size : N

VY port : PORT

o (let header == Dead_name_notification_header(port)
e header.local_port = &
A header . local_rights = &
A header.remote_port = port
A header.remote_rights = Mach_msg_type_port_send_once
A header.size = Dead_name_notification_size
A header.msg_sequence_no = 0
A header.operation = Ipc_notify_dead_name_id
A header.compler = &)

The body of a dead-name notification consists of a single element containing the name of the
now dead port right.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
112 Port Requests

Review Note:

I tried to specify the body of the message explicitly in terms of the model, but was unable to do so. The
lack of a direct map between the model and the code caused some difficulty, but the final nail was the
fact that the model requires a task to be associated with each message element, and this made no sense
in the current situation.

| Dead_name_notification_body : NAME — INTERNAL_BODY

The entire dead-name notification message contains a header and body as just described.

Review Note:
Once again, |1 would like to fill in the other values from the schema InternalMessage, but these values do
not correspond to anything in the code and it is difficult to determine what values to choose.

Dead_name_notification_message : PORT X NAME — InternalMessage
VY port : PORT; name : NAME

e (Dead_name_notification_message(port, name)).header = Dead_name_notification_header(port)
A (Dead_name_notification_message(port, name)).body = Dead_name_notification_body(name)

The following occurs when a dead name notification is sent:

m A new message (new_message) is created, whose contents are give by
Dead_name_notification_message(notify_port,dead_right_name).

m new_message iS added to the queue for notify_pori.
m The sending SID for new_message is set to reflect the kernel acting as current_task.

m No receiving, sending SID or access vector is specified for the message.

Review Note:

Failure can occur here if the kernel is unable to allocate memory for the message. In this case the
notification message is not sent and the kernel simply continues processing as if the message were
successfully sent.

Review Note:

There is a permission check here which has not been specified. This check occurs after the message is
allocated, however, in the current prototype the message is not deallocated when the permission check
fails. The kernel simply continues processing as if the message were successfully sent.

This permission check will need to be added later when the execution model is updated. The Ruling
associated with the message will also need to be added at that time.

There is also a much bigger list of invariants that could be added to the following schema.

Review Note:
The code also has to make sure that notify_port is not Ip_dead. This should come for free whenever the
schema is used in this chapter, but that should be doublechecked. Ifnotify_port is Ip_dead, then the
message is destroyed.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 113

_ QueueDeadNameNotification
A Messages
A DtosMessages
KernelAs
current_task : TASK
notify_port : PORT
dead_right_name : NAME

JInew_message : MESSAGE
e (new_message ¢ message_exists
A message_exists’ = message_ewists U {new_message}
A msg_contents’ = msg_contents
®{new_message — Dead_name_notification_message(notify_port, dead_right_name)}
A message_in_pori_rel' = message_in_pori_rel
®{notify_port — message_in_port_rel(notify_port) = (new_message)}
A msg_sending_sid' = msg_sending_sid
®{new_message — kernel_as(current_task)})
msg_receiving_sid/ = msg_receiving_sid

msg_specified_sid' = msg_specified_sid
msg_specified_vector’ = msg_specified_vector

Review Note:
It's worth noting that the recipient of a dead-name notification only receives the name of the dead right,
and no indication of which ipc name space contains the dead right.

8.2 mach_port_allocate

A mach_port_allocate request creates a new receive right, port set, or dead name in a task’s
name space.

8.2.1 Client Interface

kern_return_t mach_port_allocate

(mach_port_t task_name,
mach_port_right_t right_type,
mach_port_t* new_name);

kern_return_t mach_port_allocate_secure

(mach_port_t task_name,
mach_port_right_t right_type,
mach_port_t* new_name,
security_id_t obj_sid);

Review Note:
No attempt has been made to integrate mach_port_allocate_secure into this specification.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
114 Port Requests

8.2.1.1 Input Parameters The following input parameters are provided by the client of a
mach_port_allocate request:

m task_name? — the client’s name for the task in whose name space the new receive right,
port set or dead name is created

m right_type? — the type of right to be created, either Mach_port_right_receive,
Mach_port_right_port_set, or Mach_pori_right_dead_name.

MachPortAllocate ClientInputs
Ttask_namerf : NAME

right_type? : RIGHT_TYPE

A mach_port_allocate request is invoked by sending a message to the port indicated by
task_name? that has the operation field set to Mach_pori_allocate_id and has a body consisting
of right_type?.

—Invoke MachPortAllocate
Invoke MachMsg
MachPortAllocate ClientInputs

name? = task_name?
operation? = Mach_port_allocate_ud
msg_body = Mach_port_allocate_inputs_to_body(right_type?)

8.2.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a mach_port_allocate request:

m return! — the status of the request
m new_name! — the name of the new right
— MachPortAllocate ClientOQutputs

return! : KERNEL_RETURN
new_name'!: NAME

__ MachPortAllocate Receive Reply
Invoke MachMsgRev
MachPortAllocate ClientQutputs

(return!, new_name!) = Body_to_mach_port_allocate_outputs(msg_body)

8.2.2 Kernel Interface

8.2.2.1 Input Parameters The following input parameters are provided to the kernel for a
mach_port_allocate request:

m task? — the task known to the client by task_name?

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 115

m right_type? — provided by the client

MachPortAllocate Inputs
task? : TASK
right_type? : RIGHT_TYPE

8.2.2.2 Output Parameters The following output parameters are returned by the kernel for a
mach_port_allocate request:

m return! — the status of the request

m new_name! — the name of the new right

MachPortAllocate Qutputs
Treturn! : KERNEL_RFETURN

new_name'!: NAME

Upon completion of the processing of a mach_port_allocate request, a reply message is built
from the output parameters.

— MachPortAllocate Reply
RequestReturn
new_name? : NAME

reply? = Mach_port_allocate_outputs_to_reply(new_name?)

8.2.3 Request Criteria
The following criteria are defined for the mach_port_allocate request:

m C1 — vright_type? is equal to one of the three values Mach_port_right_receive,
Mach_port_right_port_set, or Mach_pori_right_dead_name.

— C1MachPortAllocate Rightls Valid
right_type? : RIGHT_TYPE

right_type? € {Mach_pori_right_receive, Mach_pori_right_port_set,
Mach_port_right_dead_name}

NotC1MachPortAllocate Rightls Valid
= — Cl1MachPortAllocate Rightls Valid

m C2 — right_type? is equal to Mach_port_right_receive.

__CO2MachPortAllocateRecetve
right_type? : RIGHT_TYPE

right_type? = Mach_port_right_receive

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
116 Port Requests

m C3 — right_type? is equal to Mach_port_right_port_set.

—_O3MachPortAllocatePortSet
right_type? : RIGHT_TYPE

right_type? = Mach_pori_right_port_set

m C4 — right_type? is equal to Mach_port_right_dead_name.

_ C4MachPortAllocate DeadName
right_type? : RIGHT_TYPE

right_type? = Mach_port_right_dead_name

m C5 — The number of rights belonging to task? is less than the maximum.

Review Note:

The maximum number of rights per task used to be modeled by a constant value. This
was not correct. However, the correct model has not been determined either. There-
fore there is no predicate in the following schema. Note that this means that the schema

NotC5MachPortAllocateRoomInNameSpaceis empty.

CbMachPortAllocate RoomInNameSpace
PortNameSpace
task? : TASK

NotCbMachPortAllocate RoomInNameSpace
= PortNameSpace A — CbMachPortAllocate RoomInNameSpace

8.2.4 Return Values

Table 2 describes the values returned at the completion of the request and the conditions under
which each value is returned.

Review Note:
The table has been checked to agree with the code in CM as of 14Sep94.

Review Note:

This request can also return Kern_resource_shortage. If there were an attempt to model this, there
would be three separate criteria for each of the three types of possible rights. Moreover, in the case when
there is no room in the name space and no memory available for allocation, it appears that details in the
current state of the name space may determine whether Kern_resource_shortage or Kern_no_space IS
returned.

Review Note:
According to the KID, there should also be a check that task? has Hold_receive privilege to the new port
whenever right_type?=mach_port_type_receive. This is not currently in the model nor was it in the code

at the time the model was written.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005

DTOS FTLS 117
| return! | new_name! | C1 | C5 |
Kern_invalid_value | - F -
Kern_no_space - T F
Kern_success new_name! | T T

Table 2: Return Values for mach_port_allocate

— RVMachPortAllocateInvalid Value
MachPortAllocate Qutputs
NotC1MachPortAllocate Rightls Valid

return! = Kern_invalid_value

— RVMachPortAllocate NoSpace
MachPortAllocate Qutputs
C1MachPortAllocate Rightls Valid
NotCbMachPortAllocate RoomInNameSpace

return! = Kern_no_space

Review Note:

The way in which new_name! is actually determined is dependent upon the “next” available index in the
name space and the generation number of that index. Since these details do not appear in the model,
we cannot accurately model how new_name! is determined. Therefore all that is done here is to state
properties on new_namel.

— RVMachPortAllocateSuccess
MachPortAllocate Qutputs
C1MachPortAllocate Rightls Valid
CbMachPortAllocate RoomInNameSpace

return! = Kern_success
new_name! ¢ Reserved_names
(task?, new_name!) ¢ local_namep

8.2.5 State Changes

Table 3 lists the possible successful executions of amach_port_allocate request. Note that
C2, C3 and C4 are mutually exclusive.

|Case |C2|C3|C4|C5|
MachPortAllocateState Receive T - - T
MachPortAllocateState PortSet - T - T
MachPortAllocateState Dead Name - - T T

Table 3: State Change Cases for mach_port_allocate

If the request is to allocate a new receive right, then

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
118 Port Requests

a new port, port!, is created,

task? is given a receive right to port! with the name new_name!,

the make-send count for port! is initialized to 0,

the queue size limit for port! is initialized to the default value,

the message queue for pori! is initialized to be empty;,

the sequence number for port!'s message queue is initialized to 0, and
the SID for port! is initialized to the default for task?.

—_ MachPortAllocateState Recetve
A PortNameSpace
A PortSummary
A ObjectSid
PortSid
C2MachPortAllocateRecetve
CbMachPortAllocate RoomInNameSpace
port! : PORT
new_name! : NAME

{port!} = port_exists’ \ pori_ewisils
port_right_rel' = port_right_rel U {(task?, port!, new_name!, Receive, 1)}
make_send_count’ = make_send_count @ {port! — 0}
q_limit' = q_limit © {port! — Mach_port_q_limit_default}
message_in_port_rel' = message_in_port_rel & {port! — ()}
sequence_no’ = sequence_no ® {port! — 0}
port_sid’ = port_sid & {port! — Default_port_sid(task_sid(task?))}

If the request is to allocate a new port set, then an empty port set with the namenew_name! is
added to task?'s name space.

__ MachPortAllocateState PortSet
A PortNameSpace
C3MachPortAllocate PortSet
CbMachPortAllocate RoomInNameSpace
new_name'! : NAME

port_set_rel’ = port_set_rel U {(task?, new_name!,)}

If the request is to allocate a new dead right, then a dead right with the namenew_name! and
a user reference count of 1 is added to task?'s name space.

__MachPortAllocateState DeadName
A PortNameSpace
C4MachPortAllocateDeadName
CbMachPortAllocate RoomInNameSpace
new_name'! : NAME

dead_right_rel' = dead_right_rel U {(task?, new_name!, 1)}

Review Note:
Invariants should be stated here as well.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 119

8.2.6 Complete Request

The initial processing by the kernel upon receipt of the mach_port_allocate request is de-
scribed in Section 8.1.

__ Processing MachPortAllocate
ProcessPortRequestGood

operation? = Mach_port_allocate_ud

An unsuccessful mach_port_allocate request results in no changes to the Mach state and
returns only the appropriate error status.

MachPortAllocate Bad
= (RVMachPortAllocateInvalid Value
V RVMachPortAllocate NoSpace)

>> RequestNoOp

A successful mach_port_allocate request alters the Mach state as described in Section 8.2.5
and returns a reply message.

MachPortAllocate Good
= ((MachPortAllocateState Receive
V MachPortAllocateState PortSet
V MachPortAllocateState Dead Name)
A RVMachPortAllocateSuccess)
>> MachPortAllocate Reply

The complete specification of kernel processing of a mach_port_allocate request consists of
the initial processing followed by an unsuccessful or successful execution.

MachPortAllocate
= Processing MachPortAllocate
s (MachPortAllocate Bad
V MachPortAllocate Good)

8.3 mach_port_get_receive_status

A mach_port_get_receive_status request returns the current status of the port associated
with a receive right.

8.3.1 Client Interface

kern_return_t mach_port_get_receive_status

(mach_port_t task_name,
mach_port_t right_name,
mach_port_status_t* port_status);

Secure Computing Corporation 83-0902024A001 Rev A

CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005

120 Port Requests

8.3.1.1 Input Parameters The following input parameters are provided by the client of a
mach_port_get_receive_status request:

m task_name? — the client’s name for the task in whose name space right_name? is located
m right_name? — the name of a receive right for the port whose status is requested

MachPortGetRecerweStatus ClientInputs
|7ta5k_name7 : NAME

right_name? : NAME

A mach_port_get_receive_status request is invoked by sending a message to the port in-

dicated by task_name? that has the operation field set to Mach_pori_get_receive_status_id and
has a body consisting of right_name?.

_ Invoke MachPortGetReceiveStatus
Invoke MachMsg

MachPortGetRecerweStatus ClientInputs

name? = task_name?
operation? = Mach_port_get_receive_status_id
msg_body = Mach_port_get_receive_status_inputs_to_body(right_name?)

8.3.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a mach_port_get_receive_status request:

m return! — the status of the request
m port_status! — the status information for righi_name?, as described in Section 8.1.4.

_ MachPortGetReceiveStatus ClientQuiputs
return! : KERNEL_RETURN
pori_status! : PortStatus

__ MachPortGetReceiveStatus Receive Reply
Invoke MachMsgRev
MachPortGetReceweStatus Client Quitputs

(return!, port_status!) = Body_to_mach_pori_get_receive_status_outputs(msg_body)

8.3.2 Kernel Interface

8.3.2.1 Input Parameters The following input parameters are provided to the kernel for a
mach_port_get_receive_status request:

m task? — the task known to the client by task_name?

m right_name? — provided by the client

MachPortGetReceiveStatus Inputs
task? : TASK
right_name? : NAME

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 121

8.3.2.2 Output Parameters The following output parameters are returned by the kernel for a
mach_port_get_receive_status request:

m return! — the status of the request
m port_status! — the status information for righi_name?, as described above
MachPortGetReceweStatus Qutputs

return! : KERNEL_RETURN
pori_status! : PortStatus

Upon completion of the processing of a mach_port_get_receive_status request, a reply
message is built from the output parameters.

— MachPortGetReceiveStatus Reply
RequestOnlyObserves
port_status? . PortStatus

reply? = Mach_port_get_receive_status_outputs_to_reply(pori_status?)

8.3.3 Request Criteria
The following criteria are defined for the mach_port_get_receive_status request:

m C1 — right_name? represents a right in tesk?'s name space.

— C1MachPortGetReceiveStatusNamelsA Right
PortNameSpace
task? : TASK
right_name? : NAME

(task?, right_name?) € local_namep

NotC1MachPortGetReceiveStatusNamelsA Right
= PortNameSpace A — C1MachPortGetReceiveStatusNamelsA Right

m C2 — right_name? represents a receive right in task?'s name space.

— C2MachPortGetReceiveStatusNamelsA Receive Right
PortNameSpace
task? : TASK
right_name? : NAME

(task?, right _name?) € r_right

NotC2MachPortGetReceiveStatusNamelsA Receive Right
= PortNameSpace A — C2MachPortGetReceiveStatusNamelsA Receive Right

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
122 Port Requests

8.3.4 Return Values

Table 4 describes the values returned at the completion of the request and the conditions under
which each value is returned.

Review Note:
The order of these checks agrees with the code in CM on 14Sep94.

| return! | port_status! | Ci | Cc2 |
Kern_invalid_name | - F -
Kern_invalid_right | - T F
Kern_success as described below | T T

Table 4: Return Values for mach_port_get_receive_status

— RVMachPortGetReceiveStatusInvalidName
MachPortGetReceweStatus Qutputs
NotC1MachPortGetReceiveStatusNamelsA Right

return! = Kern_invalid_name

_ RVMachPortGetReceiveStatusInvalid Right
MachPortGetReceweStatus Qutputs
Cl1MachPortGetReceiveStatusNamelsA Right
NotC2MachPortGetReceiveStatusNamelsA Receive Right

return! = Kern_invalid_right

In the successful case when right_name? refers to a receive right in task?'s name space, then
the request returns a record with the following fields. Here port? refers to the port named by
right_name?.

m port_set_name — if right_name? is a member of a port set, the name of this port set;
otherwise, the name Mach_port_null

m make_send_couni_value — the make-send count for port?

m port_destroyed_notification_requested — a boolean value indicating if a port-destroyed no-
tification request is currently active for port?

m no_more_senders_notification_requested — a boolean value indicating if a no-more-senders

notification request is currently active for port?

msg_count_value — the number of messages queued at port?

qlimit _value — the limit on the number of messages which can be queued at port?

sequence_no_value — the current sequence number for the message queue atport?

number_of _send_once_rights — the number of send-once rights which exist to port?

any_send_rights — a boolean value indicating if there are existing send rights toport?

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS

123

_ RVMachPortGetReceiveStatusSuccess
MachPortGetReceweStatus Qutputs
Cl1MachPortGetReceiveStatusNamelsA Right
C2MachPortGetReceiveStatusNamelsA Receive Right
PortSummary

Notifications

return! = Kern_success
let port? == named_port(task?, right_name?
P P , Ttg

e port_status!.pori_sel_name = if port? € U(ran port_set)
then containing_set(port?)
else Mach_port_null
A port_status!.make_send_count_value = make_send_count(port?)
A (port_status!.port_destroyed _notification_requested = True
& port? € dom port_notify_destroyed)
A (port_status!.no_more_senders_notification_requested = True
< port? € dom port_notify_no_more_senders)
A port_status!.msg_count_value = port_size(port?)
A port_status!.qlimit_value = ¢_limit(port?)
A port_status!.sequence_no_va_lue = sequence_no(port?)
A (port_status!.number_of _send_once_rights
= #{task : TASK; name : NAME; i : N;
| (task, port?, name, Send_once, i) € port_right_rel
e name})
A (port_status!.any_send_rights = True
& (task : TASK; name : NAME; i : Ny
o (task, port?, name, Send, i) € port_right_rel)))

Review Note:

The values of port_status!.number_of _send_once_rights and port_status!.any_send_rights may be incor-
rect in the specification, since they only count rights which currently exist in some name space. It is
unclear whether the code also counts rights in transit.

8.3.5 State Changes

A mach_port_get_receive_status request does not make any state changes since it only
observes the system state.

8.3.6 Complete Request

The initial processing by the kernel upon receipt of the mach_port_get_receive_status
request is described in Section 8.1.

__Processing MachPortGetRecerveStatus
ProcessPortRequestGood

operation? = Mach_port_get_receive_status_id

An unsuccessful mach_port_get_receive_status request results in no changes to the Mach
state and returns only the appropriate error status.

Secure Computing Corporation
CAGE Code OHDC7

83-0902024A001 Rev A
1.21, 4 December 1996

CDRL A005
124 Port Requests

MachPortGetRecerveStatus Bad
= (RVMachPortGetReceiveStatusInvalidName
V RVMachPortGetReceiveStatusInvalid Right)
>> RequestNoOp

A successful mach_port_get_receive_status request results in no changes to the Mach state
and returns a reply message.

MachPortGetRecetveStatus Good
= RVMachPortGetRecetveStatusSuccess
>> MachPortGetReceiveStatus Reply

The complete specification of kernel processing of amach_port_get_receive_status request
consists of the initial processing followed by an unsuccessful or successful execution.

MachPortGetReceweStatus
= Processing MachPortGetReceiveStatus
s (MachPortGetReceiveStatus Bad
V MachPortGetReceiveStatus Good)

8.4 mach_port_get_refs

A mach_port_get_refs request returns the number of user references a task has for a right.

8.4.1 Client Interface

kern_return_t mach_port_get_refs

(mach_port_t task_name,
mach_port_t right_name,
mach_port_right_t right_type,
mach_port_urefs_t* refs);

8.4.1.1 Input Parameters The following input parameters are provided by the client of a
mach_port_get_refs request:

m task_name? — the client’s name for the task in whose name space right_name? is located
m right_name? — the name of the right whose reference count is desired

m right_type? — the type of right for which
the reference count is requested, either Mach_port_right_send, Mach_port_right_receive,
Mach_port_right_send_once, Mach_port_right_port_set, or Mach_port_right_dead_name

MachPortGetRefs ClientInputs
task_name? : NAME
right_name? : NAME
right_type? : RIGHT_TYPE

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 125

A mach_port_get_refs request is invoked by sending a message to the port indicated by
task_name? that has the operation field set to Mach_pori_get_refs_id and has a body consisting
of right_name? and right_type?.

__Invoke MachPortGetRefs
Invoke MachMsg
MachPortGetRefs ClientInputs

name? = task_name?
operation? = Mach_port_get_refs_id
msg_body = Mach_port_get_refs_inputs_to_body(right_name?, right_type?)

8.4.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a mach_port_get_refs request:

m return! — the status of the request

m refs! — the number of user references to the type of right indicated by right_type? and
associated with right_name?

— MachPortGetRefs ClientQutputs
return! : KERNEL_RETURN
refs! : N

__MachPortGetRefs ReceiveReply
Invoke MachMsgRev
MachPortGetRefs Client Outputs

(return!, refs!) = Body_to_mach_port_get_refs_outputs(msg_body)

8.4.2 Kernel Interface

8.4.2.1 Input Parameters The following input parameters are provided to the kernel for a
mach_port_get_refs request:

m task? — the task known to the client by task_name?
m right_name? — provided by the client

m right_type? — provided by the client

MachPortGetRefs Inputs
task? : TASK
right_name? : NAME
right_type? : RIGHT_TYPE

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
126 Port Requests

8.4.2.2 Output Parameters The following output parameters are returned by the kernel for a
mach_port_get_refs request:

m return! — the status of the request

m refs! — the number of user references for right_type? associated with right _name?

MachPortGetRefs Outputs
return! : KERNEL_RETURN
refs! : N

Upon completion of the processing of amach_port_get_refs request, a reply message is built
from the output parameters.

— MachPortGetRefs Reply
RequestOnlyObserves
refs? . N

reply? = Mach_port_get_refs_outputs_to_reply(refs?)

8.4.3 Request Criteria
The following criteria are defined for the mach_port_get_refs request:

s C1 — The value
of right_type? is one of the five values Mach_pori_right_send, Mach_pori_right_receive,
Mach_port_right_send_once, Mach_port_right_port_set, or Mach_port_right_dead_name.

__C1MachPortGetRefsRightlsRecognized
right_type? : RIGHT_TYPE

right_type? € {Mach_pori_right_send, Mach_port_righl_receive,
Mach_port_right_send_once, Mach_port_right_port_set,
Mach_port_right_dead_name}

NotC1MachPortGetRefsRightlsRecognized
= = C1MachPortGetRefsRightlsRecognized

m C2 — right_name? represents a right in tesk?'s name space.

__ C2MachPortGetRefsNamelsA Right
PortNameSpace
task? : TASK
right_name? : NAME

(task?, right_name?) € local_namep

NotC2MachPortGetRefsNamelsA Right
= PortNameSpace A — C2MachPortGetRefsNamelsA Right

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 127

m C3 — right_type? and right_name? both refer to a send right.

— C3MachPortGetRefsSend
PortNameSpace
task? : TASK
right_name? : NAME
right_type? : RIGHT_TYPE

right_type? = Mach_pori_right_send
(task?, right_name?) € s_right

NotC3MachPortGetRefsSend
= PortNameSpace A — C3MachPortGetRefsSend

n C4 — right_type? and right_name? both refer to a dead name.

__C4MachPortGetRefsDeadName
PortNameSpace
task? : TASK
right_name? : NAME
right_type? : RIGHT_TYPE

right_type? = Mach_port_right_dead_name
(task?, right_name?) € dead_namep

NotC4MachPortGetRefsDeadName
= PortNameSpace A — C4MachPortGetRefsDead Name

m C5 — right_type? and right_name? both refer to a receive right, send-once right, or port
set.

__CbMachPortGetRefsOther
PortNameSpace
task? : TASK
right_name? : NAME
right_type? : RIGHT_TYPE

(right_type? = Mach_port_righi_receive
A (task?, right_name?) € r_right)

V (right_type? = Mach_port_right_send_once
A (task?, right_name?) € so_right)

V (right _type? = Mach_port_right_port_set
A (task?, right_name?) € port_sei_namep)

NotCbMachPortGetRefsOther
= PortNameSpace A — CbMachPortGetRefsOther

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
128 Port Requests

8.4.4 Return Values

Table 5 describes the values returned at the completion of the request and the conditions under
which each value is returned. Note that criteria C3 through C5 are mutually exclusive by
definition.

Review Note:
The order of the checks agree with the code in CM as of 14Sep94.

return! | refs! [c1[Cc2]C3[C4][C5]
Kern_invalid_value | - F - - - N
Kern_invalid_name | - T F - N N
Kern_success 0 T T F F F
Kern_success s_right_ref_count(task?,right_name?) T T T - -
Kern_success dead_right_ref _count(task?,right_name?) | T T - T -
Kern_success 1 T T - - T

Table 5: Return Values for mach_port_get_refs

— RVMachPortGetRefsInvalid Value
MachPortGetRefs Outputs
NotC1MachPortGetRefsRightlsRecognized

return! = Kern_invalid_value

__RVMachPortGetRefsInvalidName
MachPortGetRefs Outputs
Cl1MachPortGetRefsRightls Recognized
NotC2MachPortGetRefsNamelsA Right

return! = Kern_invalid_name

If right_name? does not represent a right of type right_type?, the value 0 is returned.

— RVMachPortGetRefs WrongRight
MachPortGetRefs Outputs
Cl1MachPortGetRefsRightls Recognized
C2MachPortGetRefsNamelsA Right
NotC3MachPortGetRefsSend
NotC4MachPortGetRefsDeadName
NotCbMachPortGetRefsOther

return! = Kern_success

refs! =0

If right_type? = Mach_port_right_send and right_name? is a send right, then the number of user
references to the send right is returned.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 129

— RVMachPortGetRefsSend
MachPortGetRefs Outputs
Cl1MachPortGetRefsRightls Recognized
C2MachPortGetRefsNamelsA Right
C3MachPortGetRefsSend

return! = Kern_success
refs! = s_right_ref_count(task?, right_name?)

If righi_type? = Mach_port_right_dead_name and right_name? is a dead right, then the number
of user references to the dead right is returned.

__ RVMachPortGetRefsDeadName
MachPortGetRefs Outputs
Cl1MachPortGetRefsRightls Recognized
C2MachPortGetRefsNamelsA Right
C4MachPortGetRefsDeadName

return! = Kern_success
refs! = dead_right_ref _count(task?, right_name?)

If right_type? and right_name? both refer to a receive right, send-once right, or port set, then the
value 1 is returned since there is only one receive right, send-once right or port set associated
with any name.

__ RVMachPortGetRefsOther
MachPortGetRefs Outputs
Cl1MachPortGetRefsRightls Recognized
C2MachPortGetRefsNamelsA Right
CbMachPortGetRefsOther

return! = Kern_success
refs! =1

8.4.5 State Changes

A mach_port_get_refs request does not make any state changes since it only observes the
system state.

8.4.6 Complete Request

The initial processing by the kernel upon receipt of the mach_port_get_refs request is de-
scribed in Section 8.1.

—_Processing MachPortGetRefs
ProcessPortRequestGood

operation? = Mach_port_get_refs_id

An unsuccessful mach_port_get_refs request results in no changes to the Mach state and
returns only the appropriate error status.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
130 Port Requests

MachPortGetRefs Bad
= (RVMachPortGetRefsInvalid Value
V RVMachPortGetRefsInvalid Value)
>> RequestNoOp

A successful mach_port_get_refs request results in no changes to the Mach state and returns
a reply message.

MachPortGetRefs Good
= (RVMachPortGetRefsWrongRight
V RVMachPortGetRefsSend
V RVMachPortGetRefsDead Name
V RVMachPortGetRefsOther)
>> MachPortGetRefs Reply

The complete specification of kernel processing of a mach_port_get_refs request consists of
the initial processing followed by an unsuccessful or successful execution.

MachPortGetRefs
= Processing MachPortGetRefs
s (MachPortGetRefs Bad
V MachPortGetRefs Good)

8.5 mach_port_get_set_status

A mach_port_get_set_status request returns the names of the members of a given port set.

8.5.1 Client Interface

kern_return_t mach_port_get_set_status

(mach_port_t task_name,
mach_port_t right_name,
mach_port_array_t* member_names,
mach_msg_type_number_t* count);

8.5.1.1 Input Parameters The following input parameters are provided by the client of a
mach_port_get_set_status request:

m task_name? — the client’s name for the task in whose name space right_name? is located
m right_name? — the name of the port set whose members are returned
MachPortGetSetStatus ClientInputs

task_name? : NAME
right_name? : NAME

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 131

A mach_port_get_set_status request is invoked by sending a message to the port indicated
by task_name? that has the operation field set to Mach_pori_get_set_status_id and has a body
consisting of right_name?.

__Invoke MachPortGetSetStatus
Invoke MachMsg
MachPortGetSetStatus ClientInputs

name? = task_name?
operation? = Mach_port_get_set_status_id
msg_body = Mach_port_get_set_status_inputs_to_body(right_name?)

8.5.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a mach_port_get_set_status request:

m return! — the status of the request

m member_names! — the names of the members of the port set right_name?

m count! — the number of members of the port set right_name?

— MachPortGetSetStatus Client Outputs
return! : KERNEL_RETURN

member_names! : P NAME
count! : N

__ MachPortGetSetStatus Receive Reply
Invoke MachMsgRev
MachPortGetSetStatus ClientQutputs

(return!, member_names!, count!)
= Body_to_mach_port_get_set_status_outputs(msg_body)

8.5.2 Kernel Interface

8.5.2.1 Input Parameters The following input parameters are provided to the kernel for a
mach_port_get_set_status request:

m task? — the task known to the client by task_name?

m right_name? — provided by the client

MachPortGetSetStatus Inputs
task? : TASK
right_name? : NAME

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
132 Port Requests

8.5.2.2 Output Parameters The following output parameters are returned by the kernel for a
mach_port_get_set_status request:

m return! — the status of the request

m member_names! — the names of the members of the port set right_name?

m count! — the number of members of the port set right_name?
MachPortGetSetStatus Outputs
return! : KERNEL_RETURN

member_names! : P NAME
count! : N

Upon completion of the processing of a mach_port_get_set_status request, a reply message
is built from the output parameters.

__ MachPortGetSetStatus Reply
RequestOnlyObserves
member_names? : P NAME
count? : N

reply? = Mach_port_get_set_status_outputs_to_reply(member_names?, count?)

8.5.3 Request Criteria

The following criteria are defined for the mach_port_get_set_status request:

m C1 — right_name? represents a right in tesk?'s name space.

— C1MachPortGetSetStatusNamelsA Right
PortNameSpace
task? : TASK
right_name? : NAME

(task?, right_name?) € local_namep

NotC1MachPortGetSetStatusNamelsA Right
= PortNameSpace A — C1MachPortGetSetStatusNamelsA Right

m C2 — right_name? represents a port set in tesk?'s name space.

—C2MachPortGetSetStatusNamelsAPortSet
PortNameSpace
task? : TASK
right_name? : NAME

(task?, right_name?) € port_set_namep

NotC2MachPortGetSetStatusNamelsA PortSet
= PortNameSpace A — C2MachPortGetSetStatusNamelsA PortSet

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 133

8.5.4 Return Values

Table 6 describes the values returned at the completion of the request and the conditions under
which each value is returned.

Review Note:
The order of the checks agrees with the code in CM on 14Sep94.

Review Note:
This request can also return Kern_resource_shortage, when allocating memory for member_names.

In the code from which this model was produced, one page of memory is allocated for member_names
before checking either C1 or C2. If C1 and C2 are both true, then an exhaustive search of task?'s name
space is performed to search for receive rights to any of the ports in the port set named by right_name?.
If more rights are found than will fit on one page of memory, then additional memory is allocated at this
time.

Thus Kern_resource_shortage may be returned before or after checking C1 and C2. If it is returned after
the other checks, member_names will contain a partial list of names.

return! | member_names! | count! | C1 | C2 I
Kern_invalid_name | - - F -
Kern_invalid_right | - - T F
Kern_success as described below | as described below | T T

Table 6: Return Values for mach_port_get_set_status

_ RVMachPortGetSetStatusInvalidName
MachPortGetSetStatus Outputs
NotC1MachPortGetSetStatusNamelsA Right

return! = Kern_invalid_name

__RVMachPortGetSetStatusInvalid Right
MachPortGetSetStatus Outputs
Cl1MachPortGetSetStatusNamelsA Right
NotC2MachPortGetSetStatusNamelsA PortSet

return! = Kern_invalid_right

__RVMachPortGetSetStatusSuccess
MachPortGetSetStatus Outputs
Cl1MachPortGetSetStatusNamelsA Right
C2MachPortGetSetStatusNamelsAPortSet

return! = Kern_success
member_names! = {port : PORT

| port € port_set(task?, right_name?) o receiver_name(port)}
count! = #member_names!

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
134 Port Requests

8.5.5 State Changes

A mach_port_get_set_status request does not make any state changes since it only observes
the system state.

8.5.6 Complete Request

The initial processing by the kernel upon receipt of the mach_port_get_set_status request
is described in Section 8.1.

— Processing MachPortGetSetStatus
ProcessPortRequestGood

operation? = Mach_port_get_set_status_id

An unsuccessful mach_port_get_set_status request results in no changes to the Mach state
and returns only the appropriate error status.

MachPortGetSetStatus Bad
= (RVMachPortGetSetStatusInvalidName
V RVMachPortGetSetStatusInvalid Right)
>> RequestNoOp

A successful mach_port_get_set_status request results in no changes to the Mach state and
returns a reply message.

MachPortGetSetStatus Good
= RVMachPortGetSetStatusSuccess
>> MachPortGetSetStatus Reply

The complete specification of kernel processing of amach_port_get_set_status request con-
sists of the initial processing followed by an unsuccessful or successful execution.

MachPortGetSetStatus
= Processing MachPortGetSetStatus
s (MachPortGetSetStatus Bad
V MachPortGetSetStatus Good)

8.6 mach_port_names

A mach_port_names request returns information about all of the rights in a task’s port name
space. The same information for a single right can be retrieved usingmach_port_type.

8.6.1 Client Interface

kern_return_t mach_port_names
(mach_port_t task_name,

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005

DTOS FTLS 135
mach_port_array_t* right_names,
mach_msg_type_number_t* ncount,
mach_port_type_array_t* type_masks,
mach_msg_type_number_t* tcount);

8.6.1.1 Input Parameters The following input parameters are provided by the client of a
mach_port_names request:

m task_name? — the client’s name for the task whose port name space is returned

MachPortNames ClientInputs
task_name? : NAME

A mach_port_names request is invoked by sending a message to the port indicated by
task_name? that has the operation field set to Mach_pori_names_id and an empty body.

—_Invoke MachPortNames
Invoke MachMsg
MachPortNames ClientInputs

name? = task_name?
operation? = Mach_port_names_id

8.6.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a mach_port_names request:

m return! — the status of the request
m right_names! — a sequence consisting of all names in the port name space oftask_name?
m ncount! — the number of elements in the sequence right_names!

m iype_masks! — a sequence of port type masks, as described in Section 8.1.4, corresponding
to each element of the sequence right_names!

m tcount! — the number of elements in the sequence type_masks! (which is the same as
ncount!)

— MachPortNames ClientOutputs
return! : KERNEL_RETURN
right_names! : seq NAME
ncount! : N

type_masks! : seq Port Type Mask
teount! : N

— MachPortNames ReceiveReply
Invoke MachMsgRev
MachPortNames ClientOQuiputs

(return!, right_names!, ncount!, type_masks!, tcount!)
= Body_to_mach_port_names_outputs(msg_body)

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
136 Port Requests

8.6.2 Kernel Interface

8.6.2.1 Input Parameters The following input parameters are provided to the kernel for a
mach_port_names request:

m task? — the task known to the client by task_name?

MachPortNamesInputs
Ttask? : TASK

8.6.2.2 Output Parameters The following output parameters are returned by the kernel for a
mach_port_names request:

m return! — the status of the request
m right_names! — a sequence consisting of all names in the port name space oftask_name?
= ncount! — the number of elements in the sequence right _names!

m type_masks! — a sequence of port type masks, as described in Section 8.1.4, corresponding
to each element of the sequence right_names!

m tcount! — the number of elements in the sequence type_masks! (which is the same as
ncount!)
MachPortNames Quitputs

return! : KERNEL_RETURN
right_names! : seq NAME
ncount! : N

type_masks! : seq Port Type Mask
tcount! : N

Upon completion of the processing of a mach_port_names request, a reply message is built
from the output parameters.

— MachPortNames Reply
RequestOnlyObserves
right_names? : seq NAME
ncount? : N
type_masks? : seq PortTypeMask
tcount? : N

reply?
= Mach_port_names_outpuis_to_reply(right_names?, ncount?, type_masks?, tcount?)

8.6.3 Request Criteria

There are no criteria for the mach_port_names request.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 137

8.6.4 Return Values

Table 7 describes the values returned at the completion of the request and the conditions under
which each value is returned.

| return! | right _names! | ncount! | type_masks! | tcount! |

| Kern_success | described below | # righi_names! | described below | # type_masks! ’

Table 7: Return Values for mach_port_names

Review Note:
There is also the possibility that Kern_resource_shortage can be returned, though this has not been
modeled.

Review Note:
No specification is given for the mach_port_type_msg_accepted _request field, since the model currently
does not include the necessary information.

Review Note:
There is actually also a COMPAT field in the return mask. However, in the prototype it will always
return false so it need not be modeled.

right_names! is a sequence consisting of all names in the name space fortask?. No element of the
name space is repeated, so the number of elements in right_names! IS number_of _rights(task?).

ncount! is the number of elements in right_names!.

type_masks! is a sequence, whose length tcount! is the same as ncount!, consisting of a
PortTypeMask for each corresponding name in right_names!. Each mask contains boolean flags
indicating the following:

mach_port_type_send— if the name refers to a send right

mach_port_type_receive— if the name refers to a receive right
mach_port_type_send_once— if the name refers to a send-once right
mach_port_type_pori_set— if the name refers to a port set

mach_port_type_dead_name— if the name refers to a dead right
mach_port_type_dead_name_request— if there is an outstanding dead-name notification
request for the name

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
138 Port Requests

_ RVMachPortNamesSuccess
MachPortNames Quitputs
PortNameSpace
Notifications
task? : TASK

return! = Kern_success

ran right_names! = local_namep ({task?})

ncount! = #right_names! = number_of _rights(task?)

tcount! = F#iype_masks! = ncount!

Yi:1l..ncount!

o (((type_masks!(i)).mach_port_type_send = True
& (task?, right_names!(i)) € s_right)

A ((type_masks!(i)).mach_port_type_receive = True
& (task?, right_names!(i)) € r_right)

A ((type—masks!(i)).mach_port_type_send_once = True
& (task?, right_names!(i)) € so_right)

A ((type—masks!(i)).mach_port_type_port_set = True
& (task?, right_names!(i)) € port_set_namep)

A ((type—masks!(i)).mach_port_type_dead_name = True
& (task?, right_names!(i)) € dead_namep)

A ((type_masks!(i)).mach_port_type_dead_name_request = True
& (task?, right_names!(i)) € dom port_notify_dead))

8.6.5 State Changes

A mach_port_names request does not make any state changes since it only observes the
system state.

8.6.6 Complete Request

The initial processing by the kernel upon receipt of themach_port_names request is described
in Section 8.1.

__Processing MachPortNames
ProcessPortRequestGood

operation? = Mach_port_names_id

A mach_port_names request results in no changes to the Mach state and returns a reply
message.

MachPortNames Good
= RVMachPortNamesSuccess
>> MachPortNames Reply

The complete specification of kernel processing of amach_port_names request consists of the
initial processing followed by execution.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005

DTOS FTLS 139

MachPortNames
= Processing MachPortNames
s MachPortNames Good

8.7 mach_port_rename

A mach_port_rename request allows a client to change the name by which a task knows a
port, port set or dead name.

8.7.1 Client Interface

kern_return_t mach_port_rename

(mach_port_t task_name,
mach_port_t old_name,
mach_port_t new_name);

8.7.1.1 Input Parameters The following input parameters are provided by the client of a
mach_port_rename request:

m task_name? — the client’s name for the task whose port name space is to be changed
m old_name? — the current name of the right to be renamed

m new_name? — the new name for the right

MachPortRename ClientInputs
task_name? : NAME
old_name? : NAMFE
new_name? : NAME

A mach_port_rename request is invoked by sending a message to the port indicated by

task_name? that has the operation field set to Mach_port_rename_id and has a body consisting
of old_name? and new_name?.

— Invoke MachPortRename
Invoke MachMsg
MachPortRename ClientInputs

name? = task_name?
operation? = Mach_port_rename_ud
msg_body = Mach_port_rename_inputs_to_body(old_name?, new_name?)

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
140 Port Requests

8.7.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a mach_port_rename request:

m return! — the status of the request

— MachPortRename ClientQuiputs
return! : KERNEL_RETURN

__MachPortRename Receive Reply
Invoke MachMsgRev
MachPortRename ClientQutputs

return! = Body_to_mach_port_rename_outputs(msg_body)

8.7.2 Kernel Interface

8.7.2.1 Input Parameters The following input parameters are provided to the kernel for a
mach_port_rename request:

m task? — the task known to the client by task_name?

m old_name? — the current name of the right to be renamed

m new_name? — the new name for the right
MachPortRename Inputs
task? : TASK

old_name? : NAME
new_name? : NAME

8.7.2.2 Output Parameters The following output parameters are returned by the kernel for a
mach_port_rename request:

m return! — the status of the request

MachPortRename Quiputs
Treturn! : KERNEL_RFETURN

8.7.3 Request Criteria
The following criteria are defined for the mach_port_rename request:

m Cl — new_name? is not a reserved name.

__C1MachPortRenameNewNameNotReserved
new_name? : NAME

new_name? ¢ Reserved_names

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 141

NotC1MachPortRenameNewNameNotReserved
= = C1MachPortRenameNewNameNotReserved

m C2 — new_name? is not currently in the name space of task?.

__C2MachPortRenameNewNameNotInUse
PortNameSpace

task? : TASK

new_name? : NAME

(task?, new_name?) ¢ local_namep

NotC2MachPortRenameNewNameNotInUse
= PortNameSpace A — C2MachPortRenameNewNameNotInUse

m C3 — old_name? is currently in the name space of task?.

__C3MachPortRenameOldNamelnUse
PortNameSpace

task? : TASK

old_name? : NAMFE

(task?, old_name?) € local_namep

NotC3MachPortRenameOldNamelnUse
= PortNameSpace A — C3MachPortRenameOldNamelnUse

8.7.4 Return Values

Table 8 describes the values returned at the completion of the request and the conditions under
which each value is returned.

Review Note:
The criteria are in the correct order according to the code in CM on 16Sep94.

Review Note:
This request can also return Kern_resource_shortage, because it may need to create a new entry. This
check, if it occurs, comes between C1 and C2.

_ RVMachPortRenamelnvalid Value
MachPortRename Quiputs
NotC1MachPortRenameNewNameNotReserved

return! = Kern_invalid_value

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005

142 Port Requests
| return! | C1 | C2 | C3 |
Kern_tnvalid_value F - -
Kern_name_exists T F -
Kern_mmvalid_name | T T F
Kern_success T T T

Table 8: Return Values for mach_port_rename

__RVMachPortRenameNameFEzrists
MachPortRename Quiputs
Cl1MachPortRenameNewNameNotReserved
NotC2MachPortRenameNewNameNotinUse

return! = Kern_name_exists

_ RVMachPortRenamelnvalid Name
MachPortRename Quiputs
Cl1MachPortRenameNewNameNotReserved
C2MachPortRenameNewNameNotinUse
NotC3MachPortRenameOldNameln Use

return! = Kern_invalid_name

__RVMachPortRenameSuccess
MachPortRename Quiputs
Cl1MachPortRenameNewNameNotReserved
C2MachPortRenameNewNameNotinUse
C3MachPortRenameQldNameln Use

return! = Kern_success

8.7.5 State Changes

If all of the criteria are satisfied, then the name space for task? is changed so that the name of
any right currently with the name old_name? is changed to new_name?. Here right refers to a
send, receive, or send once right, port set or dead name.

In addition, if there is an outstanding dead-name request for the right old_name?, then the
request must be renamed.

Review Note:
In addition, the name of a message accepted request may need to be changed. However, that is not
currently in the model.

There are several things in the model that should be changed by this request, but are not because the
model is incorrect.

= A name in a port set. The model is incorrect, since the kernel actually considers port sets as a set
of ports, not a set of names.

= A name in the set of registered rights (registered_rights) for a task. Again, the model is incorrect
since this is really a set of ports, not a set of names. (This is modeled correctly in the FSPM.)

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 143

= The data structures associated with threads blocked for a pending receive (PendingReceiveand
pending_receives). Again, the model is incorrect in considering a port to be a name.

_ MachPortRenameState
A PortNameSpace
A Notifications
Cl1MachPortRenameNewNameNotReserved
C2MachPortRenameNewNameNotinUse
C3MachPortRenameQldNameln Use

Bort_right_rel/ = port_right_rel
\{ port : PORT; right : RIGHT; i : Ny e (task? port, old_name?, right,)}
U{ port : PORT; right : RIGHT; i : Ny
| (task?, port, old_name?, right, 1) € port_right_rel
o (task?, port, new_name?, right, i)}
Bort_set_rel/ = port_sel_rel
\{set_of _ports : P PORT e (task?, old_name?, set_of_ports)}
U{set_of _ports : P PORT
| (task?, old_name?, set_of _ports) € port_set_rel
o (task?, new_name?, set_of_ports)}
dead_right_rel' = dead_right_rel
\{¢:Ny o (task?, old_name?, i)}
U{ i Ny | (task?, old_name? i) € dead_right_rel
o (task? new_name?, 1)}
port_notify_dead_rel' = port_notify_dead_rel
~ \{port: PORT e (po_rt, task?, old_name?)}
U{ port : PORT | (port, task?, old_name?) € port_notify_dead_rel
o (port, task? new_name?)} B

Review Note:
Invariants should be stated here as well.

8.7.6 Complete Request

The initial processing by the kernel upon receipt of the mach_port_rename request is de-
scribed in Section 8.1.

_ Processing MachPortRename
ProcessPortRequestGood

operation? = Mach_port_rename_ud

An unsuccessful mach_port_rename request results in no changes to the Mach state and
returns only the appropriate error status.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
144 Port Requests

MachPortRename Bad
= (RVMachPortRenameNameExists
V RVMachPortRenamelnvalidName
V RVMachPortRenamelnvalid Value)
>> RequestNoOp

A successful mach_port_rename request alters the Mach state as described in Section 8.7.5
and returns a reply message.

MachPortRename Good
= (MachPortRenameState
A RVMachPortRenameSuccess)
>> RequestReturnOnlyStatus

The complete specification of kernel processing of a mach_port_rename request consists of
the initial processing followed by an unsuccessful or successful execution.

MachPortRename
= Processing MachPortRename
s (MachPortRename Bad
V MachPortRename Good)

8.8 mach_port_request_notification

A mach_port_request_notification request registers a notification message to be sent when
a particular port event occurs. If a notification has already been requested, it returns the
send-once right associated with the existing notification request.

Notifications are described in Section 8.1.7.

8.8.1 Client Interface

kern_return_t mach_port_request_notification

(mach_port_t task_name,
mach_port_t right_name,
mach_msg_id_t variant,
mach_port_mscount_t sync,
mach_port_t notify_name,
mach_msg_type_name_t notify_type,
mach_port_t* previous_name);

8.8.1.1 Input Parameters The following input parameters are provided by the client of a
mach_port_request_notification request:

m task_name? — the client’s name for the task in whose name space right_name? is located

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 145

m right_name? — the name of a right, in task_name?'s name space, for which the notification
is requested. If variant? is set to Mach_notify_pori_destroyed or Mach_notify_no_senders,
this must be a receive right.

m variant? — the type of event for which notification is requested, -either
Mach_notify_port_destroyed, Mach_notify_no_senders, or Mach_notify_dead_name

m sync? — When variant? is set to Mach_notify_dead_name, this must be set to zero. When
vartant? is set to Mach_notify_no_senders, this value is used to overcome race conditions

m notify_name? — the name of a right, in the client’'s name space, for the port to which the
notification should be send

m notify_type? — the manner in which a send-once right should be extracted from
notify_name?, either Mmi_make_send_once or Mmi_move_send_once

_ MachPortRequestNotification ClientInputs
task_name? : NAME
right_name? : NAME
variant? : MACH_MSG_ID
sync? N
notify_name? : NAME
notify_type? : MACH_MSG_TYPE

A mach_port_request_notification request is invoked by sending a message to the port
indicated by task_name? that has the operation field set to Mach_port_request_notification_id
and has a body consisting of right_name?, variant?, sync?, notify_name?, and notify_type?.

__Invoke MachPortRequestNotification
Invoke MachMsg
MachPortRequestNotification ClientInputs

name? = task_name?

operation? = Mach_port_request_notification_id

msg_body = Mach_port_request_notification_inputs_to_body(right_name?, variant?,
sync?, notify_name?, notify_type?)

8.8.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a mach_port_request_notification request:

m return! — the status of the request

m previous_name! — if the notification has already been requested, the previously registered
send-once right; otherwise Mach_port_null

MachPortRequestNotification ClientQutputs
return! : KERNEL_RETURN
previous_name! : NAME

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
146 Port Requests

— MachPortRequest Notification Receive Reply
Invoke MachMsgRev
MachPortRequestNotification ClientQutputs

(return!, previous_name!) = Body_to_mach_port_request_notification_outputs(msg_body)

8.8.2 Kernel Interface

8.8.2.1 Input Parameters The following input parameters are provided to the kernel for a
mach_port_request_notification request:

m task? — the task known to the client by task_name?

m right_name? — provided by the client

m variant? — provided by the client

m sync? — provided by the client

m notify? — the port known to the client by notify_name?
MachPortRequestNotification Inputs
task? : TASK
right_name? : NAME
variant? : MACH_MSG_ID

sync? N
notify? : PORT

8.8.2.2 Output Parameters The following output parameters are returned by the kernel for a
mach_port_request_notification request:

m return! — the status of the request

m previous! — if the notification has already been requested, the previously registered
notification port; otherwise Ip_null

MachPortRequestNotification Quiputs
return! : KERNEL_RETURN
previous! : PORT

Upon completion of the processing of a mach_port_request_notification request, a reply
message is built from the output parameters.

— MachPortRequestNotification Reply
RequestReturn
previous? : PORT

reply? = Mach_port_request_notification_outputs_to_reply(previous?)

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005

DTOS FTLS 147

8.8.3 Request Criteria

The following criteria are defined for the mach_port_request_notification request:

Review Note:
There is a number missing in the list because of improvements to the model. It doesn’'t seem to be

worthwhile to renumber the criteria.

m C1 — notify? is not Ip_dead.

__C1MachPortRequestNotificationNotifyNotDead
notify? : PORT

notify? # Ip_dead

NotC1MachPortRequestNotification NotifyNotDead
= = C1MachPortRequest Notification NotifyNot Dead

m C2 — variant? is set to Mach_notify_pori_destiroyed.

— C2MachPortRequestNotificationPortDestroyed
variant? : MACH_MSG_ID

variant? = Mach_notify_port_destroyed

NotC2MachPortRequestNotificationPortDestroyed
= = C2MachPortRequest Notification Port Destroyed

m C3 — variant? is set to Mach_notify_no_senders.

— C3MachPortRequestNotificationNoSenders
variant? : MACH_MSG_ID

variant? = Mach_notify_no_senders

NotC3MachPortRequestNotificationNoSenders
= — U3 MachPortRequest NotificationNoSenders

m C4 — variant? is set to Mach_notify_dead_name.

— C4MachPortRequestNotificationDead Name
variant? : MACH_MSG_ID

variant? = Mach_notify_dead_name

NotC4MachPortRequestNotificationDead Name
= — C4MachPortRequest NotificationDead Name

83-0902024A001 Rev A

Secure Computing Corporation
1.21, 4 December 1996

CAGE Code OHDC7

CDRL A005
148 Port Requests

m C5 — sync? is equal to zero.

__CbMachPortRequestNotificationSynclsZero
sync? N

sync? =0

NotCbMachPortRequestNotificationSynclsZero
= — CbMachPortRequest NotificationSynclsZero

m C6 — right_name? represents a right in tesk?'s name space.

— C6MachPortRequestNotification NamelsA Right
PortNameSpace

task? : TASK

right_name? : NAME

(task?, right_name?) € local_namep

NotC6MachPortRequestNotificationNamelsA Right
= PortNameSpace A — C6MachPortRequest NotificationNamelsA Right

n C7 — right_name? represents a receive right in task?'s name space.

— CTMachPortRequestNotificationNamelsA Recerve Right

PortNameSpace
task? : TASK
right_name? : NAME

(task?, right_name?) € r_right

NotC7MachPortRequestNotificationNamelsA Receive Right
= PortNameSpace A — C7TMachPortRequest Notification NamelsA Receive Right

m C8 — This criteria only applies if right_name? indicates a receive right in task?'s name
space, in which case it is true whenever:

— There are no send rights for the port indicated by right_name?,
— sync? is less than the make-send count value for that port, and
— notify? is not Ip_null.

Review Note:
This criteria is not completely defined in the schema because the state model does not capture the

total number of send rights associated with a port.

—_ C8MachPortRequestNoSendersNotificationSendNow
C7MachPortRequestNotificationNamelsA Receive Right
SendRightsCount
sync? N

notify? : PORT

sync? < make_send_count(named_port(task?, righi_name?))
notify? # Ip_null

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 149

NotC8MachPortRequestNoSendersNotificationSend Now
= CTMachPortRequest NotificationNamelsA Receive Right A SendRightsCount
A = C8MachPortRequestNoSendersNotificationSendNow

m C10 — right_name? represents a send, send-once or receive right intesk?'s name space.

— C10MachPortRequestNotificationNamelsA PortRight
PortNameSpace
task? : TASK
right_name? : NAME

(task?, right_name?) € port_right_namep

NotC10MachPortRequestNotification NamelsA PortRight
= PortNameSpace A — C10MachPortRequest NotificationNamelsA PortRight

m C11 — right_name? represents a deadname in task?'s name space.

— Cl11MachPortRequestNotificationNamelsA Dead Name
PortNameSpace
task? : TASK
right_name? : NAME

(task?, right_name?) € dead_namep

NotC11 MachPortRequestNotificationNamelsA DeadName
= PortNameSpace A — C11MachPortRequestNotificationNamelsA Dead Name

m C12 — notify? is not Ip_null and sync? is non-zero.

— C12MachPortRequestNotification NotifySyncNotZero
notify? : PORT
sync? N

notify? # Ip_null
sync? # 0

NotC12MachPortRequestNotification NotifyAndSyncNonZero
= = C12MachPortRequest Notification NotifySyncNot Zero

m C13 — The number of user references for right_name? is less than the maximum allowed.

__C13MachPortRequestNotification URefsNotAtMazx
PortNameSpace
task? : TASK
right_name? : NAME

dead_right _ref _count(task?, right_name?) < Maz_right_refs

NotC13MachPortRequestNotification URefsNotAtMaz
= PortNameSpace A — C13MachPortRequestNotification URefsNotAtMazx

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
150 Port Requests

8.8.4 Return Values

Table 9 describes those values returned at the completion of the request which are common
to all three values of variant?. Tables 10, 11 and 12 describe the return values specific to
the cases in which variant? is set to Mach_notify_port_destroyed, Mach_notify_no_senders, and
Mach_notify_dead_name, respectively.

Review Note:
The order of the checks in this section is accurate based upon the code in CM on 19Sep94.

Review Note:
In Table 9, note that C2, C3, and C4 are mutually exclusive.

return! | previous! | C1 | Cc2 | C3 | C4 |

Kern_invalid_capability | - F - - -

Kern_invalid_value - T F F F
See Table 10 T | T - -
See Table 11 T - T -
See Table 12 T - - T

Table 9: Return Values for mach_port_request_notification

— RVMachPortRequestNotificationInvalidCapability
MachPortRequestNotification Quiputs
NotC1MachPortRequestNotification NotifyNotDead

return! = Kern_invalid_capability

— RVMachPortRequestNotificationInvalid Value
MachPortRequestNotification Quiputs
C1MachPortRequestNotification NotifyNotDead
NotC2MachPortRequestNotificationPortDestroyed
NotC3MachPortRequestNotificationNoSenders
NotC4MachPortRequestNotificationDead Name

return! = Kern_invalid_value

8.8.4.1 Port-Destroyed Notification Request Table 10 describes the return values for the case
in which variant? is set to Mach_notify_pori_destroyed.

— RVMachPortRequestPortDestroyed NotificationInvalid Value
MachPortRequestNotification Quiputs
C1MachPortRequestNotification NotifyNotDead
C2MachPortRequestNotification PortDestroyed
NotCbMachPortRequestNotificationSynclsZero

return! = Kern_invalid_value

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005

DTOS FTLS 151
| return! | previous! |CL]C2[C5][C6[CT7]
Kern_invalid_value | - T T F - -
Kern_invalid_name | - T T T F -
Kern_imvalid_right | - T T T T E
Kern_success pori_notify_destroyed(T T T T T

named _port(task?,right_name?))

Table 10: Return Values for mach_port_request_notification, port-destroyed notification

_ RVMachPortRequestPortDestroyed NotificationInvalidName
MachPortRequestNotification Quiputs
C1MachPortRequestNotification NotifyNotDead
C2MachPortRequestNotification PortDestroyed
CbMachPortRequestNotificationSynclsZero
NotC6MachPortRequestNotificationNamelsA Right

return! = Kern_invalid_name

— RVMachPortRequestPortDestroyed NotificationInvalid Right
MachPortRequestNotification Quiputs
C1MachPortRequestNotification NotifyNotDead
C2MachPortRequestNotification PortDestroyed
CbMachPortRequestNotificationSynclsZero
C6MachPortRequestNotificationNamelsA Right
NotC7MachPortRequestNotificationNamelsA Receive Right

return! = Kern_invalid_right

— RVMachPortRequestPortDestroyed NotificationSuccess
Notifications
MachPortRequestNotification Quiputs
C1MachPortRequestNotification NotifyNotDead
C2MachPortRequestNotification PortDestroyed
CbMachPortRequestNotificationSynclsZero
C6MachPortRequestNotificationNamelsA Right
C7MachPortRequestNotificationNamelsA Receive Right

return! = Kern_success
previous! = port_notify_destroyed(named_port(task?, right_name?))

8.8.4.2 No-Senders Notification Request Table 11 describes the return values for the case in
which variant? is set to Mach_notify_no_senders.

— RVMachPortRequestNoSendersNotificationInvalidName
MachPortRequestNotification Quiputs
C1MachPortRequestNotification NotifyNotDead
C3MachPortRequestNotificationNoSenders
NotC6MachPortRequestNotificationNamelsA Right

return! = Kern_invalid_name

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005

152 Port Requests
| return! | previous! | C1 | C3 | C6 | Cc7 |
Kern_invalid_name | - T T F -
Kern_invalid_right | - T T T F
Kern_success port_notify_no_more_senders(T T T T

named_port(task?,right_name?))

Table 11: Return Values for mach_port_request_notification, no-senders notification

__RVMachPortRequestNoSendersNotificationInvalid Right
MachPortRequestNotification Quiputs
C1MachPortRequestNotification NotifyNotDead
C3MachPortRequestNotificationNoSenders
C6MachPortRequestNotificationNamelsA Right
NotC7MachPortRequestNotificationNamelsA Receive Right

return! = Kern_invalid_right

— RVMachPortRequestNoSendersNotificationSuccess
Notifications
MachPortRequestNotification Quiputs
C1MachPortRequestNotification NotifyNotDead
C3MachPortRequestNotificationNoSenders
C6MachPortRequestNotificationNamelsA Right
C7MachPortRequestNotificationNamelsA Receive Right

return! = Kern_success
previous! = port_notify_no_more_senders(named_port(task?, right_name?))

8.8.4.3 Dead-Name Notification Request Table 12 describes the return values for the case in
which variant? is set to Mach_notify_dead_name.

Review Note:
In Table 12, note that C10 and C11 are mutually exclusive.

| return! | previous! | C1 | C4 | C6 | C10 | Cl1 | C12 | C13 |
Kern_invalid_name - T T F - - - -
Kern_invalid_right - T T T F F - -
Kern_success port_notify_dead(T T T T - ; -

task?,right_name?)

Kern_invalid_argument | - T T | T - T F -
Kern_urefs_overflow - T T | T - T T F
Kern_success Ip_null T T | T - T T T

Table 12: Return Values for mach_port_request_notification, dead-name notification

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 153

— RVMachPortRequestDead NameNotificationInvalidName
MachPortRequestNotification Quiputs
C1MachPortRequestNotification NotifyNotDead
C4MachPortRequestNotificationDead Name
NotC6MachPortRequestNotificationNamelsA Right

return! = Kern_invalid_name

__RVMachPortRequestDead NameNotificationInvalid Right
MachPortRequestNotification Quiputs
C1MachPortRequestNotification NotifyNotDead
C4MachPortRequestNotificationDead Name
C6MachPortRequestNotificationNamelsA Right
NotC10MachPortRequestNotification NamelsA PortRight
NotC11 MachPortRequestNotificationNamelsA DeadName

return! = Kern_invalid_right

— RVMachPortRequestDead NameNotificationSuccessOne
Notifications
MachPortRequestNotification Quiputs
C1MachPortRequestNotification NotifyNotDead
C4MachPortRequestNotificationDead Name
C6MachPortRequestNotificationNamelsA Right
C10MachPortRequestNotificationNamelsA PortRight

return! = Kern_success
previous! = port_notify_dead (task?, right_name?)

Review Note:

Note that this case could also result in a resource shortage. This is due to the fact that many dead
name notifications can be active for the same port, so memory is allocated for each additional notification
request.

— RVMachPortRequestDead NameNotificationInvalidArgument
MachPortRequestNotification Quiputs
C1MachPortRequestNotification NotifyNotDead
C4MachPortRequestNotificationDead Name
C6MachPortRequestNotificationNamelsA Right
Cl1MachPortRequestNotificationNamelsA DeadName
NotC12MachPortRequestNotification NotifyAndSyncNonZero

return! = Kern_invalid_argument

Editorial Note:
It seems rather surprising that the request fails when name? is a dead name and notify? is Ip_null?
That seems like a case that Mach would usually allow, though the request in this case would do nothing.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
154 Port Requests

_ RVMachPortRequestDead NameNotification Urefs Overflow
MachPortRequestNotification Quiputs
C1MachPortRequestNotification NotifyNotDead
C4MachPortRequestNotificationDead Name
C6MachPortRequestNotificationNamelsA Right
Cl1MachPortRequestNotificationNamelsA DeadName
C12MachPortRequestNotification NotifySyncNotZero
NotC13MachPortRequestNotification URefsNotAtMaz

return! = Kern_urefs_overflow

— RVMachPortRequestDead NameNotificationSuccess Two
MachPortRequestNotification Quiputs
C1MachPortRequestNotification NotifyNotDead
C4MachPortRequestNotificationDead Name
C6MachPortRequestNotificationNamelsA Right
Cl1MachPortRequestNotificationNamelsA DeadName
C12MachPortRequestNotification NotifySyncNotZero
Cl3MachPortRequestNotification URefsNotAtMaz

return! = Kern_success
previous! = Ip_null

In this last case, previous! returns Ip_null since right_name? identifies a dead right.

8.8.5 State Changes

Table 13 lists the possible successful executions of amach_port_request_notification re-
quest.

| Case |C1|C2|C3|C4|C5|C6|C7|C8|C10|C11|C12|C13|
MachPortRequestPortDestroyedNotificationState Changes | T | T |- | - |T|T|T| -] - - - -
MachPortRequestNoSendersNotificationState ChangesOne | T | - |T| - |- |T|T|F| - - - -
MachPortRequestNoSendersNotificationState ChangesTwo | T | - |T| - |- |T|T|T| - - - -
MachPortRequestDead NameNotificationStateChangesOne | T | - | - | T|-|T|-|-|T/| - - -
MachPortRequestDead NameNotificationStateChangesTwo | T | - |- |T|-|T|-|-| - | T | T|T

Table 13: State Change Cases for mach_port_request_notification

8.8.5.1 Port-Destroyed Notification Request A request for a port-destroyed notification is suc-
cessful if the following are true:

m notify? is not Ip_dead

m variant? is set to Mach_notify_port_destroyed

m sync? IS zero

m right_name? is a receive right in task?'s name space

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 155

If the request is successful, the kernel replaces the existing port-destroyed notification request
port for the port named by right_name? with notify?. Note that either the existing notification
request port or notify? could be Ip_null.

— MachPortRequestPortDestroyed NotificationState Changes
A Notifications
C1MachPortRequestNotification NotifyNotDead
C2MachPortRequestNotification PortDestroyed
CbMachPortRequestNotificationSynclsZero
C6MachPortRequestNotificationNamelsA Right
C7MachPortRequestNotificationNamelsA Receive Right

port_notify_destroyed’ = port_notify_destroyed
®{named_port(task?, right_name?) — notify?}

8.8.5.2 No-Senders Notification Request A request for a no-senders notification is successful
if the following are true:

m notify? is not Ip_dead
m variant? is set to Mach_notify_no_senders
m right_name? is a receive right in task?'s name space

If the request is successful, then kernel further determines whether a no-senders notification
should immediately be sent, by checking if all of the following are true:

m There are no send rights for the port indicated by right_name?
m sync? is less than the make-send count value for that port
m notify? is not Ip_null

If any of these are not true, the kernel replaces the existing no-senders notification request

port for the port named by right_name? with notify?. Note that either the existing notification
request port or notify? could be Ip_null.

— MachPortRequestNoSendersNotificationStateChangesOne
A Notifications
C1MachPortRequestNotification NotifyNotDead
C3MachPortRequestNotificationNoSenders
C6MachPortRequestNotificationNamelsA Right
C7MachPortRequestNotificationNamelsA Receive Right
NotC8MachPortRequestNoSendersNotificationSend Now

port_notify_no_more_senders’ = port_notify_no_more_senders
®{named_port(task?, right_name?) — notify?}

If the kernel determines that it must immediately send a no-senders notification, it first removes
any existing notification request port and then attempts to send the notification.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
156 Port Requests

_ MachPortRequestNoSendersNotificationState Changes Two
A Notifications
C1MachPortRequestNotification NotifyNotDead
C3MachPortRequestNotificationNoSenders
C6MachPortRequestNotificationNamelsA Right
C7MachPortRequestNotificationNamelsA Receive Right
C8MachPortRequestNoSendersNotificationSendNow

port_notify_no_more_senders’ = port_notify_no_more_senders
®{named_port(task?, right_name?) — Ip_null}

Review Note:

This second case still needs to be completed. Four things are missing, all of which should eventually be
handled in the port chapter introduction:

Make sure that a notification message can be allocated. If not, no notification is sent.
Build the notification message.

Check for send permission

Queue the message

Review Note:

It's interesting to note that the sync? value is used to determine whether a no-senders notification is
immediately sent, but it has no relevance to notifications sent after the notification is registered. In
that respect it seems that the race condition that sync? is apparently intended to prevent is not really

prevented. The only way to truly avoid it is for the recipient of the notification to check the make send
count returned with the notification.

MachPortRequestNoSendersNotificationState Changes
= MachPortRequestNoSendersNotificationState ChangesOne
V MachPortRequestNoSendersNotificationState Changes Two

8.8.5.3 Dead-Name Notification Request A request for a dead-name notification can be suc-
cessful in two distinct cases.

The first successful case occurs if the following are true:

m notify? is not Ip_dead
m variant? is set to Mach_notify_dead_name
m right_name? is a send, send-once or receive right in task?'s name space

In this case, the kernel replaces the existing dead-name notification request port forright_name?
with notify?. Note that either the existing notification request port or not:fy? could be Ip_null.

_ MachPortRequestDead NameNotificationState ChangesOne
A Notifications
C1MachPortRequestNotification NotifyNotDead
C4MachPortRequestNotificationDead Name
C6MachPortRequestNotificationNamelsA Right
C10MachPortRequestNotificationNamelsA PortRight

port_notify_dead" = port_notify_dead & {(task?, right_name?) — notify?}

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 157

The second successful case occurs if the following are true:

notify? is not Ip_dead

variant? is set to Mach_notify_dead_name

right_name? is a dead right in tesk?'s name space

sync? iS non-zero

dead_right_ref _count(task?,righi_name?) is not at the maximum value (Maz_right_refs)

In this case, the kernel immediately attempts to send a dead-name notification. Prior to doing
this however, it increments the dead_right_ref _count for the dead right.

__ MachPortRequestDead NameNotificationState ChangesTwo
A DeadRights
C1MachPortRequestNotification NotifyNotDead
C4MachPortRequestNotificationDead Name
C6MachPortRequestNotificationNamelsA Right
Cl1MachPortRequestNotificationNamelsA DeadName
C12MachPortRequestNotification NotifySyncNotZero
Cl3MachPortRequestNotification URefsNotAtMaz

dead_right_ref _count’ = dead_right_ref_count
®{(task?, right_name?) — dead_right_ref _count(task?, right_name?) + 1}

Editorial Note:

It is unclear why dead_right_ref _count is being incremented in this case. That does not agree with the
understanding of this field presented in the state model. It might also be interesting to look and see
whether it is decremented in the case that the send of the notification message fails.

Review Note:

This second case still needs to be completed. Four things are missing, all of which should eventually be
handled in the port chapter introduction:

Make sure that a notification message can be allocated. If not, no notification is sent.
Build the notification message.

Check for send permission

Queue the message

MachPortRequestDead NameNotificationState Changes
= MachPortRequestDead NameNotificationState ChangesOne
V MachPortRequestDead NameNotificationState ChangesTwo

8.8.6 Complete Request

The initial processing by the kernel upon receipt of the mach_port_request_notification
request is described in Section 8.1.

— Processing MachPortRequest Notification
ProcessPortRequestGood

operation? = Mach_port_request_notification_id

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
158 Port Requests

An unsuccessful mach_port_request_notification request results in no changes to the Mach
state and returns only the appropriate error status.

MachPortRequestNotification Bad

= (RVMachPortRequestNotificationInvalidCapability
V RVMachPortRequestNotificationInvalid Value
V RVMachPortRequestPortDestroyed NotificationInvalid Value
V RVMachPortRequestPortDestroyed NotificationInvalidName
V RVMachPortRequestPortDestroyed NotificationInvalid Right
V RVMachPortRequestNoSendersNotificationInvalidName
V RVMachPortRequestNoSendersNotificationInvalid Right
V RVMachPortRequestDead NameNotificationInvalidName
V RVMachPortRequestDead NameNotificationInvalid Right
V RVMachPortRequestDead NameNotificationInvalidArgument
V RVMachPortRequestDead NameNotification UrefsOverflow)

>> RequestNoOp

A successful mach_port_request_notification request alters the Mach state as described in
Section 8.8.5 and returns a reply message.

MachPortRequestNotification Good
= ((MachPortRequestPortDestroyed NotificationState Changes
V MachPortRequestNoSendersNotificationState Changes
V MachPortRequestDead NameNotificationState Changes)
A (RVMachPortRequestPortDestroyed NotificationSuccess
V RVMachPortRequestNoSendersNotificationSuccess
V RVMachPortRequestDead NameNotificationSuccessOne
V RVMachPortRequestDead NameNotificationSuccess Two))
>> MachPortRequestNotification Reply

The complete specification of kernel processing of a mach_port_request_notification re-
guest consists of the initial processing followed by an unsuccessful or successful execution.

MachPortRequestNotification
= Processing MachPortRequest Notification
s (MachPortRequestNotification Bad
V MachPortRequestNotification Good)

8.9 mach_port_set_mscount

A mach_port_set_mscount request changes the make-send count for the port associated
with a specified receive right in a task’s port name space.

8.9.1 Client Interface

kern_return_t mach_port_set_mscount

(mach_port_t task_name,

mach_port_t right_name,

mach_port_mscount_t mscount);
83-0902024A001 Rev A Secure Computing Corporation

1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 159

8.9.1.1 Input Parameters The following input parameters are provided by the client of a
mach_port_set_mscount request:

m task_name? — the client’s name for the task in whose name space right_name? is located

m right_name? — the name of a receive right for the port whose make-send count is to be
changed

m mscount? — the value to be assigned to the make-send count for the port associated with
right_name?

MachPortSetMscount ClientInputs
task_name? : NAME
right_name? : NAME

mscount? : N

A mach_port_set_mscount request is invoked by sending a message to the port indicated
by task_name? that has the operation field set to Mach_port_sei_mscouni_id and has a body
consisting of right_name? and mscount?.

—_Invoke MachPortSetMscount
Invoke MachMsg
MachPortSetMscount ClientInputs

name? = task_name?
operation? = Mach_port_set_mscount_id
msg_body = Mach_port_set_mscount_inputs_to_body(right_name?, mscount?)

8.9.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a mach_port_set_mscount request:

m return! — the status of the request

— MachPortSetMscount ClientOQuiputs
return! : KERNEL_RETURN

__ MachPortSetMscount Receive Reply
Invoke MachMsgRev
MachPortSetMscount ClientQuitputs

return! = Body_to_mach_port_set_mscount_outputs(msg_body)

8.9.2 Kernel Interface

8.9.2.1 Input Parameters The following input parameters are provided to the kernel for a
mach_port_set_mscount request:

m task? — the task known to the client by task_name?

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
160 Port Requests

m right_name? — provided by the client

m mscount? — provided by the client

MachPortSetMscount Inputs
task? : TASK

right_name? : NAME
mscount? : N

8.9.2.2 Output Parameters The following output parameters are returned by the kernel for a
mach_port_set_mscount request:

m return! — the status of the request

MachPortSetMscount Qutputs
’»return! : KERNEL_RFETURN

8.9.3 Request Criteria

The following criteria are defined for the mach_port_set_mscount request:

m C1 — right_name? represents a right in tesk?'s name space.

__Cl1MachPortSetMscountNamelsA Right
PortNameSpace
task? : TASK
right_name? : NAME

(task?, right_name?) € local_namep

NotC1MachPortSetMscountNamelsA Right
= PortNameSpace A — C1MachPortSetMscountNamelsARight

m C2 — right_name? represents a receive right in task?'s name space.

— C2MachPortSetMscountNamelsA Receive Right
PortNameSpace
task? : TASK
right_name? : NAME

(task?, right_name?) € r_right

NotC2MachPortSetMscountNamelsA Receive Right
= PortNameSpace A — C2MachPortSetMscountNamelsA Receive Right

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 161

8.9.4 Return Values

Table 14 describes the values returned at the completion of the request and the conditions
under which each value is returned.

Review Note:
The order of the checks agrees with the code in CM as of 20Sep94.

return! | C1 | Cc2 |

Kern_invalid_name F -
Kern_invalid_right T F
Kern_success T T

Table 14: Return Values for mach_port_set_mscount

— RVMachPortSetMscountInvalidName
MachPortSetMscount Qutputs
NotC1MachPortSetMscountNamelsA Right

return! = Kern_invalid_name

__RVMachPortSetMscountinvalid Right
MachPortSetMscount Qutputs
Cl1MachPortSetMscountNamelsA Right
NotC2MachPortSetMscountNamelsA Receive Right

return! = Kern_invalid_right

— RVMachPortSetMscountSuccess
MachPortSetMscount Qutputs
Cl1MachPortSetMscountNamelsA Right
C2MachPortSetMscountNamelsA Receive Right

return! = Kern_success

8.9.5 State Changes

If all of the criteria are satisfied, then the make-send count for the port associated with
right_name? in task?'s name space is given the value mscount?.

— MachPortSetMscountState
A PortSummary
MachPortSetMscount Inputs
Cl1MachPortSetMscountNamelsA Right
C2MachPortSetMscountNamelsA Receive Right

make_send_count’
= make_send_count ® {named_porit(task?, right_name?) — mscount?}

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
162 Port Requests

Review Note:
Invariants should be stated here as well.

8.9.6 Complete Request

The initial processing by the kernel upon receipt of the mach_port_set_mscount request is
described in Section 8.1.

__Processing MachPortSetMscount
ProcessPortRequestGood

operation? = Mach_port_set_mscount_id

An unsuccessful mach_port_set_mscount request results in no changes to the Mach state
and returns only the appropriate error status.

MachPortSetMscount Bad
= (RVMachPortSetMscountInvalid Name
V RVMachPortSetMscountInvalid Right)
>> RequestNoOp

A successful mach_port_set_mscount request alters the Mach state as described in Sec-
tion 8.9.5 and returns a reply message.

MachPortSetMscount Good
= (MachPortSetMscountState
A RVMachPortSetMscountSuccess)
>> RequestReturnOnlyStatus

The complete specification of kernel processing of amach_port_set_mscount request consists
of the initial processing followed by an unsuccessful or successful execution.

MachPortSetMscount
= Processing MachPortSetMscount
s (MachPortSetMscount Bad
V MachPortSetMscount Good)

8.10 mach_port_set_glimit

A mach_port_set_glimit request changes the message queue limit for the port associated
with a specified receive right in a task’s port name space.

8.10.1 Client Interface

kern_return_t mach_port_set_glimit

(mach_port_t task_name,

mach_port_t rightname,

mach_port_msgcount_t glimit_value);
83-0902024A001 Rev A Secure Computing Corporation

1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 163

8.10.1.1 Input Parameters The following input parameters are provided by the client of a
mach_port_set_qglimit request:

m task_name? — the client’s name for the task in whose name space right_name? is located

m right_name? — the name of a receive right for the port whose message queue limit is to
be changed

m ¢limit_value? — the value to be assigned to the message queue limit for the port associated
with right_name?

MachPortSetQlimat ClientInputs
task_name? : NAME
right_name? : NAME
glimit_value? : N

A mach_port_set_glimit request is invoked by sending a message to the port indicated by
task_name? that has the operation field set to Mach_port_set_qlimit_id and has a body consisting
of right_name? and glimii_value?.

__Invoke MachPortSetQlimat
Invoke MachMsg
MachPortSetQlimat ClientInputs

name? = task_name?
operation? = Mach_port_set_qlimit_id
msg_body = Mach_port_set_qlimit_inputs_to_body(right_name?, qlimit_value?)

8.10.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a mach_port_set_qglimit request:

m return! — the status of the request

— MachPortSetQlimit Client Outputs
return! : KERNEL_RETURN

__ MachPortSetQlimit Receive Reply
Invoke MachMsgRev
MachPortSetQlimat Client Qutputs

return! = Body_to_mach_port_set_glimit_outputs(msg_body)

8.10.2 Kernel Interface

8.10.2.1 Input Parameters The following input parameters are provided to the kernel for a
mach_port_set_qglimit request:

m task? — the task known to the client by task_name?

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
164 Port Requests

m right_name? — provided by the client

m ¢limit_value? — provided by the client

MachPortSetQlimat Inputs
task? : TASK
right_name? : NAME
glimit_value? : N

8.10.2.2 Output Parameters The following output parameters are returned by the kernel for
a mach_port_set_glimit request:

m return! — the status of the request

MachPortSetQlimit Outputs
F return! : KERNEL_RETURN

8.10.3 Request Criteria

The following criteria are defined for the mach_port_set_qglimit request:

m C1 — gqlimii_value? is no larger than the specified maximum, Mach_pori_q_limit_maz.

_ C1MachPortSetQlimitNamelsA Right
glimit_value? : N

glimit_value? < Mach_port_q_limit_mazx

NotC1MachPortSetQlimitNamelsA Right
= = C1MachPortSetQlimitNamelsA Right

m C2 — right_name? represents a right in tesk?'s name space.

— C2MachPortSetQlimitNamelsA Receive Right
PortNameSpace
task? : TASK
right_name? : NAME

(task?, right_name?) € local_namep

NotC2MachPortSetQlimitNamelsA Receive Right
= PortNameSpace A — C2MachPortSetQlimitNamelsA Receive Right

m C3 — right_name? represents a receive right in task?'s name space.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 165

— C3MachPortSetQlimit ValuelsValid
PortNameSpace
task? : TASK
right_name? : NAME

(task?, right_name?) € r_right

NotC3MachPortSetQlimit ValuelsValid
= PortNameSpace A — C3MachPortSetQlimit ValuelsValid

8.10.4 Return Values

Table 15 describes the values returned at the completion of the request and the conditions
under which each value is returned.

Review Note:
The order of the checks agrees with the code in CM as of 20Sep94.

| return! | C1 | C2 | C3 |
Kern_tmvalid_value F - -
Kern_mmvalid_name | T F -
Kern_invalid_right T T F
Kern_success T T T

Table 15: Return Values for mach_port_set_glimit

— RVMachPortSetQlimitinvalid Value
MachPortSetQlimit Outputs
NotC1MachPortSetQlimitNamelsA Right

return! = Kern_invalid_value

__ RVMachPortSetQlimitinvalid Name
MachPortSetQlimit Outputs
ClMachPortSetQlimitNamelsA Right
NotC2MachPortSetQlimitNamelsA Receive Right

return! = Kern_invalid_name

— RVMachPortSetQlimitInvalid Right
MachPortSetQlimit Outputs
ClMachPortSetQlimitNamelsA Right
C2MachPortSetQlimitNamelsA Receive Right
NotC3MachPortSetQlimit ValuelsValid

return! = Kern_invalid_right

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005

166 Port Requests

— RVMachPortSetQlimitSuccess
MachPortSetQlimit Outputs
ClMachPortSetQlimitNamelsA Right
C2MachPortSetQlimitNamelsA Receive Right
C3MachPortSetQlimit ValuelsValid

return! = Kern_success

8.10.5 State Changes

If all of the criteria are satisfied, then the message queue limit for the port associated with
right_name? in task?'s name space is given the value ¢limit_value?.

Review Note:

This request may wake up threads which are blocked trying to send to the port, if the queue limit is
increased. This does not currently fit into the model.

— MachPortSetQlimitState
A PortSummary
ClMachPortSetQlimitNamelsA Right
C2MachPortSetQlimitNamelsA Receive Right
C3MachPortSetQlimit ValuelsValid

g_limit' = g-limit © {named_port(task?, right_name?) — qlimit_value?}

Review Note:
Invariants should be stated here as well.

8.10.6 Complete Request

The initial processing by the kernel upon receipt of the mach_port_set_glimit request is
described in Section 8.1.

__Processing MachPortSetQlimit
ProcessPortRequestGood

operation? = Mach_port_set_qlimit_id

An unsuccessful mach_port_set_glimit request results in no changes to the Mach state and
returns only the appropriate error status.

MachPortSetQlimit Bad
= (RVMachPortSetQlimitInvalidName
V RVMachPortSetQlimitinvalid Right
V RVMachPortSetQlimitInvalid Value)
>> RequestNoOp

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 167

A successful mach_port_set_glimit request alters the Mach state as described in Sec-
tion 8.10.5 and returns a reply message.

MachPortSetQlimit Good
= (MachPortSetQlimitState
A RVMachPortSetQlimitSuccess)
>> RequestReturnOnlyStatus

The complete specification of kernel processing of a mach_port_set_qlimit request consists
of the initial processing followed by an unsuccessful or successful execution.

MachPortSetQlimat
= Processing MachPortSetQlimit
s (MachPortSetQlimit Bad
V MachPortSetQlimit Good)

8.11 mach_port_set_seqno

A mach_port_set_seqno request changes the current sequence number for the port associated
with a specified receive right in a task’s port name space.

8.11.1 Client Interface

kern_return_t mach_port_set_seqno

(mach_port_t task_name,
mach_port_t right_name,
mach_port_seqno_t seqno);

8.11.1.1 Input Parameters The following input parameters are provided by the client of a
mach_port_set_segno request:

m task_name? — the client’s name for the task in whose name space right_name? is located

m right_name? — the name of a receive right for the port whose current sequence number
is to be changed

m seqno? — the value to be assigned to the current sequence number for the port associated
with right_name?

MachPortSetSeqno ClientInputs
task_name? : NAME
right_name? : NAME

seqno? . 2

A mach_port_set_seqgno request is invoked by sending a message to the port indicated by
task_name? that has the operation field set to Mach_port_set_segno_id and has a body consisting
of right_name? and seqno?.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005

168 Port Requests

— Invoke MachPortSetSeqno
Invoke MachMsg
MachPortSetSeqno ClientInputs

name? = task_name?
operation? = Mach_port_set_seqno_id
msg_body = Mach_port_set_seqno_inputs_to_body(right_name?, seqno?)

8.11.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a mach_port_set_seqgno request:

m return! — the status of the request

— MachPortSetSeqno ClientQutputs
return! : KERNEL_RETURN

__ MachPortSetSeqno Receive Reply
Invoke MachMsgRev
MachPortSetSegno ClientQutputs

return! = Body_to_mach_port_set_seqno_outputs(msg_body)

8.11.2 Kernel Interface

8.11.2.1 Input Parameters The following input parameters are provided to the kernel for a
mach_port_set_segno request:

m task? — the task known to the client by task_name?

m right_name? — provided by the client

m seqno? — provided by the client
MachPortSetSegno Inputs
task? : TASK

right_name? : NAME
seqno? . 2

8.11.2.2 Output Parameters The following output parameters are returned by the kernel for
a mach_port_set_seqno request:

m return! — the status of the request

MachPortSetSegno OQutputs
return! : KERNEL_RETURN

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 169

8.11.3 Request Criteria
The following criteria are defined for the mach_port_set_seqno request:

m C1 — right_name? represents a right in tesk?'s name space.

— C1MachPortSetSeqgnoNamelsA Right
PortNameSpace

task? : TASK

right_name? : NAME

(task?, right_name?) € local_namep

NotC1MachPortSetSegnoNamelsA Right
= PortNameSpace A — C1MachPortSetSeqnoNamelsARight

m C2 — right_name? represents a receive right in task?'s name space.

__C2MachPortSetSeqgnoNamelsA Receive Right
PortNameSpace

task? : TASK

right_name? : NAME

(task?, right_name?) € r_right

NotC2MachPortSetSeqgnoNamelsA Receive Right
= PortNameSpace A — C2MachPortSetSeqnoNamelsA Receive Right

8.11.4 Return Values

Table 16 describes the values returned at the completion of the request and the conditions
under which each value is returned.

Review Note:
The order of the checks agrees with the code in CM as of 20Sep94.

return! | C1 | Cc2 |

Kern_invalid_name F -
Kern_invalid_right T F
Kern_success T T

Table 16: Return Values for mach_port_set_segno

— RVMachPortSetSegnolnvalidName
MachPortSetSegno OQutputs
NotC1MachPortSetSegnoNamelsA Right

return! = Kern_invalid_name

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
170 Port Requests

— RVMachPortSetSeqnolnvalid Right
MachPortSetSegno OQutputs
Cl1MachPortSetSegnoNamelsA Right
NotC2MachPortSetSeqgnoNamelsA Receive Right

return! = Kern_invalid_right

__RVMachPortSetSeqnoSuccess
MachPortSetSegno OQutputs
Cl1MachPortSetSegnoNamelsA Right
C2MachPortSetSegnoNamelsA Receive Right

return! = Kern_success

8.11.5 State Changes

If all of the criteria are satisfied, then the current sequence number for the port associated with
right_name? in task?'s name space is given the value seqno?.

__ MachPortSetSeqnoState
A PortSummary
MachPortSetSegno Inputs
Cl1MachPortSetSegnoNamelsA Right
C2MachPortSetSegnoNamelsA Receive Right

sequence_no’ = sequence_no @ {named_port(task?, right_name?) — seqno?}

Review Note:
Invariants should be stated here as well.

8.11.6 Complete Request

The initial processing by the kernel upon receipt of the mach_port_set_segno request is
described in Section 8.1.

__Processing MachPortSetSeqno
ProcessPortRequestGood

operation? = Mach_port_set_seqno_id

An unsuccessful mach_port_set_seqno request results in no changes to the Mach state and
returns only the appropriate error status.

MachPortSetSeqno Bad
= (RVMachPortSetSeqnolnvalid Name
V RVMachPortSetSeqnolnvalidRight)
>> RequestNoOp

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 171

A successful mach_port_set_seqno request alters the Mach state as described in Sec-
tion 8.11.5 and returns a reply message.

MachPortSetSegno Good
= (MachPortSetSeqnoState
A RVMachPortSetSeqnoSuccess)
>> RequestReturnOnlyStatus

The complete specification of kernel processing of a mach_port_set_seqno request consists
of the initial processing followed by an unsuccessful or successful execution.

MachPortSetSegno
= Processing MachPortSetSegno
s (MachPortSetSeqno Bad
V MachPortSetSeqno Good)

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
172 Thread Requests

Section 9
Thread Requests

9.1 Introduction to Thread Requests

This chapter describes the thread kernel requests in DTOS.

9.1.1 Constants and Types

We first define the identifier that is used to represent each thread request. The kernel accepts
two thread requests through task kernel ports (Thread_task_pori_ops) and most of the others
through thread kernel ports (Thread_thread_port_ops).

Thread_abort_id, Thread_assign_id, Thread_assign_default_id,
Thread_depress_abort_id, Thread_disable_pc_sampling_id,
Thread_enable_pc_sampling_td, Thread_get_assignment_id,
Thread_get_sampled _pcs_id, Thread_get_special _port_id,
Thread_get_state_id, Thread_info_id, Thread_max_priority_id,
Thread_policy_id, Thread_priority_id, Thread_resume_id,
Thread_resume_secure_id, Thread_set_special_port_id,
Thread_set_state_id, Thread_set_state_secure_id,
Thread_suspend_id, Thread_terminate_id : OPERATION
Thread_thread_port_ops : P OPERATION

(Thread_abort_id, Thread_assign_id, Thread_assign_default_id,
Thread_depress_abort_id, Thread_disable_pc_sampling_id,
Thread_enable_pc_sampling_td, Thread_get_assignment_id,
Thread_get_sampled_pcs_id, Thread_get_special _port_id,
Thread_get_state_id, Thread_info_id, Thread_max_priority_id,
Thread_policy_id, Thread_priority_id, Thread_resume_id,
Thread_resume_secure_id, Thread_set_special_port_ud,
Thread_set_state_id, Thread_set_state_secure_id,
Thread_suspend_id, Thread_terminate_id)

Values_partition Thread_thread_port_ops

Thread_create_id, Thread_create_secure_id : OPERATION
Thread_task_port_ops : P OPERATION

(Thread_create_id, Thread_create_secure_id)
Values_partition Thread_task_port_ops

Together these two disjoint sets of operations form the set Thread_operations denoting all thread
operations. Each thread request must be received through a port of the appropriate port class.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 173

Thread_operations : P OPERATION

(Thread_thread_port_ops, Thread_task_port_ops) partition Thread_operations
Thread_thread_port_ops C Allowed_mach_services(Pc_thread)
Thread_task_port_ops C Allowed_mach_services(Pe_task)

9.1.2 Required Permissions

For each operation there is a primary permission that is required to perform the operation.
We define here the portion of the Reguired_permission function that pertains to thread re-
quests. The Abort_thread implementation service permission implies the Set_thread_priority
and Abort_thread_depress permissions are automatically granted since the thread_abort re-
guest can set priorities and abort priority depression. Thethread_priority request requires
Set_thread_priority permission, but Sei_maxz_thread_priority permission is also needed if the
set_max parameter has value True. We also assume that Initiate_secure permission is granted
whenever Resume_thread or Set_thread_state permission is granted.

Review Note:
Here are the full sets of permissions that are currently needed for each request (except the special port
ones).

{(Thread_abort_id, Abort_thread, Set_thread_priority, Abort_thread_depress),

(Thread_assign_id, Assign_thread_to_pset, Set_maz_thread_priority,
Set_thread_priority, Set_thread_policy, Assign_thread),

(Thread_assign_default _id, Assign_thread_to_pset, Set_maw_thread_priority,
Set_thread_priority, Set_thread_policy, Assign_thread),

(Thread_create_id, Add_thread),

(Thread_depress_abort_id, Abort_thread_depress, Set_thread_priority),

(Thread_disable_pc_sampling_id, Sample_thread),

(Thread_enable_pc_sampling_id, Sample_thread),

(Thread_get_assignment_id, Get_thread_assignment),

(Thread_get_sampled_pcs_id, Sample_thread),

(Thread_get_state_id, Get_thread_state),

(Thread_info_id, Get_thread_info),

(Thread_maz_priority_id, Set_maw_thread_priority, Set_thread_priority),

(Thread_policy_id, Set_thread_policy),

(Thread_priority_id, Set_thread_priority, Set_maz_thread_priority),

(Thread_resume_id, Resume_thread, Inttiate_secure),

(Thread_set_state_id, Set_thread_state, Initiate_secure),

(Thread_suspend_id, Suspend_thread),

(Thread_terminate_id, Terminate_thread, Sample_thread)}

This will be simplified when the FSPM is modified so services do not overlap so often.

Review Note:
Does thread_assign_default also require Assign_thread permission? | suspect so.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
174 Thread Requests

{(Thread_abort_id, Abort_thread),

(Thread _assign_id, Assign_thread_to_pset),
(Thread_assign_default_id, Assign_thread_to_pset),
(Thread_create_id, Add_thread),
(Thread_create_secure_id, Add_thread_secure),
(Thread_depress_abort_id, Abort_thread_depress),
(Thread_disable_pc_sampling_id, Sample_thread),
(Thread_enable_pc_sampling_id, Sample_thread),
(Thread_get_assignment_id, Gel_thread _assignment),
(Thread_get_sampled_pcs_id, Sample_thread),
(Thread_get_state_id, Get_thread _state),
(Thread_info_id, Get_thread_info),

(Thread _maz_priority_id, Set_maz_thread_priority),
(Thread_policy_id, Set_thread _policy),

(Thread _priority_id, Set_thread_priority),

(Thread _resume_id, Resume_thread),

(Thread _resume_secure_id, Initiate_secure),
(Thread_set_state_id, Set_thread_state),
(Thread_set_state_secure_id, Initiate_secure),
(Thread_suspend_id, Suspend_thread),

(Thread _terminate_id, Terminate_thread)}

C Required_permission

The permission required for a Thread_get_special_pori_id or Thread_set_special_pori_id opera-
tion depends upon the value of the which_port? parameter. Therefore the permission cannot be
checked in the common processing, and the two operations are in the setService_check_deferred.

{Thread_get_special_port_id, Thread_sel_special_pori_id} C Service_check_deferred

9.1.3 Invariant Information

The thread requests operate on only certain components of the state. We use the following
schema to provide a general framework for describing thread requests.

Review Note:

This list has problems in that some schemas are indirectly pulled in where they should not be. For
example, = SpecialTaskPorts includes = PortFEzist which we do not want. Might be possible to get a
better handle on this problem by doing fuzz -t and comparing A DtosEzec to a schema with all of the
ThreadInvariants except A DitosFzec.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 175

__ThreadInvariants
A DiosErec

TaskErist

= MessageFrist

= MemoryFrist

= PageFxist

= ProcessorErist

= ProcessorSetErist

= Device Exist

= TaskSuspendCount

= Kernel

= RegisteredRights

= MemoriesAndPorts

= HostsAndPorts

= ProcessorsAndPorts

= SpecialTaskPorts

= DevicesAndPorts

= Notifications

= MessageQueues

= MemorySystem

= Messages

= HostsAndProcessors

= ProcessorAndProcessorSet

= TaskAndProcessorSet

= PortClasses

= TaskPriority

= Emulation Vector

= MasterDevicePort

= HostTime

[1]

9.1.4 General Information

9.1.4.1 Special Ports The
requests thread_get_special_port and thread_set_special_port each have an input pa-
rameter specifying the type of special port to be processed. The following type is used for these
input parameters:

[THREAD_SPECIAL_PORTS]

There are two recognized values of this type. They are:

m Thread_exception_port — indicates the exception port

m Thread_kernel_port — indicates the sself port

We require these two values to be disjoint, but place no restrictions on other values of type
THREAD_SPECIAL_PORTS.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
176 Thread Requests

Thread_exception_port : THREAD_SPECIAL_PORTS
Thread_kernel_port : THREAD_SPECIAL_PORTS
Recognized_thread_special_ports : P THREAD_SPECIAL_PORTS

(Thread_exception_port, Thread_kernel_port)
Values_partition Recognized_thread _special_ports

9.1.4.2 Thread Information Types The request thread_info returns an array of information
describing a thread. The array used to hold the information is of type THREAD_INFO.

[THREAD_INFO]

There are two recognized types of thread information.

m Thread_basic_info — information on execution statistics, execution status and priority

m Thread_sched_info — information on scheduling priorities and policies

These two types of information are in the set THREAD_INFO_TYPE.
[THREAD_INFO_TYPE)

We require the two values Thread_basic_info and Thread_sched_info of this type to be disjoint,
but place no restrictions on other values of THREAD_INFO_TYPE.

Thread_basic_info : THREAD_INFO_TYPE
Thread_sched_info : THREAD_INFO_TYPE
Recognized_thread_info_types : P THREAD_INFO_TYPE

(Thread_basic_info, Thread_sched_info)
Values_partition Recognized_thread _info_types

9.1.4.3 Execution Status Changes Several requests (e.g., thread_suspend and swtch) can
cause the execution of the current thread to be blocked. We describe here the changes that take
place when a thread is blocked.

The blocking of a thread results in the thread being swapped out, and another thread moving
onto the processor, unless there is nothing else for the processor to swap in. The run states will
change for the thread moved off the processor and for the thread moved onto the processor. The
thread moved onto the processor is determined by the scheduling algorithm. The algorithm
may select the blocking thread in which case the thread remains on the processor. We model
this selection of a new thread by the function Select_next_thread.

Review Note:

This function should be related to the RunQueue which is currently in the specification of the swtch
request but which should probably be moved to the state chapter. Also, what is the relationship between
Select_mext_thread and thread_sched_priority? Would it be useful to model this relationship?

| Select_next_thread : PROCESSOR_SET -+ THREAD

If the scheduling algorithm selects the blocking thread then that thread is marked as not
swapped out and not uninterruptibly waiting, and the blocking operation is completed. Other-
wise, the new thread selected by the scheduling algorithm receives these markings and, unless
the blocking thread is being terminated, the following changes are made to the blocking thread:

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 177

1. Itis added to swapped_threads.
2. Itis marked as not Running if it is not in idle_threads, and it was either marked as

(8) Stopped, but not Uninterruptible, or
(b) Waiting.

The schema ThreadBlock describes these changes. The component blocking_thread is the thread
that is being blocked, and init_run_state is the run state in effect when the thread blocking
occurs. This may differ from the run_state function depending upon the context in which the
blocking occurs. For example, when blocking occurs as part of athread_suspend request the
Stopped state will have been added to run_state(blocking_thread) to obtain init_run_state. In
the case where the blocking thread is being terminated blocking_thread is not in the domain of
mit_run_state.

Review Note:

The need for init_run_state originates in our level of granularity in the specification. There are changes
that various requests make to the run state of a thread in preparation for blocking the thread. Since
Thread Block models only a portion of this processing, we need a way to specify what changes have been
made to the run state in the request processing that precedes the blocking.

__ThreadBlock
A ThreadFErecStatus
ProcessorAndProcessorSet
blocking_thread : THREAD
cpu?? : PROCESSOR
mit_run_state : THREAD —— P RUN_STATES

cpu?? € dom proc_assigned_procset
let new_thread == Select_next_thread(proc_assigned_procset(cpu??))
o new_thread ¢ swapped_threads’
A run_state'(new_thread) = init_run_state(new_thread) \ { Uninterruptible}
A ((new_thread # blocking_thread A blocking_thread ¢ dom init_run_state)
= (blocking_thread € swapped_threads’
A run_state’ (blocking_thread)
= 1if blocking_thread ¢ tdle_threads
A (init_run_state(blocking_thread)
N {Stopped, Uninterruptible} = {Stopped }
V Waiting € init_run_state(blocking_thread))
then init_run_state(blocking _thread) \ { Running}
else init_run_state(blocking_thread)))
A (Vthread : THREAD | thread ¢ {new_thread, blocking_thread}
e run_state' (thread) = init_run_state({hread)
A thread € swapped_threads’ < thread € swapped_threads
A thread € idle_threads’ < thread € idle_threads)

A request may also wait for a given thread to stop running. The componentstopping_thread is
the thread being stopped, and in:t_run_state is defined as for ThreadBlock.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
178 Thread Requests

__ThreadDo Wart
A ThreadFErecStatus
stopping_thread : THREAD
mit_run_state : THREAD —— P RUN_STATES

run_state’ = init_run_state
@& {stopping_thread — init_run_state(stopping_thread) \ { Running}}
swapped_threads’ = swapped_threads
idle_threads’ = idle_threads

Some requests (e.g., thread_set_state and thread_get_state) must wait for a thread to stop
before they can do their work. When they are done modifying or observing the characteristics of
the stopped thread they allow the thread to start again. For example,thread_get_state stops
the thread, examines its machine state (e.g., machine registers) and then allows the thread to
run again. The cumulative effect of this sequence of operations might include the side-effect
of altering the run state. The run state will contain Running when it previously contained
neither Waiting nor Stopped. 1t will contain Halted when it previously contained both Halted
and Stopped. The Stopped, Waiting and Uninterrupiible characteristics are unchanged.

Review Note:

We believe that Halted = Stopped at the termination of a request. If this is true then the thread will
be halted if and only if it was halted before the request. We also believe that at least one of the states
Running, Stopped and Waiting must be contained in the run state. This means that Running could be
removed from the run state by this operation, but never added.

_ ThreadDoWaitThenRelease
A ThreadExecStatus
stopping_thread : THREAD

Y thread : THREAD | thread € dom run_state A thread # stopping_thread
o run_state'(thread) = run_state(thread)
run_state’(stopping_thread) N {Stopped, Waiting, Uninterruptible}
= run_state(stopping_thread) N {Stopped, Waiting, Uninterruptible}
Halted € run_state' (stopping_thread)
< {Halted, Stopped } C run_state(stopping_thread)
Running € run_state'(stopping_thread)
& run_state(stopping_thread) N { Waiting, Stopped } = &

9.1.4.4 Parameter Packaging Functions When invoking a kernel request, the following func-
tions package the input parameters into a message body:

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 179

Name_and_number_to_text : NAMFE x 2 — MESSAGE_BODY
Name_to_text : NAME — MESSAGE_BODY
Number_and_boolean_to_text : 2 x BOOLEAN — MESSAGE_BODY
Policy_and_data_to_text : SCHED_POLICY x SCHED_POLICY_DATA
— MESSAGE_BODY
Sample_type_set_to_text : P SAMPLE_TYPES — MESSAGE_BODY
Sequence_number_to_text :N— MESSAGE_BODY
Thread_info_type_and_count_to_text : THREAD_INFO_TYPE x N
— MESSAGE_BODY
Thread_set_state_params_to_text :
THREAD_STATE_INFO_TYPES x THREAD_STATE_INFO x N
— MESSAGE_BODY
Thread_special_port_and_name_to_text : THREAD_SPECIAL_PORTS x NAME
— MESSAGE_BODY
Thread_special_ports_to_text : THREAD_SPECIAL_PORTS — MESSAGE_BODY
Thread_state_info_type_and_number_to_text : THREAD_STATE_INFO_TYPES x N
— MESSAGE_BODY

When creating a reply message from a request, the following functions package the output
parameters into a kernel reply:

Return_capability : Capability — KERNEL_REPLY

Return_sample_cnt :N— KERNEL_REPLY

Return_samples : (N x (seq SAMPLE) x 2) — KERNEL_REPLY
Return_thread_info : THREAD_INFO x N— KERNEL_REPLY
Return_thread_state_info : THREAD_STATE_INFO xN — KERNFEL_REPLY
Return_ticks : Ny — KERNEL _REPLY

When receiving a reply message from the kernel the following functions unpack the message
body to obtain the output parameters (including the return status):

Text_to_count_and_status : MESSAGE_BODY — (N x KERNEL_RETURN)
Text_to_info_and_count_and_status : MESSAGE_BODY

— (THREAD_INFO x N x KERNEL_RETURN)
Text_to_name_and_status : MESSAGE_BODY — (NAME x KERNEL_RETURN)
Text_to_seqno_and _PCs_and_count_and_status : MESSAGE_BODY

— (N x seq SAMPLE x 2 x KERNEL_RETURN)
Text_to_state_and_count_and_status : MESSAGE_BODY

— (THREAD_STATE_INFO x N x KERNEL_RETURN)
Text_to_status : MESSAGE_BODY — KERNEL _RETURN
Text_to_ticks_and_status : MESSAGE_BODY — (Ny x KERNEL_RETURN)

9.1.4.5 Destroying a Port

Review Note:
The following may fit more naturally in the port requests chapter.

The following schema describes the destruction of a port. This is required to describe the
thread_terminate request. The port destroyed is removed from the set of existing ports, and

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
180 Thread Requests

all send, receive, and send-once rights to this port are removed from all port name spaces.
New dead names are created for all previous send or send-once rights to this port. Note that

the creation of notifications when these names turn into dead names should be added to this
schema.

Editorial Note:

Destruction of a port representing a message queue for IPC can cause a chain reaction not represented
in this schema. Whether the same chain reaction is possible for ports representing kernel objects (as the
schema is used in this chapter) is unclear.

—_ PortDestroy
A Ipc
port : PORT

port_exists’ = pori_ewists \ {port}
Eort_m'ght_rel/_: port_right_rel
\ {task : TASK; name : NAME; right : RIGHT; i : Ny
o (task, port, name, right, 1)}
make_send_count’ = {port} 9 make_send_count
dead_right_rel' = dead_right_rel
U {task : TASK; name : NAME
| named_port(task, name) = port
o (task, name, 1)}

9.1.4.6 Miscellaneous The function Thread_port_to_s_right takes a port and returns a send
right to the port.

Thread_port_to_s_right : PORT — Capability

VY port : PORT
o (Thread_port_to_s_right(port)).right = Send
A (Thread_port_to_s_right(port)).port = port

The function Thread_state_count returns the size of a given type of thread state information.

‘ Thread_state_count : THREAD_STATE _INFO_TYPES — N

9.1.5 Kernel Processing

The kernel performs processing for a thread request only when it detects a break indicating that
a request has been received through a port of the appropriate class, Pc_task or Pc_thread. If the
specified service port no longer exists, then a Kern_invalid_argument status code is returned.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 181

— ProcessThreadRequestBadAuz
ProcessRequest
= Mach
reply_to_port! : P PORT
reply! : KERNEL_REPLY
return! : KERNEL_RETURN

((pe? = Pe_thread A operation? € Thread_thread_port_ops
A service_port? ¢ dom self_thread)

V (pe? = Pe_task A operation? € Thread_task_pori_ops
A service_port? ¢ dom self _task))

reply_to_port! = reply_to_port?
return! = Kern_invalid_argument

ProcessThreadRequestBad = ProcessThread RequestBadAur >> RequestNoOp

Otherwise, the kernel processes the request. In this case, we use the following schema to
represent the parameters to thread requests which are processed via thread ports:

Editorial Note:
flavor? is omitted because it is used with two different types in different requests.

__ThreadParameters
data? : SCHED_POLICY _DATA
new_state? : THREAD_STATE_INFO
new_state_cnt? : N
old_state_ent? @ N
policy? : SCHED_POLICY
priority? : 2
procset? : PROCESSOR_SET
seqno? : N
set_maz? : BOOLEAN
spectal_port? : PORT
task? : TASK
thread? : THREAD
target_thread? : THREAD
thread_infoCnt? - N
which_port? : THREAD_SPECIAL_PORTS

The interpretations of the components of these schemas are:

m data? — policy specific data used with the scheduling policy to determine the scheduling
priority of a thread (thread_policy)

m flavor? — specific type of information (thread_info) or state information (thread_—
get_state, thread_set_state and thread_set_state_secure)

m new_state? — state information to be assigned to a thread (thread_set_state and
thread_set_state_secure)

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

182

CDRL A005
Thread Requests

new_state_cnt? — amount of storage provided by a client to hold state information to be
assigned to a thread (thread_set_state and thread_set_state_secure)

old_state_cnt? — amount of storage provided by a client to hold state information
(thread_get_state)

policy? — desired scheduling policy (thread_policy)
priority? — desired priority for a thread (thread_priority and thread_max_priority)

procset? — desired processor set for a thread (thread_assign); the control port for the
processor set to which a thread is currently assigned thread_max_priority)

seqno? — the sequence number of the first sample that should be returned ¢hread_—
get_sampled_pcs)

set_maz? — a flag indicating whether the maximum priority should be reset when the
priority is changed (thread_priority)

special_port? — a port specified by the client to become the special port for the target
thread (for thread_set_special_port)

task? — the target task for the request (thread_create and thread_create_secure)

target_thread? — the target thread for the request (an alternative name forthread? that is
used in some requests)

thread? — the target thread for the request

thread_infoCnt? — amount of storage provided by a client to hold information on a thread
(thread_info)

which_port? — the type of special port specified by the client (thread_get_special_port
and thread_set_special_port)

The following schema maps a message sent to a thread port to a value of type Thread Parameters:

__ThreadMessage ToThread Parameters
Request?

Special ThreadPorts
ThreadParameters

pc? = Pc_thread

operation? € Thread_thread_port_ops
service_port? € dom self _thread
thread? = self _thread(service_port?)
target_thread? = thread?

Review Note:
ThreadInvariants really belongs in the state changes schemas rather than here in the message processing.
What | want here is Zalmosteverything. The same goes for the use a couple schemas further down.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 183

ProcessThreadViaThreadPortRequestGood
ProcessRequest

ThreadInvariants

ThreadMessageTo Thread Parameters

Similarly, we use the following function to map a message sent to a task port to a value of type
ThreadParameters:

__TaskMessageToThread Parameters
Request?
SpecialTaskPorts
ThreadParameters

pc? = Pc_task

operation? € Thread_task_pori_ops
service_port? € dom self _task
task? = self _task(service_port?)

— ProcessThread ViaTaskPortRequestGood
ProcessRequest
ThreadInvariants
TaskMessage ToThread Parameters

We now describe the individual thread requests.

9.2 thread_abort

The request thread_abort helps to cleanly stop a thread by interrupting page faults and any
mach_msg calls in progress by the thread. It causes an interrupt return code to be returned
from any system trap in progress on behalf of the thread (even though the execution of the
trap may finish). It also aborts any priority depressions. Note that thread_abort does not
suspend a thread. If the thread did not already have the Stopped state, then at the conclusion
of a thread_abort request it is neither Stopped nor Halted.

9.2.1 Client Interface

kern_return_t thread_abort
(mach_port_t target_thread_name);

9.2.1.1 Input Parameters The following input parameters are provided by the client of a
thread_abort request:

m target_thread_name? — the client’s name for the thread to which the abort will be applied

ThreadAbort ClientInputs
Ftarget_thread_namerf : NAME

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
184 Thread Requests

A thread_abort request is invoked by sending a message to the port indicated by
target_thread_name? that has the operation field set to Thread_abort_id and has no body.

— Invoke ThreadAbort
Invoke MachMsg
ThreadAbort ClientInputs

name? = target_thread_name?
operation? = Thread_abort_ud

9.2.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread_abort request:

m return! — the status of the request

Thread Abort ClientOutputs
return! : KERNEL_RETURN

_ ThreadAbort ReceiveReply
Invoke MachMsgRev
Thread Abort ClientOutputs

return! = Text_to_status(msg_body)

9.2.2 Kernel Interface

9.2.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread_abort request:

m target_thread? — the thread to which the abort will be applied

ThreadAbortInputs
Ftarget_threadrf : THREAD

9.2.2.2 Output Parameters The following output parameters are returned by the kernel for a
thread_abort request:

m return! — the status of the request

Thread Abort OQutputs
Freturn! : KERNEL_RFETURN

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 185

9.2.3 Request Criteria
The following criteria are defined for the thread_abort request.

m C1 — The parameter target_thread? is the client thread (i.e., the thread currently active
on the CPU).

— C1ThreadAbortClientThread
ThreadsAndProcessors
cpu?? : PROCESSOR
target_thread? : THREAD

cpu?? € dom active_thread

target_thread? = active_thread(cpu??)

NotC1ThreadAbortClient Thread
= ThreadsAndProcessors A = C1ThreadAbortClient Thread

9.2.4 Return Values

Table 17 describes the values returned at the completion of the request and the conditions
under which each value is returned.

I return! I C1 I

Kern_invalid_argument | T

Kern_success F

Table 17: Return Values for thread_abort

Review Note:
thread_abort can return Kern_aborted when

= there is a cycle of halt operations, or
= the client thread is interrupted while waiting for the target thread to halt.

IPC will convert Kern_aborted to an IPC interrupted error code. This behavior is not modeled.

— RVThreadAbortInvalid Argument
C1ThreadAbortClient Thread
Thread Abort OQutputs

return! = Kern_invalid_argument

__ RVThreadAbortGood
NotC1ThreadAbortClient Thread
Thread Abort OQutputs

return! = Kern_success

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
186 Thread Requests

9.2.5 State Changes

A successful thread_abort request will interrupt page faults and message primitive calls in
use by the thread. The thread will resume execution at the point of return from the interrupted
system call. This will occur upon return from this request unless the thread is in aStopped
state, in which case it will occur when the thread is resumed viathread_resume.

Review Note:
The granularity of the FTLS is not fine enough to model the interruption of page faults and message
primitive calls in use by the thread.

As stated above, thread_abort does not suspend a thread. If the thread does not already
have the Stopped state, then at the conclusion of athread_abort request it is neither Stopped
nor Halted. If the thread has been previously Stopped, the thread will remain Stopped upon
completion of the thread_abort request until it is resumed. The thread will also be Halted
at this point since thread_abort has insured that it is stopped at a clean point. A thread
that is not already Stopped and is not Waiting will have Running added to its run state by
thread_abort (assuming it is not already there).

_ ThreadAbortEzecStatus
A ThreadExecStatus
target_thread? : THREAD

Vthread : THREAD | thread € domrun_state A thread # target_thread?
o run_state'(thread) = run_state(thread)
run_state’ (target_thread?) N {Stopped, Waiting, Uninterruptible}
= run_state(target_thread?) N {Stopped, Waiting, Uninterruptible}
Halted € run_state’ (target_thread?) < Stopped € run_state(target_thread?)
Running € run_state'(target_thread?)
& run_state(target_thread?) N { Waiting, Stopped } = &
swapped_threads’ = swapped_threads
idle_threads’ = idle_threads
thread_suspend_count’ = thread_suspend_count
threads_wired’ = threads_wired

The sending of the return from this request means that the thread has received an interrupt
return code from the program it was executing. It follows from the specification for the pro-
cessing of invokable requests and mach_msg that the receipt of the return of Kern_success
from this request will therefore occur only if the thread is not in Stopped state. If the target
thread is in a stopped state, it will receive the return value when (and if) it is resumed (via
thread_resume).

Any priority depression is also aborted. This returns the priority of the thread to its value
before the depression. Note that the scheduling priority may also change, but since we do not
have enough detail in our model to compute its value we will leave it unspecified.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 187

__ ThreadAbortPriority
A ThreadPri
target_thread? : THREAD

targel_thread? € dom priority_before_depression

thread_priority’ = thread_priority

@& {target_thread? — priority_before_depression(target_thread?)}
thread_maz_priority’ = thread_maz_priority
depressed_threads’ = depressed_threads \ {target_thread?}
priority_before_depression’ = priority_before_depression

When the target thread resumes execution it will be at the return point from any interrupt
of trap it might have been executing. The component at_call_return represents the address at
which execution will resume if the thread is resumed.

Editorial Note:
Our model is not detailed enough to formally describe the value of at_call_return.

__ ThreadAbortState
ThreadInvartants
ThreadAbortExecStatus
ThreadAbortPriority

ThreadErist

PortErist

Threads

TasksAndThreads

ThreadSchedPolicy
ThreadInstruction

Fuvents

PortNameSpace

= Spectal Purpose Ports

target_thread? : THREAD
at_call_return : VIRTUAL_ADDRESS

[l > > [0 00 [[0 [

instruction_pointer’ = instruction_pointer & {targel_thread? — at_call_return}

Review Note:
How can we represent here the fact that the execution of messages and traps might not be completed?

There might be some delay in halting the thread. Is this important?

9.2.6 Complete Request

The following schema defines the general form of athread_abort request.

_ Processing ThreadAbort
ProcessThreadViaThreadPortRequestGood

operation? = Thread_abort_id

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
188 Thread Requests

A successful request makes the state changes described in the previous section and creates a
kernel reply.

ThreadAbort Good = (RVThread AbortGood N Thread AbortState)
>> RequestReturnOnlyStatus

An unsuccessful request returns an error status.

ThreadAbort Bad = RV Thread AbortInvalidArgument >> RequestNoOp

Execution of the request consists of a good execution or an error execution.

Frecute ThreadAbort = (ThreadAbort Good Vv ThreadAbort Bad) \ (at_call_return)

The full specification for kernel processing of a validated thread_abort request consists of
processing the request followed by its execution.

ThreadAbort = Processing ThreadAbort § Execute ThreadAbort

9.3 thread_create and thread_create_secure

The requests thread_create and thread_create_secure create a new thread within an ex-
isting task. The name of a send right to the kernel port of the new thread is returned. The
thread_create_secure request (which is used in the secure initiation of threads within a
task) expects the parent task to have task creation state 7'cs_task_empty (See Section 5.7). It
modifies the state to Tes_thread_created.

9.3.1 Client Interface

kern_return_t thread_create
(mach_port_t parent_task_name,
mach_port_t* child_thread_name);

kern_return_t thread_create_secure
(mach_port_t parent_task_name,
mach_port_t* child_thread_name);

9.3.1.1 Input Parameters The following input parameters are provided by the client of a
thread_create or thread_create_secure request:

m pareni_task_name? — the client’s name for the task that will be the parent for the newly
created thread

ThreadCreate ClientInputs
Fparent_task_namerf : NAME

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005

DTOS FTLS 189

A thread_create request is invoked by sending a message to the port indicated by
parent_task_name? that has the operation field set to Thread_create_id and has no body.

__Invoke ThreadCreate
Invoke MachMsg
ThreadCreate ClientInputs

name? = parent_task_name?
operation? = Thread_create_id

A thread_create_secure request is invoked by sending a message to the port indicated by
parent_task_name? that has the operation field set to Thread_create_secure_id and has no body.

— Invoke ThreadCreateSecure
Invoke MachMsg
ThreadCreate ClientInputs

name? = parent_task_name?
operation? = Thread_create_secure_id

9.3.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread_create or thread_create_secure request:
m child_thread_name! — the name of a send right to the kernel port of the new thread

m return! — the status of the request

ThreadCreate ClientOQutputs
child_thread_name! : NAME
return! : KERNEL_RETURN

— ThreadCreate Receive Reply
Invoke MachMsgRev
ThreadCreate ClientOQutputs

(child_thread_namel, return!) = Text_to_name_and_status(msg_body)

9.3.2 Kernel Interface

9.3.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread_create or thread_create_secure request:

m parent_task? — the task that will be the parent for the newly created thread

ThreadCreatelInputs
Tpiarent_taskrf : TASK

Secure Computing Corporation

83-0902024A001 Rev A
CAGE Code OHDC7

1.21, 4 December 1996

CDRL A005
190 Thread Requests

9.3.2.2 Output Parameters The following output parameters are returned by the kernel for a
thread_create or thread_create_secure request:

m child_thread! — the new thread

m return! — the status of the request

ThreadCreate Qutputs
Tehild_thread! : THREAD

return! : KERNEL_RETURN

Upon completion of the processing of a thread_create or thread_create_secure request a
reply message is built from the output parameters. The reply message will contain a send right
for the created thread’s kernel port.

_ThreadCreate Reply
RequestReturn
child_thread? : THREAD

reply? = Return_capability(Thread _port_to_s_right(thread_sself (child_thread?)))

9.3.3 Request Criteria

The following criteria are defined for thethread_create and thread_create_secure requests.

s C1 — The kernel has the necessary resources available to create the thread. We do
not actually model the consumption of resources by the kernel. So, we will use the set
Resources_available_to_create_thread to indicate the set of states where there are sufficient
resources to create a thread.

| Resources_avatlable_to_create_thread : P DtosExec

__C1ThreadCreateResourcesAvatlable
DtosExec

@ DtosEzec € Resources_available_to_create_thread

NotC1ThreadCreateResourcesAvailable =
DtosExec A = C1ThreadCreateResourcesAvatlable

m C2 — The task creation state of the parent task must be Tcs_task_empty. This criterion
applies only to the thread_create_secure request.

— C2ThreadCreateSecure TaskEmpty
TaskCreationState
parent_task? : TASK

parent_task? € domtask_creation_state

task_creation_state(parent_task?) = Tcs_task_emply

NotC2ThreadCreateSecure TaskEmpty
= TaskCreationState A — C2ThreadCreateSecure TaskEmpty

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 191

9.3.4 Return Values

Table 18 describes the values returned at the completion of thethread_create request and the
conditions under which each value is returned. The valuethread is the newly created thread
(see the State Changes section). The design does not specify the value of child_thread! when an
error occurs. It depends on the implementation, and we leave it unspecified.

I child_thread! | return! I C1 |

thread Kern_success T
— Kern_resource_shortage | F

Table 18: Return Values for thread_create

__ RVThreadCreateGood
C1ThreadCreate ResourcesAvailable
ThreadCreate Qutputs

thread : THREAD

child_thread! = thread

return! = Kern_success

— RVThreadCreate ResourceShortage
NotC'1ThreadCreate ResourcesAvailable
ThreadCreate Qutputs

return! = Kern_resource_shortage

Table 19 describes the values returned at the completion of thethread_create_secure request
and the conditions under which each value is returned. In the case where both C1 and C2 are
false we assume that Kern_insufficient_permission is returned.

Review Note:
In the prototype the conditions are checked in the order C2, C1.

I child_thread! | return! | Ci I Cc2 |
thread Kern_success T T
— Kern_resource_shortage F T
— Kern_insufficient_permission - F

Table 19: Return Values for thread_create_secure

__RVThreadCreateSecureGood
C1ThreadCreate ResourcesAvailable
C2ThreadCreateSecure TaskEmpty
ThreadCreate Qutputs

thread : THREAD

child_thread! = thread

return! = Kern_success

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
192 Thread Requests

— RVThreadCreateSecure ResourceShortage
NotC'1ThreadCreate ResourcesAvailable
C2ThreadCreateSecure TaskEmpty
ThreadCreate Qutputs

return! = Kern_resource_shortage

— RVThreadCreateSecurelnsufficient Permission
NotC2ThreadCreateSecure TaskEmpty
ThreadCreate Qutputs

return! = Kern_insufficient_permission

9.3.5 State Changes

A successful thread_create or thread_create_secure request creates a new thread. The
OSF documentation for this request states that, in addition, a send right to the thread’s kernel
port is given to the containing task. This is not shown explicitly here. We believe that the
existence of a new thread self port is an “implicit” send right, not in the port name space (and
not usable) for the containing task until the thread executes amach_thread_self request.

The creation of a new thread affects much of the state information associated with threads.
We will consider each type of state information individually. We first define the things that
do not change in a successful thread_create or thread_create_secure request. Note that
the port name space of the receiving task on the reply port for this request will change after
the invokable request created by the schema Return is processed, and not immediately upon
completion of this request.

ThreadCreatelInvariants
ThreadInvariants
= PortNameSpace

A new thread is created and added to the list of threads associated with the parent task.

__ThreadCreate TasksAndThreads
A ThreadFErist
A TasksAndThreads
parent_task? : TASK
thread : THREAD

thread ¢ thread_exists

thread_erists' = thread_exists U {thread}
task_thread_rel' = task_thread_rel U {(parent_task?, thread)}

A newly created thread takes its maximum priority to be the lower of the following two priori-
ties:

» the maximum priority of the processor set to which it is assigned, or

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 193

m the Base_user_priority constant.

It takes its priority to be the lower of its parent task’s priority and its own maximum priority.
No other thread'’s priorities change due solely to the creation of this thread.

__ThreadCreate Priority
A ThreadPri
TaskPriority

A ThreadAndProcessorSet
parent_task? : TASK
thread : THREAD

thread € dom thread_assigned_to’
thread_assigned_to' (thread) € dom ps_mazx_priority
parent_task? € dom task_priority

thread_maz_priority’ = thread_maz_priority
U {thread — Lowest_priority({Bs_ma:p_priority(thread_assigned_tol(thread)),
Base_user_priority})}
thread_priority’ = thread_priority
U {thread — Lowest_priority({task_priority(parent_task?),
thread_maz_priority (thread)})} B
dom thread_sched_priority’ = domthread_sched_priority U {thread}
thread_sched_priority C thread_sched_priority’
depressed_threads’ = depressed_threads
priority_before_depression’
= priority_before_depression U {thread — thread_priority'(thread)}

The new thread’s scheduling policy is Timeshare. Since the Timeshare policy does not require
any scheduling policy data, there is no change tothread_sched_policy_data.

_ ThreadCreateSchedPolicy
A ThreadSchedPolicy
thread : THREAD

thread_sched_policy’ = thread_sched_policy U {thread — Timeshare}
thread_sched_policy_data’ = thread_sched_policy_data

The thread is created in a Stopped run state, and it is swapped out. Its suspend count is one
larger than the suspend count of its parent task.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
194 Thread Requests

__ThreadCreate ExecStatus
A ThreadFErecStatus
TaskSuspendCount
thread : THREAD
parent_task? : TASK

parent_task? € dom {ask_suspend_count

run_state’ = run_state U {{hread — {Stopped}}
swapped_threads’ = swapped _threads U {thread}
thread_suspend_count’ = thread_suspend_count

U {thread — task_suspend_count(parent_task?) 4+ 1}
threads_wired’ = threads_wired B

All of the thread’s timing statistics are set to zero.

_ ThreadCreateStatistics
A ThreadStatistics
thread : THREAD

user_time’ = user_time U {thread — 0}
system_time' = system_time U {thread — 0}
cpu_time’ = cpu_time U {thread — 0}
sleep_time’ = sleep_time U {thread — 0}

A new self port is created for the thread. This port is assigned to be the kernel (sself) port as
well. There is no exception port assigned to the thread.

_ ThreadCreateSpecial Ports
A PortEzist
A SpecialThreadPorts
thread : THREAD
port : PORT

port & port_exists

port_exists' = port_exists U {port}
thread_self’ = thread_self U {thread +— port}
thread_sself’ = thread_sself U {thread — port}
thread_eport’ = thread_eport

The thread will be assigned to the processor set to which its parent task is assigned.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 195

__ThreadCreate ThreadAndProcessorSet
A ThreadAndProcessorSet
TaskAndProcessorSet
parent_task? : TASK
thread : THREAD

parent_task? € dom task_assigned to

thread_assignment_rel' = thread_assignment_rel
U {(thread, task_assigned_to(parent_task?))}

enabled_sp’ = enabled_sp B

ps_maz_priority’ = ps_maz_priority

_ ThreadCreateState
A Threads
ThreadCreateInvartants
ThreadCreate TasksAnd Threads
ThreadCreate Priority
ThreadCreateSchedPolicy
ThreadCreate ExecStatus
ThreadCreateStatistics
ThreadCreateSpecialPorts
ThreadCreate Thread AndProcessorSet
A SpecialPurposePorts

For the thread_create_secure request the task creation state of the parent task is changed
to Tes_thread_created. There is no change to the task creation state of the parent task for a
thread_create request.

__ ThreadCreateSecureState
A TaskCreationState
parent_task? : TASK
;pemtionr? : OPERATION

(operation? = Thread_create_secure_id
A task_creation_state’ = task_creation_state
© {parent_task? — Tcs_thread_created})
V (operation? = Thread_create_id
A task_creation_state’ = task_creation_state)

The new port gets a SID based upon the parent task.

__ ThreadCreateDtosState
A PortSid
SubjectSid
port : PORT
parent_task? : TASK

Bort_sid/ = port_sid U{port — Thread_port_sid(Lask_sid(parent_task?))}

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
196 Thread Requests

9.3.6 Complete Request

The following schemas define the general form of the thread_create and thread_create_«—
secure requests.

__Processing ThreadCreate
ProcessThreadViaTaskPortRequestGood

operation? = Thread_create_id

—_ Processing ThreadCreateSecure
ProcessThreadViaTaskPortRequestGood

operation? = Thread_create_secure_id

A successful request makes the state changes described in the previous section and creates a
kernel reply.

ThreadCreate Good =
(RVThreadCreateGood N ThreadCreateState
A ThreadCreateSecureState A ThreadCreate DiosState)
>> ThreadCreate Reply
ThreadCreateSecure Good =
(RVThreadCreateSecure Good A ThreadCreateState
A ThreadCreateSecureState A ThreadCreate DiosState)
>> ThreadCreate Reply

An unsuccessful request returns an error status.

ThreadCreate Bad
= RVThreadCreate ResourceShortage >> RequestNoOp
ThreadCreateSecure Bad
= (RVThreadCreateSecureResourceShortage
V RVThreadCreateSecurelnsufficient Permission)
>> RequestNoOp

Execution of the request consists of a good execution or an error execution.

Frecute ThreadCreate = (ThreadCreate Good V ThreadCreate Bad) \ (port, thread)
Ezecute ThreadCreateSecure
= (ThreadCreateSecure Good V ThreadCreateSecure Bad) \ (port, thread)

The full specification for kernel processing of a validatedthread_create or thread_create_«—
secure request consists of processing the request followed by its execution.

ThreadCreate = Processing ThreadCreate § Execute ThreadCreate
ThreadCreateSecure = Processing ThreadCreateSecure § Execute ThreadCreateSecure

9.4 thread_depress_abort

The request thread_depress_abort restores the original scheduling priority to a thread whose
priority has been set to the lowest possible value by aswtch_pri or thread_switch request.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 197

9.4.1 Client Interface

kern_return_t thread_depress_abort
(mach_port_t thread_name);

9.4.1.1 Input Parameters The following input parameters are provided by the client of a
thread_depress_abort request:

m thread_name? —the client's name for the thread whose priority depression will be canceled

ThreadDepressAbort ClientInputs
Fthread_namerf : NAME

A thread_depress_abort request is invoked by sending a message to the port indicated by
thread_name? that has the operation field set to Thread_depress_abort_id and has no body.

__Invoke ThreadDepressAbort
Invoke MachMsg
ThreadDepressAbort ClientInputs

name? = thread_name?
operation? = Thread_depress_abort_ud

9.4.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread_depress_abort request:

m return! — the status of the request

__ThreadDepressAbort Client Quiputs
return! : KERNEL_RETURN

— ThreadDepressAbort Receive Reply
Invoke MachMsgRev
ThreadDepressAbort ClientOQutputs

return! = Text_to_status(msg_body)

9.4.2 Kernel Interface

9.4.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread_depress_abort request:

m thread? — the thread whose priority depression will be canceled

ThreadDepressAbort Inputs
Fthread? : THREAD

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
198 Thread Requests

9.4.2.2 Output Parameters The following output parameters are returned by the kernel for a
thread_depress_abort request:

m return! — the status of the request

ThreadDepressAbort Outputs
Treturn! : KERNEL_RFETURN

9.4.3 Request Criteria

No criteria are defined for the thread_depress_abort request.

9.4.4 Return Values

Table 20 describes the values returned at the completion of the request and the conditions
under which each value is returned.

return!
Kern_success

Table 20: Return Values for thread_depress_abort

_ RVThreadDepressAbortGood
ThreadDepressAbort Outputs

return! = Kern_success

9.4.5 State Changes

A successful thread_depress_abort request returns the priority of the thread to its value
before the depression. If the priority of the thread is not currently depressed, no changes occur.
Note that the scheduling priority may also change, but since we do not have enough detail in
our model to compute its value we will leave it unspecified.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 199

__ThreadDepressAbortState
A ThreadPri

A Threads

ThreadErist

PortErist
TasksAndThreads
ThreadSchedPolicy
ThreadInstruction
ThreadMachineState
ThreadStatistics
Fuvents
PortNameSpace
Special PurposePorts
Thread AndProcessorSet
ThreadInvartants

thread? : THREAD

[11 [0 [[> [(1] (10 [0 [1] (1] (1]

thread? € dom priority_before_depression

thread_priority’ = thread_priority

@ {thread? — priority_before_depression(thread?)}
thread_maz_priority’ = thread_maz_priority
depressed_threads’ = depressed_threads \ {thread?}
priority_before_depression’ = priority_before_depression

9.4.6 Complete Request

The following schemas define the general form of athread_depress_abort request.

__ Processing ThreadDepressAbort
ProcessThreadViaThreadPortRequestGood

operation? = Thread_depress_abort_ud

A request makes the state changes described in the previous section.

ThreadDepressAbort Good = (RVThreadDepressAbortGood N ThreadDepressAbortState)
>> RequestReturnOnlyStatus

Review Note:
This definition is included only for consistency with other request specifications.

Execution of the request consists of a good execution.

Frecute ThreadDepressAbort = ThreadDepressAbort Good

The full specification for kernel processing of a validated thread_depress_abort request
consists of processing the request followed by its execution.

ThreadDepressAbort = Processing ThreadDepressAbort § Execute ThreadDepressAbort

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
200 Thread Requests

9.5 thread_disable_pc_sampling

The request thread_disable_pc_sampling turns off all sampling for a thread.

9.5.1 Client Interface

kern_return_t thread_disable_pc_sampling
(mach_port_t thread_name,
int *sample_cnt);

Review Note:

The DTOS KID incorrectly includes flavor as an input parameter of thread_disable_pc_sampling.
This parameter is not present in the prototype. The request disables sampling of all types, not for just a
particular type, and therefore there is no need for a flavor parameter.

9.5.1.1 Input Parameters The following input parameters are provided by the client of a
thread_disable_pc_sampling request:

m thread_name? — the client’s name for the thread for which sampling will be turned off

ThreadDisable PCSampling ClientInputs
thread_name? : NAME

Athread_disable_pc_sampling request is invoked by sending a message to the portindicated
by thread_name? that has the operation field set to Thread_disable_pc_sampling_id and has no
body.

—Invoke ThreadDisable PCSampling
Invoke MachMsg
ThreadDisable PCSampling ClientInputs

name? = thread_name?
operation? = Thread_disable_pc_sampling_id

9.5.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread_disable_pc_sampling request:

m return! — the status of the request

m sample_cnt! — the number of sample elements in the kernel for the thread

Editorial Note:

In the prototype this parameter is present, but unused. Thus, its output value will be whatever the
input value is. The parameter should probably not be present at all since with the current semantics
of thread sampling all samples are discarded when sampling is disabled for a thread. To reflect this
we will define this value to be zero.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 201

— ThreadDisable PCSampling Client OQuiputs
return! : KERNEL_RETURN

sample_cnt! : N

— ThreadDisable PCSampling Receive Reply
Invoke MachMsgRev
ThreadDisable PCSampling ClientOQutputs

(sample_cnt!, return!) = Text_to_count_and_status(msg_body)

9.5.2 Kernel Interface

9.5.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread_disable_pc_sampling request:

m thread? — the thread for which sampling will be turned off

ThreadDisable PCSampling Inputs
Fthread? : THREAD

9.5.2.2 Output Parameters The following output parameters are returned by the kernel for a
thread_disable_pc_sampling request:

m return! — the status of the request
m sample_cnt! — the number of sample elements in the kernel for the thread
ThreadDisable PCSampling Outputs

return! : KERNEL_RETURN

sample_cnt! : N

Upon completion of the processing of athread_disable_pc_sampling request a reply message
is built from the output parameters.

_ ThreadDisable PCSampling Reply
RequestReturn
sample_cnt? : N

reply? = Return_sample_cnt(sample_cni?)

9.5.3 Request Criteria

No criteria are defined for the thread_disable_pc_sampling request.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
202 Thread Requests

| sample_cnt! | return! |

| 0 | Kern_success |

Table 21: Return Values for thread_disable_pc_sampling

9.5.4 Return Values

Table 21 describes the values returned at the completion of the request and the conditions
under which each value is returned.

__ RVThreadDisable PCSamplingGood
ThreadDisable PCSampling Outputs

sample_ent! = 0
return! = Kern_success

9.5.5 State Changes

A successful thread_disable_pc_sampling request removes the thread from the set of sam-
pled threads and from the domains of the functions describing sampling. All samples are
discarded.

— ThreadDisable PCSamplingState
A Threads
A ThreadSampling
= ThreadPri
= TasksAndThreads
ThreadSchedPolicy
= ThreadInstruction
= ThreadMachineState
ThreadErecStatus
= Fvents
ThreadErist
Thread AndProcessorSet
= PortEzist
= PortNameSpace
= Spectal Purpose Ports
ThreadInvartants

thread? : THREAD

1

1] [1]

1

[1]

[1]

[1]

sampled_threads’ = sampled_threads \ {thread?}

thread_sample_types’ = {thread?} < thread_sample_types
thread_sample_sequence_number’ = {thread?} < thread_sample_sequence_number
thread_samples’ = {thread?} < thread_samples

9.5.6 Complete Request

The following schemas define the general form of athread_disable_pc_sampling request.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 203

_ Processing ThreadDisable PCSampling
ProcessThreadViaThreadPortRequestGood

operation? = Thread_disable_pc_sampling_id

A request makes the state changes described in the previous section and creates a kernel reply.
ThreadDisable PCSampling Good

= (RVThreadDisable PCSamplingGood N ThreadDisable PCSamplingState)
>> ThreadDisable PCSampling Reply

Execution of the request consists of a good execution.

Frecute ThreadDisable PCSampling = ThreadDisable PCSampling Good

The full specification for kernel processing of a validated thread_disable_pc_sampling re-
guest consists of processing the request followed by its execution.

ThreadDisable PCSampling = Processing Thread Disable PCSampling
s Bzecute ThreadDisable PCSampling

9.6 thread_enable_pc_sampling

The request thread_enable_pc_sampling turns on a given type of sampling for a thread.

9.6.1 Client Interface

kern_return_t thread_enable_pc_sampling

(mach_port_t thread_name,
int *ticks,
sampled_pc_flavor_t flavor);

9.6.1.1 Input Parameters The following input parameters are provided by the client of a
thread_enable_pc_sampling request:

m thread_name? — the client’s name for the thread for which sampling will be turned on
m flavor? — the type of samples to collect
ThreadEnable PCSampling ClientInputs

thread_name? : NAME
flavor? : P SAMPLE_TYPES

Athread_enable_pc_sampling request is invoked by sending a message to the port indicated
by thread_name? that has the operation field set to Thread_enable_pc_sampling_id and has a
body consisting of flavor?.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
204 Thread Requests

__Invoke ThreadEnable PCSampling
Invoke MachMsg
ThreadEnable PCSampling ClientInputs

name? = thread_name?
operation? = Thread_enable_pc_sampling_td
msg_body = Sample_type_set_to_text(flavor?)

9.6.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread_enable_pc_sampling request:

m return! — the status of the request
m ticks! — the clock granularity (ticks per second) according to the kernel
ThreadEnable PCSampling ClientOQutputs

return! : KERNEL_RETURN
ticks! : Ny

__ThreadEnable PCSampling Receive Reply
Invoke MachMsgRev
ThreadEnable PCSampling ClientOQutputs

(ticks!, return!) = Text_to_ticks_and_status(msg_body)

9.6.2 Kernel Interface

9.6.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread_enable_pc_sampling request:

m thread? — the thread for which sampling will be turned on
m flavor? — the type of samples to collect
ThreadEnable PCSampling Inputs

thread? : THREAD
flavor? : P SAMPLE_TYPES

9.6.2.2 Output Parameters The following output parameters are returned by the kernel for a
thread_enable_pc_sampling request:

m return! — the status of the request

m ticks! — the clock granularity (ticks per second) according to the kernel

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 205

ThreadEnable PCSampling Outputs
|7 return! : KERNEL_RETURN

ticks! : Ny

Upon completion of the processing of athread_enable_pc_sampling request a reply message
is built from the output parameters.

— ThreadEnable PCSampling Reply
RequestReturn
ticks? : Ng

reply? = Return_ticks(ticks?)

9.6.3 Request Criteria
The following criteria are defined for the thread_enable_pc_sampling request.

m C1 — There are sufficient resources to create a sampling buffer. We do not ac-
tually model the consumption of resources by the kernel. So, we will use the set
Resources_available_to_create_sampling_buffer to indicate the set of states where there are
sufficient resources to create a sampling buffer.

‘ Resources_available_to_create_sampling_buffer : P DtosEzec

— C1ThreadEnablePCSamplingResourcesAvailable
DtosEzec

6 DtosEzec € Resources_available_to_create_sampling_buffer

NotC1ThreadEnable PCSamplingResourcesAvailable =
DtosEzec N = Cl1ThreadEnablePCSamplingResourcesAvailable

Note that no criterion is defined to check that flavor? is a set of recognized sample types. If an
unrecognized type is included in flavor?, no error will occur. Unrecognized sample types will
simply be ignored and produce no samples.

9.6.4 Return Values

Table 22 describes the values returned at the completion of the request and the conditions
under which each value is returned. The design does not specify the value ofticks! when an
error occurs. It depends on the implementation, and we leave it unspecified.

‘ Ticks_per_second : Ny

Editorial Note:

Even though C1 examines resource availability, the kernel returns Kern_invalid_argument when C1 is
false. In addition the following message is printed to standard output: “thread enable_pc_sampling:
kalloc failed”.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
206 Thread Requests

| ticks! | return! | C1 |

| Ticks_per_second | Kern_success T
| — Kern_invalid_argument | F

Table 22: Return Values for thread_enable_pc_sampling

— RVThreadEnable PCSamplingGood
C1ThreadEnable PCSamplingResourcesAvailable
ThreadEnable PCSampling Outputs

ticks! = Ticks_per_second
return! = Kern_success

— RVThreadEnable PCSamplingResourceShortage
NotC1ThreadEnable PCSamplingResourcesAvailable
ThreadEnable PCSampling Outputs

return! = Kern_invalid_argument

9.6.5 State Changes

A successful thread_enable_pc_sampling request adds the thread to the set of sampled
threads and records the type of samples to be collected. It also sets the sample sequence
number for the thread to zero. If the thread was already being sampled, the flavor is reset, but
the sequence number is unchanged. In this case, any samples currently in the buffer remain
there.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 207

_ ThreadEnable PCSamplingState
A Threads
A ThreadSampling
ThreadPri
TasksAndThreads
ThreadSchedPolicy
ThreadInstruction
ThreadMachineState
ThreadErecStatus
Fuvents
ThreadErist
Thread AndProcessorSet
PortErist
PortNameSpace
= Spectal Purpose Ports
ThreadInvartants
thread? : THREAD
flavor? : P SAMPLE_TYPES

[11 [11 [x] [x] [x] (1] [x] [od [l [od [od

sampled_threads' = sampled_threads U {thread?}
thread_sample_types’ = thread_sample_types ® {thread? — flavor?}
thread_sample_sequence_number’ = {thread? — 0}

@ thread_sample_sequence_number
thread_samples’ = {thread? + ()} @ thread_samples

9.6.6 Complete Request

The following schemas define the general form of athread_enable_pc_sampling request.

__Processing ThreadEnable PCSampling
ProcessThreadViaThreadPortRequestGood

operation? = Thread_enable_pc_sampling_id

A request makes the state changes described in the previous section and creates a kernel reply.

ThreadEnable PCSampling Good
= (RVThreadEnablePCSamplingGood A ThreadEnable PCSamplingState)
>> ThreadEnable PCSampling Reply

An unsuccessful request returns an error status.

ThreadEnable PCSampling Bad
= RVThreadEnable PCSamplingResourceShortage >> RequestNoOp

Execution of the request consists of a good execution or an error execution.

Frecute Thread Enable PCSampling = ThreadEnable PCSampling Good
A ThreadEnable PCSampling Bad

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
208 Thread Requests

The full specification for kernel processing of a validated thread_enable_pc_sampling re-
guest consists of processing the request followed by its execution.

Thread Enable PCSampling = Processing Thread Enable PCSampling
s Bzecute ThreadEnable PCSampling

9.7 thread_get_assignment
The request thread_get_assignment returns a send right to the name port of the processor

set to which a thread is assigned. This port can only be used to obtain information about the
processor set.

9.7.1 Client Interface

kern_return_t thread_get_assignment
(mach_port_t thread_name,
mach_port_t* processor_set_name);

9.7.1.1 Input Parameters The following input parameters are provided by the client of a
thread_get_assignment request:

m thread_name? — the client’s name for the thread whose processor set hame port is re-
guested

ThreadGetAssignment ClientInputs
Tthread_name? : NAME

A thread_get_assignment request is invoked by sending a message to the port indicated by
thread_name? that has the operation field set to Thread_get_assignmeni_id and has no body.

—_Invoke Thread GetAssignment
Invoke MachMsg
ThreadGetAssignment ClientInputs

name? = thread_name?
operation? = Thread_get_assignment_id

9.7.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread_get_assignment request:

m processor_set_name! — a send right to the name port of the desired processor set

m return! — the status of the request

ThreadGetAssignment Client Quiputs
|7processor_set_name! : NAME

return! : KERNEL_RETURN

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 209

_ ThreadGetAssignment Receive Reply
Invoke MachMsgRev
ThreadGetAssignment Client Quiputs

(processor_set_name!, return!) = Text_to_name_and_status(msg_body)

9.7.2 Kernel Interface

9.7.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread_get_assignment request:

m thread? — the thread whose processor set name port is requested

ThreadGetAssignment Inputs
thread? : THREAD

9.7.2.2 Output Parameters The following output parameters are returned by the kernel for a
thread_get_assignment request:

m processor_set! — the desired processor set

m return! — the status of the request

ThreadGetAssignment Outputs
Tprocessor_set! : PROCESSOR_SET

return! : KERNEL_RETURN

Upon completion of the processing of a thread_get_assignment request a reply message is
built from the output parameters.

— ThreadGetAssignment Reply
RequestOnlyObserves
processor_set? : PROCESSOR_SET

let port == ps_name_pori_rel(processor_set?)
e reply? = Return_capability(Thread_port_to_s_right(port))

9.7.3 Request Criteria

No criteria are defined for the thread_get_assignment request.

9.7.4 Return Values

Table 23 describes the values returned at the completion of the request and the conditions
under which each value is returned.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
210 Thread Requests

| processor_set! | return! |

| thread_assigned_to(thread?) | Kern_success |

Table 23: Return Values for thread_get_assignment

— RVThreadGetAssignmentGood
Thread AndProcessorSet
ProcessorsAndPorts
ThreadGetAssignment Outputs
thread? : THREAD

thread? € dom thread_assigned_to

return! = Kern_success
processor_set! = thread_assigned_to(thread?)

9.7.5 State Changes

A thread_get_assignment request does not make any state changes since it only observes
the system state.
9.7.6 Complete Request

The thread_get_assignment request has the following general form.

__Processing ThreadGetAssignment
ProcessThreadViaThreadPortRequestGood

operation? = Thread_get_assignment_id

The full specification for kernel processing of a validated thread_get_assignment request
consists of processing the request, execution of the request, and the creation of a kernel reply.

ThreadGetAssignment = Processing Thread GetAssignment
s (RVThreadGetAssignmentGood >> ThreadGetAssignment Reply)

9.8 thread_get_sampled_pcs

The request thread_get_sampled_pcs returns the samples collected for a given thread.

9.8.1 Client Interface

kern_return_t thread_get_sampled_pcs

(mach_port_t thread_name,

unsigned *segno,

sampled_pc_t sampled_pcs]],

int *sample_cnt);
83-0902024A001 Rev A Secure Computing Corporation

1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 211

9.8.1.1 Input Parameters The following input parameters are provided by the client of a
thread_get_sampled_pcs request:

m thread_name? — the client’s name for the thread whose samples will be returned

m seqno? — the sequence number of the first sample that should be returned. If this sample
is no longer available due to insufficient space in the sampling buffer, the earliest available
sample will be the starting point.

Review Note:

The DTOS KID reports seqno as an output parameter only. In the prototype it is used for both input
and output.

ThreadGetSampled PCs ClientInputs
thread_name? : NAME
seqno? : N

A thread_get_sampled_pcs request is invoked by sending a message to the port indicated
by thread_name? that has the operation field set to Thread_get_sampled_pcs_id and has a body
consisting of segno?.

— Invoke ThreadGetSampled PC's
Invoke MachMsg
ThreadGetSampled PCs ClientInputs

name? = thread_name?
operation? = Thread_get_sampled_pcs_id
msg_body = Sequence_number_to_text(seqno?)

9.8.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread_get_sampled_pcs request:

m return! — the status of the request
m seqno! — the sequence number of the most recently collected sample
m sampled_pcs! — the samples returned

m sample_cnt! — the number of samples returned

_ ThreadGetSampledPCs ClientOutputs
return! : KERNEL_RETURN
segno! : N
sampled_pes! : seq SAMPLE
sample_cnt! : 2

— ThreadGetSampledPC's Receive Reply
Invoke MachMsgRev
ThreadGetSampled PCs Client Outputs

(seqnol, sampled_pes!, sample_cnt!, return!)
= Text_to_seqno_and _PCs_and_count_and_status(msg_body)

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
212 Thread Requests

9.8.2 Kernel Interface

9.8.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread_get_sampled_pcs request:

m thread? — the thread whose samples will be returned

m seqno? — the sequence number of the first sample that should be returned. If this sample
is no longer available due to insufficient space in the sampling buffer, the earliest available
sample will be the starting point.

Review Note:
The DTOS KID reports seqno as an output parameter only. In the prototype it is used for both input
and output.

ThreadGetSampled PCsInputs
thread? : THREAD
seqno? : N

9.8.2.2 Output Parameters The following output parameters are returned by the kernel for a
thread_get_sampled_pcs request:

m return! — the status of the request

m seqno! — the sequence number of the most recently collected sample

m sampled_pcs! — the samples returned

m sample_cnt! — the number of samples returned
ThreadGetSampled PCs Outputs
return! : KERNEL_RETURN
segno! : N

sampled_pes! : seq SAMPLE
sample_cnt! : 2

Upon completion of the processing of athread_get_sampled_pcs request a reply message is
built from the output parameters.

— ThreadGetSampledPCs Reply
RequestOnlyObserves
seqno? : N
sampled_pes? 1 seq SAMPLE
sample_ent? : 2

reply? = Return_samples(seqno?, sampled_pes?, sample_cnt?)

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 213

9.8.3 Request Criteria

The following criteria are defined for the thread_get_sampled_pcs request.

s C1 — Sampling is currently enabled for the thread.

—_ C1ThreadSamplingEnabled
ThreadSampling
thread? : THREAD

thread? € sampled_threads

NotC1ThreadSamplingEnabled
= ThreadSampling A — C1ThreadSamplingEnabled

9.8.4 Return Values

Tables 24-27 describe the values returned at the completion of the request and the conditions
under which each value is returned. The specification does not state what should be returned
in segnol, sampled_pcs! and sample_cnt! when the thread is not being sampled. So, these values
depend on the implementation and we leave them unspecified.

| seqno! | C1 |

’ thread_sample_sequence_number(thread?) | T

| — F

Table 24: Return Values for thread_get_sampled_pcs

| sampled_pcs! | C1 |
Samples_returned(thread_samples(thread?), seqno?, T
thread_sample_sequence_number(thread?))
— F

Table 25: Return Values for thread_get_sampled_pcs

| sample_cnt! | Ci1 |

sampled_pcs! | T
— F

Table 26: Return Values for thread_get_sampled_pcs

The function Samples_returned_count(from, to) returns the number of samples in the range
from to to or the buffer size Maxz_samples, whichever is smaller. A negative return value is
interpreted as zero samples. The function Samples_returned(sample_sequence, from, to) returns
a number of samples as indicated by Samples_returned_count(from, to) from sample_sequence
ending with the sample with sequence number to.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005

214 Thread Requests
| return! | C1 |
Kern_success | T
Kern_failure F

Table 27: Return Values for thread_get_sampled_pcs

Samples_returned : (seq SAMPLE) x N x N -+ seq SAMPLE
Samples_returned_count : (N x N) + 2

YV sample_sequence : seq SAMPLE; from,to : N
o Samples_returned_count(from, to) = min { Maz_samples, to — from + 1}
A Samples_returned(sample_sequence, from, to)
={j :N| to — Samples_returned_count(from, to) < j < to} | sample_sequence

— RVThreadGetSampledPCsGood
C1ThreadSamplingEnabled
ThreadGetSampled PCs Outputs
ThreadGetSampled PCsInputs

seqno! = thread_sample_sequence_number(thread?)

sampled_pes! = Samples_returned(Lhread_samples(thread?),
seqno?, thread_sample_sequence_number(thread?))

sample_cnt! = F#sampled_pcs!

return! = Kern_success

— RVThreadGetSampledPCsBad
NotC1ThreadSamplingEnabled
ThreadGetSampled PCs Outputs
ThreadGetSampled PCsInputs

return! = Kern_failure

9.8.5 State Changes

A thread_get_sampled_pcs request does not make any state changes since it only observes
the system state.

9.8.6 Complete Request

The following schemas define the general form of athread_get_sampled_pcs request.

__Processing ThreadGetSampledPC's
ProcessThreadViaThreadPortRequestGood

operation? = Thread_get_sampled_pcs_id

A successful request creates a kernel reply.

ThreadGetSampledPCs Good = RVThreadGetSampledPCsGood
>> ThreadGetSampledPCs Reply

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 215

An unsuccessful request returns an error status.

ThreadGetSampledPCs Bad = RV ThreadGetSampledPCsBad >> RequestNoOp

Execution of the request consists of a good execution or an error execution.

Frecute ThreadGetSampledPCs = ThreadGetSampledPCs Good NV Thread GetSampled PCs Bad

The full specification for kernel processing of a validated thread_get_sampled_pcs request
consists of processing the request followed by its execution.

ThreadGetSampledPCs = Processing ThreadGetSampled PCs
s Bxecute ThreadGetSampledPC's

9.9 thread_get_special_port

The request thread_get_special_port allows a task to obtain a send right to a specified
special port for a specified thread.

9.9.1 Client Interface

kern_return_t thread_get_special_port

(mach_port_t thread_name,
int which_port,
mach_port_t* special_port_name);

thread_get_exception_port
Macro form

kern_return_t thread_get_exception_port
(mach_port_t thread_name,
mach_port_t* special_port_name);

= thread_get_special_port (thread_name, THREAD_EXCEPTION_PORT,
special_port_name)

thread_get_kernel_port
Macro form

kern_return_t thread_get_kernel_port
(mach_port_t thread_name,
mach_port_t* special_port_name);

= thread_get_special_port (thread_name, THREAD_KERNEL_PORT,
special_port_name)

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005

216 Thread Requests

9.9.1.1 Input Parameters The following input parameters are provided by the client of a
thread_get_special_port request:

m thread_name? — the client’s name for the thread whose special port is to be returned

m which_port? — the type of special port that is to be returned

ThreadGetSpecial Port ClientInputs
thread_name? : NAME
which_port? : THREAD_SPECIAL_PORTS

A thread_get_special_port request is invoked by sending a message to the port indicated

by thread_name? that has the operation field set to Thread_get_special_pori_id and has a body
consisting of which_port?.

— Invoke ThreadGetSpecial Port
Invoke

ThreadGetSpecial Port ClientInputs

trap_1d? = Mach_msg_trap
user_spec?.message.header.operation = Thread_get_special_port_id
user_spec?.message.header.remote_port = thread_name?
user_spec?.message.body
= Thread_special_ports_to_text(which_port?)

9.9.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread_get_special_port request:
m special_port_name! — the name of a send right (capability) for the requested special port

m return! — the status of the request

_ ThreadGetSpecialPort ClientQutputs
spectal_porti_name! : NAME
return! : KERNEL_RETURN

__ ThreadGetSpecial Port Receive Reply
Invoke MachMsgRev
ThreadGetSpecial Port Client Qutputs

(special_port_name!, return!) = Text_to_name_and_status(msg_body)

9.9.2 Kernel Interface

9.9.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread_get_special_port request:

m thread? — the thread whose special port is to be returned

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 217

m which_port? — the type of special port that is to be returned

ThreadGetSpecial Port Inputs
thread? : THREAD
which_port? : THREAD_SPECIAL_PORTS

9.9.2.2 Output Parameters The following output parameters are returned by the kernel for a
thread_get_special_port request:

m special_port! — the requested special port
m return! — the status of the request
ThreadGetSpecial Port OQutputs

special_port! : PORT
return! : KERNEL_RETURN

Upon completion of the processing of a thread_get_special_port request a reply message is
built from the output parameters. The reply message will contain a send right to the requested
special port.

— ThreadGetSpecialPort Reply
OnlyObserves
spectal_port? : PORT

reply? = Return_capability(Thread_port_to_s_right(special_port?))

9.9.3 Request Criteria
The following criteria are defined for the thread_get_special_port request.

s C1 — An exception port request is made.

— C1ThreadGetEzceptionPort
which_port? : THREAD_SPECIAL_PORTS

which_port? = Thread_exception_port

NotC1ThreadGetEzceptionPort = — C1ThreadGetExceptionPort

s C2 — A kernel port request is made.

_ O2ThreadGetKernelPort
which_port? : THREAD_SPECIAL_PORTS

which_port? = Thread_kernel_port

NotC2ThreadGetKernelPort = = C2ThreadGetKernelPort

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
218 Thread Requests

m C3 — The client has Gei_thread_ezception_port permission to the target thread.

Review Note:

In C3 and C4, we've begun the process of dealing with deferred permission checks under the new
execution model. The first schema is used to initiate the permission checking routine and the
criteria schemas will be used after the permission has been retrieved.

— ThreadGetSpecialPortPermCheckGTEP

Transttion

Jrequest : Request; CheckPending; ThreadGetSpecialPortInputs
o curr_bk?? = Bk_have_request(request)
A request.operation = Thread_get_special_port_id
A thread_self (thread?) = request.service_port
A ssi = task_sid(curr_task??)
A osi = thread_target(curr_task??, thread?)
A breaks' = breaks
@1 curr_th?? — Bk_check_pending(ssi, osi, Get_thread_exception_port, env)}

— C3ThreadCanGetEzceptionPort
Transition

env : ENVIRONMENT

curr—bk?? = Bk_have_ruling(Gel_thread_exception_port, True, env)

— NotC3ThreadCanGetEzceptionPort
Transition

env : ENVIRONMENT

curr—bk?? = Bk_have_ruling(Get_thread_exception_port, False, env)

m C4 — The client has Get_thread_kernel_port permission to the target thread.

__ThreadGetSpecialPortPerm CheckGTKP

Transttion

Jrequest : Request; CheckPending; ThreadGetSpecialPortInputs
o curr_bk?? = Bk_have_request(request)
A request.operation = Thread_get_special_port_id
A thread _self (thread?) = request.service_port
A ssi = task_sid(curr_task??)
A osi = thread_target(curr_task??, thread?)
A breaks' = breaks
@1 curr_th?? — Bk_check_pending(ssi, osi, Get_thread_kernel_port, env)}

__C4ThreadCanGetKernelPort
Transttion

env : ENVIRONMENT

curr_bk?? = Bk_have_ruling(Get_thread_kernel_port, True, env)

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 219

_ NotC4ThreadCanGetKernelPort
Transttion

env : ENVIRONMENT

curr—bk?? = Bk_have_ruling(Gel_thread_kernel_port, False, env)

m C5 — The exception port of the thread is defined.

__CbThreadEzceptionPortDefined
Special ThreadPorts
thread? : THREAD

thread? € dom thread_eport

NotCbThreadExceptionPortDefined
= SpecialThreadPorts A = C5Thread FxceptionPortDefined

m C6 — The kernel port of the thread is defined.

—_ C6ThreadKernelPortDefined
Special ThreadPorts
thread? : THREAD

thread? € dom thread_sself

NotC6ThreadKernelPortDefined
= SpecialThreadPorts A = C6ThreadKernelPortDefined

9.9.4 Return Values

Tables 28 and 29 describe the values returned at the completion of the request and the con-
ditions under which each value is returned. Note that C1 and C2 are mutually exclusive. It
is possible that a thread has no exception or kernel (sself) port since the port may have been
deleted. The design does not specify the value of special_port! in this case. We assume that
the null port is returned by the kernel routine, and that IPC will convert this into the name
Mach_port_null. We leave unspecified the value returned in special_port! when the client does
not have permission to get the requested special port or when the client does not ask for a valid
type of special port. Note that C5 and C6 do not affect the return status.

Review Note:

We assume that the prototype will check the conditions in the order {C1, C2 }, {C3 or C4}, {C5 or C6}.
However, the prototype is currently not checking C3 and CA4.

Review Note:

It might make more sense to permit Null_port in the range of thread_eport and thread_sself. (Note that
the exception port is actually initialized to Null_port by the thread_create request in the prototype and
that thread_set_special_port can set an exception or kernel port to Nu{l_port.) This would remove the
need for criteria C5 and C6.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005

220 Thread Requests
| return! | C1 | Cc2 | C3 | C4 |
Kern_success T F T -
Kern_success F T - T
Kern_insufficient _permission | T F F -
Kern_insufficient_permission | F T - F
Kern_invalid_argument F F - -

Table 28: Return Values for thread_get_special_port

| special_port! | C1 | Cc2 | C3 | C4 | C5 | C6 |
thread_eport(thread?) | T FIT - T -
Null_port T F T - F N
thread_sself (thread?) | F | T - T - T
Null_port F T - T - [=
— otherwise

Table 29: Return Values for thread_get_special_port

__RVThreadGetEzceptionPortGood
C1ThreadGetFEzceptionPort
NotC2ThreadGetKernelPort
C3ThreadCanGetEzceptionPort
Cb5ThreadExceptionPortDefined
ThreadGetSpecial Port OQutputs
thread? : THREAD

return! = Kern_success
special_port! = thread_eport(thread?)

__ RVThreadGetEzceptionPortNull
C1ThreadGetFEzceptionPort
NotC2ThreadGetKernelPort
C3ThreadCanGetEzceptionPort
NotCbThreadExceptionPortDefined
ThreadGetSpecial Port OQutputs

return! = Kern_success
spectal_port! = Null_port

__RVThreadGetKernelPortGood
NotC1ThreadGetFEzceptionPort
C2ThreadGetKernelPort
C4ThreadCanGetKernelPort
C6ThreadKernelPortDefined
ThreadGetSpecial Port OQutputs
thread? : THREAD

return! = Kern_success
special_port! = thread_sself (thread?)

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 221

— RVThreadGetKernelPortNull
NotC1ThreadGetFEzceptionPort
C2ThreadGetKernelPort
C4ThreadCanGetKernelPort
NotC6ThreadKernelPortDefined
ThreadGetSpecial Port OQutputs

return! = Kern_success
spectal_port! = Null_port

_ RVThreadCannotGetEzceptionPort
C1ThreadGetFEzceptionPort
NotC2ThreadGetKernelPort
NotC3ThreadCanGetEzceptionPort
ThreadGetSpecial Port OQutputs

return! = Kern_insufficient_permission

__RVThreadCannotGetKernelPort
NotC1ThreadGetFEzceptionPort
C2ThreadGetKernelPort
NotCAThreadCanGetKernelPort
ThreadGetSpecial Port OQutputs

return! = Kern_insufficient_permission

__ RVThreadGetSpecial Portinvalid Argument
NotC1ThreadGetFEzceptionPort
NotC2ThreadGetKernelPort
ThreadGetSpecial Port OQutputs

return! = Kern_invalid_argument

9.9.5 State Changes

A thread_get_special_port request does not make any state changes since it only observes
the system state.

9.9.6 Complete Request

The thread_get_special_port request has the following general form.

— Processing ThreadGetSpecial Port
ProcessThreadViaThreadPortRequestGood

operation? = Thread_get_special_port_id

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
222 Thread Requests

A successful thread_get_special_port request causes the creation of a kernel reply.

ThreadGetSpecial Port Good
= (RVThreadGetExzceptionPortGood v RVThreadGetErceptionPort Null
V RVThreadGetKernelPortGood V RVThreadGetKernelPort Null)
>> ThreadGetSpecial Port Reply

ThreadGetSpecial Port Bad
= (RVThreadCannotGetExceptionPort V RV Thread CannotGetKernelPort
V RVThreadGetSpecial Portinvalid Argument)
> NoOp

Execution of the request consists of a good execution or an error execution.

Frecute ThreadGetSpecialPort = (ThreadGetSpecialPort Good V ThreadGetSpecialPort Bad)

The full specification for kernel processing of a validated thread_get_special_port request
consists of processing the request followed by its execution.

ThreadGetSpecialPort = Processing Thread GetSpecialPort § Execute Thread GetSpecialPort

9.10 thread_get_state

The request thread_get_state returns an array containing state information about a specified
thread (other than the client thread).

9.10.1 Client Interface

kern_return_t thread_get_state

(mach_port_t target_thread_name,
int flavor,
thread_state_t old_state,
mach_msg_type_number_t* old_state_cnt);

9.10.1.1 Input Parameters The following input parameters are provided by the client of a
thread_get_state request:

m targei_thread_name? — the client's name for the thread whose state information is to be
returned

m flavor? — the type of state information that is to be returned

m old_state_cnt? — the maximum size of the array to be returned

ThreadGetState ClientInputs
target_thread_name? : NAME

flavor? : THREAD_STATE_INFO_TYPES
old_state_cnt? - N

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 223

A thread_get_state request is invoked by sending a message to the port indicated by
target_thread_name? that has the operation field set to Thread_get_state_id and has a body
consisting of flavor? and old_state_cnt?.

__Invoke ThreadGetState
Invoke MachMsg
ThreadGetState ClientInputs

name? = target_thread_name?
operation? = Thread_get_state_id
msg_body = Thread_state_info_type_and_number_to_text(flavor?, old_state_cnt?)

9.10.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread_get_state request:

m old_state! — state information of the specified type about the target thread

m old_state_cnt! — the size of the full array of available state information of the type
specified

m return! — the status of the request

__ThreadGetState ClientOutputs
old_state! : THREAD_STATE_INFO
old_state_cnt! : N

return! : KERNEL_RETURN

__ThreadGetState Receive Reply
Invoke MachMsgRev
ThreadGetState ClientOQutputs

(old_state!, old_state_cnt!, return!)
= Text_to_state_and_count_and_status(msg_body)

9.10.2 Kernel Interface

9.10.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread_get_state request:

m targei_thread? — the thread whose state information is to be returned

m flavor? — the type of state information that is to be returned

m old_state_cnt? — the maximum size of the array to be returned
ThreadGetState Inputs
target_thread? : THREAD

flavor? : THREAD_STATE_INFO_TYPES
old_state_cnt? : N

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
224 Thread Requests

9.10.2.2 Output Parameters The following output parameters are returned by the kernel for
a thread_get_state request:

m old_state! — state information of the specified type about the target thread

m old_state_cnt! — the size of the full array of available state information of the type
specified

m return! — the status of the request

ThreadGetState Outputs
old_state! : THREAD_STATE_INFO
old_state_cnt! : N

return! : KERNEL_RETURN

Upon completion of the processing of athread_get_state request a reply message is built from
the output parameters.

—_ThreadGetState Reply
RequestReturn
old_state? : THREAD_STATE_INFO
old_state_ent? @ N

reply? = Return_thread_state_info(old_state?, old_state_cnt?)

9.10.3 Request Criteria

The following criteria are defined for the thread_get_state request.

m C1 — The parameter thread? is not equal to the client thread, flavor? is a valid type of
state information, and old_state_cnt? is large enough for the requested state information.
(The function Thread_state_count returns the size required for the given type of state
information.)

Editorial Note:
Nothing in the design states the reason that the client thread may not get its own state information.

We believe that it is merely an implementation difficulty in that in order to get state information
the thread must be temporarily stopped. If the client thread stopped itself, it could not collect the

state information.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 225

— C1ThreadGetStateGoodArgs
ThreadMachineState
ThreadsAndProcessors
cpu?? : PROCESSOR
thread? : THREAD

flavor? : THREAD_STATE_INFO_TYPES
old_state_cnt? : N

cpu?? € dom active_thread
flavor? € dom Thread_state_count

thread? # active_thread(cpu??)
(thread?, flavor?) € dom thread_state
old_state_cnt? > Thread_state_count(flavor?)

NotC1ThreadGetStateGood Args
= ThreadMachineState A ThreadsAndProcessors A = C1ThreadGetStateGoodArgs

9.10.4 Return Values

Tables 30—32 describe the values returned at the completion of the request and the conditions
under which each value is returned. The design does not specify the values of old_state! and
old_state_cnt! when an error occurs. These values therefore depend on the implementation
algorithm and we leave them unspecified.

| return | C1 I

Kern_success T
Kern_invalid_argument | F

Table 30: Return Values for thread_get_state

| old_state! | C1 |
thread_state(thread?, flavor?) | T
— F

Table 31: Return Values for thread_get_state

’ old_state_cnt! | C1 |
| Thread_state_count(flavor?) | T
| — =

Table 32: Return Values for thread_get_state

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
226 Thread Requests

— RVThreadGetState Good
C1ThreadGetStateGoodArgs
ThreadMachineState
ThreadGetState Outputs

old_state_cnt! = Thread _state_count(flavor?)
old_state! = thread_state(thread?, flavor?)
return! = Kern_success

— RVThreadGetStateInvalid Argument
NotC1ThreadGetStateGood Args
ThreadGetState Outputs

return! = Kern_invalid_argument

9.10.5 State Changes

A successful thread_get_state request gets the state of the thread to the supplied state
information. The run state of the thread may also change since the request must ensure that
the thread is temporarily suspended and then perhaps restart it.

—_ ThreadGetStateState
A Threads
TasksAndThreads
ThreadPri
ThreadSchedPolicy
ThreadInstruction
ThreadErecStatus
ThreadStatistics
ThreadMachineState
Frist
Special PurposePorts
Thread AndProcessorSet
ThreadInvartants
ThreadGetState Inputs
target_thread? : THREAD

[11 [11 [x] [a] [x] [> (a0 [(1] (1]

ThreadDoWaitThenRelease[larget _thread? /stopping_thread]
swapped_threads’ = swapped_threads
idle_threads’ = idle_threads
thread_suspend_count’ = thread_suspend_count
threads_wired = threads_wired

9.10.6 Complete Request

The following schemas define the general form of athread_get_state request.

— Processing ThreadGetState
ProcessThreadViaThreadPortRequestGood

operation? = Thread_get_state_id

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 227

A successful request makes the state changes described in the previous section and creates a
kernel reply.

ThreadGetState Good = (RVThreadGetStateGood N ThreadGetStateState)
>> ThreadGetState Reply

An unsuccessful request returns an error status.

ThreadGetState Bad = RV ThreadGetStateInvalidArgument >> RequestNoOp

Execution of the request consists of a good execution or an error execution.

Ezecute ThreadGetState = ThreadGetState Good V ThreadGetState Bad

The full specification for kernel processing of a validated thread_get_state request consists
of processing the request followed by its execution.

ThreadGetState = Processing ThreadGetState § Execute ThreadGetState

9.11 thread_info

The request thread_info returns a specified type of information about a thread. The two valid
choices for information types are the thread’s execution status and statistics, or its scheduling
parameters.

9.11.1 Client Interface

kern_return_t thread_info

(mach_port_t target_thread_name,
int flavor,
thread_info_t thread_info,
mach_msg_type_number_t* thread_infoCnt);

9.11.1.1 Input Parameters The following input parameters are provided by the client of a
thread_info request:

m targei_thread_name? — the client’'s name for the thread whose information is to be re-
turned

m flavor? — the type of information that is to be returned. The recognized information types
are Thread_basic_info and Thread_sched_info.

m thread_infoCnt? — the maximum amount of return information that can be handled by
the client

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
228 Thread Requests

ThreadInfo ClientInputs
target_thread_name? : NAME
flavor? : THREAD_INFO_TYPE
thread_infoCnt? - N

A thread_info request is invoked by sending a message to the port indicated by
target_thread_name? that has the operation field set to Thread_info_id and has a body con-
sisting of flavor? and thread _infoCnt?.

—_Invoke ThreadInfo
Invoke MachMsg
ThreadInfo ClientInputs

name? = target_thread_name?
operation? = Thread_info_id
msg_body = Thread_info_type_and_count_to_text(flavor?, thread_infoCni?)

9.11.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread_info request:

m return! — the status of the request

m thread_info! — the information about the target thread

m thread_infoCnt! — the size of the information returned in thread_info!

— ThreadInfo ClientOQutputs
return! : KERNEL_RETURN

thread_info! : THREAD_INFO
thread_infoCnt! : N

__Threadlnfo ReceiveReply
Invoke MachMsgRev
ThreadInfo ClientOQutputs

(thread_info!, thread_infoCnt!, return!)
= Text_to_info_and_couni_and_status(msg_body)

9.11.2 Kernel Interface

9.11.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread_info request:

m targei_thread? — the thread whose information is to be returned

m flavor? — the type of information that is to be returned. The recognized information types
are Thread_basic_info and Thread_sched_info.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 229

m thread_infoCnt? — the maximum amount of return information that can be handled by
the client

ThreadInfoInputs
target_thread? : THREAD
flavor? : THREAD_INFO_TYPE
thread_infoCnt? - N

9.11.2.2 Output Parameters The following output parameters are returned by the kernel for
a thread_info request:

m return! — the status of the request

m thread_info! — the information about the target thread

m thread_infoCnt! — the size of the information returned in thread_info!
ThreadInfo Outputs
return! : KERNEL_RETURN

thread_info! : THREAD_INFO
thread_infoCnt! : N

Upon completion of the processing of a thread_info request a reply message is built from the
output parameters.

_ Threadlnfo Reply
RequestOnlyObserves
thread_info? : THREAD_INFO
thread_infoCnt? - N

reply? = Return_thread_info(thread_info?, thread_infoCni?)

The information returned for Thread_basic_info is comprised of the following items:

m user_time_value — the total user run time for the thread

m system_time_value — the total system run time for the thread

m cpu_time_value — the cpu time used for the thread

m thread_base_priority_value — the base user-setable priority for the thread

m thread_sched_priority_value — the priority value used by the system to make scheduling
decisions. This is calculated by the system based on the thread_base_priority_value, the
scheduling policy for the thread, and other system conditions.

m run_state_value — a set which either contains one of the values Running, Stopped, Waiting,
Uninterruptible, and Halted, or is empty

m flags — a set which either contains one of the values Thread_flags_swapped oOr
Thread_flags_idle, or is empty

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
230 Thread Requests

m thread_suspend_count_value — a thread may execute user level instructions only if this
value is zero

m sleep_time_value — the amount of time for which a thread has been sleeping

THREAD_FLAGS ::= Thread_flags_swapped | Thread_flags_idle

—_ ThreadBasicInfo
user_time_value : N
system_time_value : N
cpu_time_value : N
thread_base_priority_value : 2
thread_sched_priority_value : 2
run_state_value : P RUN_STATES
flags : P THREAD_FLAGS
thread_suspend_count_value : N
sleep_time_value : N

Frun_state_value < 1
#llags <1

The information returned for Thread_sched_info is comprised of the following items:

m thread_policy_value — the scheduling policy in force for the thread

m thread_sched_policy_data_value — policy-specific data that may influence the functioning
of the policy in force

m thread_base_priority_value — see above

m thread_max_priority_value — the highest priority to which thread_base_priority_value can
be set

m thread_sched_priorily_value — see above

m depressed_indicator_value — equal to True if the thread’s scheduling priority is currently
depressed to the lowest possible value, and equal to False otherwise. Priority depression
is accomplished via thread_switch or swtch_pri.

m priority_before_depression_value — if the thread’s scheduling priority is currently de-
pressed, the scheduling priority of the thread before it was depressed; otherwise, equal to
thread_base_priority_value

— ThreadSchedInfo
thread_policy_value : SCHED_POLICY

thread_sched _policy_data_value : SCHED_POLICY _DATA
thread_base_priority_value : 2

thread_maxz_priority_value : 2

thread_sched_priority_value : 2

depressed_indicator_value : BOOLEAN
priority_before_depression_value : 2

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 231

The actual space required for each type of thread information is represented by the constants
Thread_basic_info_count and Thread_sched_info_count.

Thread_basic_info_count : N
Thread_sched_info_count : N

9.11.3 Request Criteria
The following criteria are defined for the thread_info request.

s C1 — Basic information (i.e., execution statistics, status and priorities) is requested, and
the client has provided enough space to hold the information.

— C1BasicInfo
flavor? : THREAD_INFO_TYPE
thread_infoCnt? : N

flavor? = Thread_basic_info
thread_infoCnt? > Thread_basic_info_count

NotC'1BasicInfo = — C1Basiclnfo

s C2 — Scheduling information (i.e., priorities and policies) is requested, and the client has
provided enough space to hold the information.

__(C2SchedInfo
flavor? : THREAD_INFO_TYPE
thread_infoCnt? : N

flavor? = Thread_sched_info
thread_infoCnt? > Thread_sched_info_count

NotC2S5chedInfo = — C'2SchedInfo

9.11.4 Return Values

Tables 33—-35 describe the values returned at the completion of the request and the conditions
under which each value is returned. The specification does not state what should be returned
in thread_infoCnt! and thread_info! when there is an error. These values depend in the im-
plementation, and we leave them unspecified. Note that C1 and C2 cannot simultaneously be
true.

| thread_infoCnt! | C1 | Cc2 |

Thread_basic_info_count | T F
Thread_sched_info_count | F T
— F F

Table 33: Return Values for thread_info

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
232 Thread Requests

| thread_info! |C1]C2|
Format_basic_info(basic_info) T F
Format_sched_info(sched_info) | F | T

— F F

Table 34: Return Values for thread_info

| return! | C1 | C2 ’
Kern_success T F
Kern_success F T
Kern_invalid_argument | F F

Table 35: Return Values for thread_info

Each of the two types of information must be reformatted into thread_info! to be returned. This
formatting is represented by the functions Formai_basic_info and Format_sched_info.

Format_basic_info : ThreadBasicInfo — THREAD_INFO
Format_sched_info : ThreadSchedInfo — THREAD_INFO

The kernel maintains for each thread a set of run states drawn from the valuesHalted, Running,
Uninterruptible, Stopped and Waiting. At most one of these values is returned with the basic
information. The value selected is the first one in the above list that is in the run state of
the thread. In the event the run state set is empty, an empty set is returned. The function
Primary_run_state represents this mapping from internal run state to basic information.

Similarly, the kernel will only return one of the flags Thread_flags_swapped or Thread_flags_idle.
If thread? is in swapped_threads, then Thread_flags_swapped is always returned regardless of the
value of idle_threads.

Primary_run_state : P RUN_STATES — P RUN_STATES
Run_state_order : seq RUN_STATES

Run_state_order = (Halted, Running, Uninterruptible, Stopped, Waiting)

Vr:PRUN_STATES
e Primary_run_state(r) = (Run_state_order | r)({1})

Review Note:
It is important to take the relational image under {1} rather than taking the head of the sequence since
the sequence might be empty.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 233

— RVThreadBasicInfo
ThreadStatistics
ThreadPri
ThreadFErecStatus
C'1BasicInfo
Not(C2SchedInfo
ThreadInfo Outputs
thread? : THREAD

(3 basic_info : ThreadBasicInfo
e basic_info.user_time_value = user_time(thread?)
A basic_info.system_time_value = system_time(thread?)
A basic_info.cpu_time_value = cpu_time(thread?)
A basic_info.thread _base_priority_value = thread_priority(thread?)
A basic_info.thread _sched_priority_value = thread_sched_priority(thread?)
A basic_info.run_state_value = Primary_run_state(run_state(thread?))
A basic_info.flags = if thread? € swapped_threads
then { Thread_flags_swapped }
else (if thread? € idle_threads
then { Thread_flags_idle}
else @)
A basic_info.thread _suspend_count_value = thread _suspend_count(thread?)
A basic_info.sleep_time_value = sleep_time(thread?)
A thread _info! = Format_basic_info(basic_info))

thread_infoCnt! = Thread_basic_info_count
return! = Kern_success

— RVThreadSchedInfo
ThreadPri
ThreadSchedPolicy
NotC'1BasicInfo
C2Schedlnfo
ThreadInfo Outputs
thread? : THREAD

(I sched_info : ThreadSchedInfo
e sched_info.thread_policy_value = thread_sched_policy(thread?)
A sched_info.thread_sched _policy_data_value
= thread_sched_policy_data(thread?)
A sched_info.thread_base_priority_value = thread_priority(thread?)
A sched_info.thread_maz_priority_value = thread_maz_priority(thread?)
A sched_info.thread_sched _priority_value = thread_sched _priority(thread?)
A sched_info.depressed_indicator_value = if thread? € depressed_threads
then True
else False
A sched_info.priority_before_depression_value = priority_before_depression(thread?)
A thread_info! = Format_sched_info(sched_info))_

thread_infoCnt! = Thread_sched_info_count
return! = Kern_success

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
234 Thread Requests

— RVThreadInfoBad
NotC'1BasicInfo
Not(C2SchedInfo
ThreadInfo Outputs

return! = Kern_invalid_argument

9.11.5 State Changes

A thread_info request does not make any state changes since it only observes the system
state.

9.11.6 Complete Request

The following schemas define the general form of athread_info request.

__ Processing ThreadInfo
ProcessThreadViaThreadPortRequestGood

operation? = Thread_info_id

A successful request creates a kernel reply.

ThreadInfo Good = (RV ThreadBasicInfo V RV ThreadSchedInfo)
>> Threadlnfo Reply

An unsuccessful request returns an error status.

ThreadInfo Bad = RV ThreadInfoBad >> RequestNoOp

Execution of the request consists of a good execution or an error execution.

Frecute ThreadInfo = ThreadInfo Good v ThreadInfo Bad

The full specification for kernel processing of a validated thread_info request consists of
processing the request followed by its execution.

ThreadInfo = Processing ThreadInfo 5 Execute ThreadInfo

9.12 thread_max_priority

The request thread_max_priority sets the maximum scheduling priority of a specified thread.
This value limits the value to which the user can set the priority of the thread (usingthread_«—
priority). Since the client thread must have access to the control port of the processor set to
which the thread is assigned, the request may set the maximum priority to any legal value
including one that is higher than the current value. This contrasts withthread_priority
which does not require control port access and can only lower the maximum priority.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 235

9.12.1 Client Interface

kern_return_t thread_max_priority

(mach_port_t thread_name,
mach_port_t processor_set_name,
int priority);

9.12.1.1 Input Parameters The following input parameters are provided by the client of a
thread_max_priority request:

m thread_name? — the client’'s name for the the thread whose maximum priority is to be set

m processor_set_name? — the client’'s name for the control port of the processor set to which
the target thread is currently assigned

m priority? — the desired maximum priority

ThreadMazPriority ClientInputs
thread_name? : NAME
processor_set_name? : NAME
priority? : 2

A thread_max_priority request is invoked by sending a message to the port indicated by
thread_name? that has the operation field set to Thread_max_priority_id and has a body con-
sisting of processor_set_name? and priority?.

__Invoke ThreadMaxPriority
Invoke MachMsg
ThreadMazPriority ClientInputs

name? = thread_name?
operation? = Thread_maz_priority_id
msg_body = Name_and_number_to_text(processor_set_name?, priority?)

9.12.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread_max_priority request:

m return! — the status of the request

ThreadMazPriority ClientQutputs
F return! : KERNEL_RETURN

— ThreadMazPriority Receive Reply
Invoke MachMsgRev
ThreadMazPriority ClientQutputs

return! = Text_to_status(msg_body)

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
236 Thread Requests

9.12.2 Kernel Interface

9.12.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread_max_priority request:

m thread? — the thread whose maximum priority is to be set
m processor—_set? — the processor set to which the target thread is currently assigned
m priority? — the desired maximum priority
ThreadMazxPriority Inputs
thread? : THREAD

processor_set? : PROCESSOR_SET
priority? : 2

9.12.2.2 Output Parameters The following output parameters are returned by the kernel for
a thread_max_priority request:

m return! — the status of the request

ThreadMazPriority Outputs
Treturn! : KERNEL_RETURN

9.12.3 Request Criteria

The following criteria are defined for the thread_max_priority request.

Review Note:

It is assumed here that the existence of processor_set? has been verified by the IPC processing of the
request. However, since an arbitrary time delay might occur between the IPC processing and the kernel
request processing, we should probably have an additional check here that theprocessor_set? still exists.

m C1 — The parameter priority? is a valid priority level.

— C1ThreadMazPriority ValidArguments
priority? : 2

priority? € Priority_levels

NotC1ThreadMazPriority ValidArguments
= = C1ThreadMazPriority ValidArguments

m C2 — The parameter processor_set? is the processor set to which thread? is assigned.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 237

— C2ThreadMazPriorityAssigned ProcessorSet
ThreadAndProcessorSet
thread? : THREAD
processor_set? : PROCESSOR_SET

(thread?, processor_set?) € thread_assigned_to

NotC2ThreadMazPriorityAssigned ProcessorSet
= ThreadAndProcessorSet A — C2ThreadMazPriorityAssigned ProcessorSet

9.12.4 Return Values

Table 36 describes the values returned at the completion of the request and the conditions
under which each value is returned. In the case where both C1 and C2 are false, we assume
Kern_invalid_argument is returned.

Review Note:
The prototype checks the conditions in the order C1, C2.

| return! | C1 | Cc2 |
Kern_success T T
Kern_failure T F
Kern_invalid_argument | F -

Table 36: Return Values for thread_max_priority

— RVThreadMazPriorityGood
C1ThreadMazPriority ValidArguments
C2ThreadMazPriorityAssigned ProcessorSet
ThreadMazPriority Outputs

return! = Kern_success

__ RVThreadMazPriorityWrongProcessorSet
C1ThreadMazPriority ValidArguments
NotC2ThreadMazPriorityAssigned ProcessorSet
ThreadMazPriority Outputs

return! = Kern_failure

— RVThreadMazPriorityInvalid Argument
NotC1ThreadMazPriority ValidArguments
ThreadMazPriority Outputs

return! = Kern_invalid_argument

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
238 Thread Requests

9.12.5 State Changes

A successful thread_max_priority request sets the maximum priority of the thread as re-
guested. If the thread's priority is higher than this new maximum value, it is reset to the
new maximum value. If the thread is currently depressed and if its priority before depres-
sion is higher than the new maximum, then the priority before depression is reset to the new
maximum value. In this way the modification of thread_maxz_priority will be reflected in the
priority of the thread when its priority depression is removed. Note that if the thread is cur-
rently depressed thread_priority(thread?) will be equal to the lowest possible priority. Thus,
Lowest_priority{thread_priority(thread?), priority? } } = thread_priority(thread?) and no change is
made to thread_priority. The thread’s current scheduling priority may or may not change as a
result of this request, so we state no constraint on the value ofthread _sched_priority.

— ThreadMazPriorityState
A Threads
TasksAndThreads
ThreadPri
ThreadSchedPolicy
ThreadInstruction
ThreadErecStatus
ThreadStatistics
ThreadMachineState
Frist
Special PurposePorts
Thread AndProcessorSet
ThreadInvartants
thread? : THREAD
priority? : 2

[11 [11 [x] [a] [x] [0 a0 [o s [0

depressed_threads’ = depressed_threads
thread_maz_priority’ = thread_maz_priority ® {thread? — priority?}
priority_before_depression’ = if thread? € depressed_threads
~ then priority_before_depression & {thread?
»—TLowest_priority{pMority_before_depression(thread?), priority?}}
else priority_before_depression & {thread? — thread_priority (thread?)}
Lhread_pm'_om'ty/ = thread_priority
@ {thread? — Lowest_priority{thread_priority(thread?), priority?}}

9.12.6 Complete Request

The following schemas define the general form of athread_max_priority request.

— Processing Thread Max Priority
ProcessThreadViaThreadPortRequestGood

operation? = Thread_maz_priority_id

A successful request makes the state changes described in the previous section.

ThreadMazPriority Good = (RVThreadMazPriorityGood A Thread MaxPriorityState)
>> RequestReturnOnlyStatus

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 239

An unsuccessful request returns an error status.
ThreadMazxPriority Bad

= (RVThreadMaxPriorityWrongProcessorSet V RV Thread MazPriorityInvalidArgument)
>> RequestNoOp

Execution of the request consists of a good execution or an error execution.

Erecute Thread MaxPriority
= ThreadMazPriority Good V ThreadMazPriority Bad

The full specification for kernel processing of a validated thread _max_priority request con-
sists of processing the request followed by its execution.

ThreadMazPriority = Processing Thread MazPriority § Execute Thread MazPriority

9.13 thread_policy

The request thread_policy sets the scheduling policy for a specified thread. This value is
used by the system (together with the thread priority and current conditions) to determine the
current scheduling priority of the thread.

9.13.1 Client Interface

kern_return_t thread_policy

(mach_port_t thread_name,
int policy,
int data);

9.13.1.1 Input Parameters The following input parameters are provided by the client of a
thread_policy request:

m thread_name? — the client’s name for the thread whose scheduling policy is to be set

m policy? — the desired scheduling policy

m data? — policy specific data which may influence the operation of the scheduling policy
ThreadPolicy ClientInputs
thread_name? : NAME

policy? : SCHED_POLICY
data? : SCHED_POLICY _DATA

Athread_policy request is invoked by sending a message to the port indicated bythread _name?
that has the operation field set to Thread_policy_:d and has a body consisting of policy? and data?.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
240 Thread Requests

__Invoke ThreadPolicy
Invoke MachMsg
ThreadPolicy ClientInputs

name? = thread_name?
operation? = Thread_policy_id
msg_body = Policy_and_data_to_text(policy?, data?)

9.13.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread_policy request:

m return! — the status of the request

_ ThreadPolicy ClientQutputs
return! : KERNEL_RETURN

__ThreadPolicy Receive Reply
Invoke MachMsgRev
ThreadPolicy ClientOQutputs

return! = Text_to_status(msg_body)

9.13.2 Kernel Interface

9.13.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread_policy request:

m thread? — the thread whose scheduling policy is to be set

m policy? — the desired scheduling policy

m data? — policy specific data which may influence the operation of the scheduling policy
ThreadPolicyInputs
thread? : THREAD

policy? : SCHED_POLICY
data? : SCHED_POLICY _DATA

9.13.2.2 Output Parameters The following output parameters are returned by the kernel for
a thread_policy request:

m return! — the status of the request

ThreadPolicy Qutputs
Freturn! : KERNEL_RFETURN

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 241

9.13.3 Request Criteria

The following criteria are defined for the thread_policy request.

m C1 — The parameter policy? is an existing policy.

— C1ThreadPolicyValidPolicy
ThreadSchedPolicy
policy? : SCHED_POLICY

policy? € supported_sp

NotC1ThreadPolicyValidPolicy = ThreadSchedPolicy A = C1ThreadPolicyValidPolicy

m C2 —The parameter policy? is a permitted scheduling policy for the processor set to which
thread? is assigned.

— C2ThreadPolicyProcessorSet Permits
ThreadAndProcessorSet
thread? : THREAD
policy? : SCHED_POLICY

thread? € dom thread_assigned_to
thread_assigned_to(thread?) € dom enabled_sp

policy? € enabled_sp(thread_assigned_to(thread?))

NotC2ThreadPolicyProcessorSetPermits = Thread AndProcessorSet
A = C2ThreadPolicyProcessorSet Permits

9.13.4 Return Values

Table 37 describes the values returned at the completion of the request and the conditions
under which each value is returned. In the case where both C1 and C2 are false, we assume
Kern_invalid_argument is returned.

Review Note:
The prototype checks the conditions in the order C1, C2.

| return! | C1 | Cc2 |
Kern_success T T
Kern_failure T F
Kern_invalid_argument | F -

Table 37: Return Values for thread_policy

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

242

CDRL A005
Thread Requests

— RVThreadPolicyGood
C1ThreadPolicyValidPolicy
C2ThreadPolicyProcessorSet Permits
ThreadPolicy Qutputs

return! = Kern_success

__RVThreadPolicyNotPermitted
C1ThreadPolicyValidPolicy
NotC2ThreadPolicyProcessorSet Permits
ThreadPolicy Qutputs

return! = Kern_failure

__RVThreadPolicylnvalidPolicy
NotC1ThreadPolicyValidPolicy
ThreadPolicy Qutputs

return! = Kern_invalid_argument

9.13.5 State Changes

A successful thread_policy request sets the target thread’s policy and policy specific data as
requested.

__ThreadPolicyNewPolicy
A ThreadSchedPolicy
thread? : THREAD
policy? : SCHED_POLICY
data? : SCHED_POLICY _DATA

thread_sched_policy’ = thread_sched_policy @ {thread? — policy?}
thread_sched_policy_data’ = thread_sched_policy_data
@ { thread? — data? }
supported_sp’ = supported_sp

The priority and maximum priority of the thread are not modified. However, the thread's
current scheduling priority may or may not change as a result of this request, so we state no
constraint on the value of thread_sched_priority.

__ThreadPolicyPriority
A ThreadPri

thread_priority’ = thread_priority
thread_maz_priority’ = thread_maz_priority
depressed_threads’ = depressed_threads
priority_before_depression’ = priority_before_depression

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 243

— ThreadPolicyState
ThreadPolicyNewPolicy
ThreadPolicyPriority

A Threads
TasksAndThreads
ThreadInstruction
ThreadErecStatus
ThreadStatistics
ThreadMachineState
Frist

Special PurposePorts
Thread AndProcessorSet
ThreadInvartants

[11 [x1 [1] [x] 1] [x] (1] (1]

9.13.6 Complete Request

The following schema defines the general form of thread_policy.

__ Processing ThreadPolicy
ProcessThreadViaThreadPortRequestGood

operation? = Thread_policy—_id

A successful request makes the state changes described in the previous section and creates a
kernel reply.

ThreadPolicy Good = (RVThreadPolicyGood N ThreadPolicyState)
>> RequestReturnOnlyStatus

An unsuccessful request returns an error status.

ThreadPolicy Bad
= (RVThreadPolicyNotPermitted V RV ThreadPolicyInvalidPolicy)
>> RequestNoOp

Execution of the request consists of a good execution or an error execution.

Erecute ThreadPolicy
= ThreadPolicy Good vV ThreadPolicy Bad

The full specification for kernel processing of a validated thread_policy request consists of
processing the request followed by its execution.

ThreadPolicy = Processing ThreadPolicy § Fvecute ThreadPolicy

9.14 thread_priority

The request thread_priority sets the priority of a specified thread. This priority is used by the
system (together with the thread scheduling policy and current conditions) to determine the

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
244 Thread Requests

current scheduling priority of the thread used when scheduling threads to run. If the priority
of the thread is currently depressed, the priority before depression will be reset instead so that
this request will take effect when the priority depression is aborted. Optionally, the request
may also lower the thread maximum priority, which limits the value of the priority. The request
thread_max_priority also changes the priority and maximum priority. However,thread_«—
max_priority requires access to the control port of the processor set to which the thread is
assigned, and it may raise the maximum priority.

9.14.1 Client Interface

kern_return_t thread_priority

(mach_port_t thread_name,
int priority,
boolean_t set_max);

9.14.1.1 Input Parameters The following input parameters are provided by the client of a
thread_priority request:

m thread_name? — the client’s name for the thread whose priority is to be set
m priority? — the desired priority

m set_maz? — a boolean parameter equal to True if the thread’s maximum priority value
should also be set (lowered) to priority?

ThreadPriority ClientInputs
thread_name? : NAME
priority? : 2

set_maz? : BOOLEAN

A thread_priority request is invoked by sending a message to the port indicated by
thread_name? that has the operation field set to Thread_priority_id and has a body consist-
ing of priority? and sei_maz?.

__Invoke ThreadPriority
Invoke MachMsg
ThreadPriority ClientInputs

name? = thread_name?
operation? = Thread_priority_id
msg—body = Number_and_boolean_to_text(priority?, set_maz?)

9.14.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread_priority request:

m return! — the status of the request

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 245

_ThreadPriority ClientQuiputs
return! : KERNEL_RETURN

_ ThreadPriority Receive Reply
Invoke MachMsgRev
Thread Priority ClientOQutputs

return! = Text_to_status(msg_body)

9.14.2 Kernel Interface

9.14.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread_priority request:

m thread? — the thread whose priority is to be set
m priority? — the desired priority

m set_maz? — a boolean parameter equal to True if the thread’s maximum priority value
should also be set to priority?

ThreadPriorityInputs
thread? : THREAD
priority? : 2
set_maz? : BOOLEAN

9.14.2.2 Output Parameters The following output parameters are returned by the kernel for
a thread_priority request:

m return! — the status of the request

ThreadPriority Outputs
Treturn! : KERNEL_RETURN

9.14.3 Request Criteria
The following criteria are defined for the thread_priority request.

m C1 — The parameter priority? is a valid priority level.

— C1ThreadPriority Valid Priority
priority? : 2

priority? € Priority_levels

NotC'1ThreadPriority Valid Priority
= = C1ThreadPriority Valid Priority

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
246 Thread Requests

m C2 — The new priority is no higher than the maximum priority forthread?.

— C2ThreadPriorityAllowed Priority
ThreadPri
thread? : THREAD
priority? : 2

(priority?, thread_maz_priority(thread?)) ¢ Higher_priority

Not(C2Thread PriorityAllowed Priority
= ThreadPri A — C2Thread PriorityAllowed Priority

9.14.4 Return Values

Table 38 describes the values returned at the completion of the request and the conditions
under which each value is returned. In the case where both C1 and C2 are false we assume
Kern_invalid_argument is returned.

Review Note:
The prototype checks the conditions in the order C1, C2.

| return! | C1 | Cc2 |
Kern_success T T
Kern_failure T F
Kern_invalid_argument | F -

Table 38: Return Values for thread_priority

__RVThreadPriorityGood
C1ThreadPriority Valid Priority
C2ThreadPriorityAllowed Priority
ThreadPriority Outputs

return! = Kern_success

— RVThreadPriorityPriorityToo High
C1ThreadPriority Valid Priority
NotC2ThreadPriorityAllowed Priority
ThreadPriority Outputs

return! = Kern_failure

— RVThreadPriorityInvalid Priority
NotC'1ThreadPriority Valid Priority
ThreadPriority Outputs

return! = Kern_invalid_argument

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS

9.14.5

A successful thread_priority request makes the following changes to the system state.
The priority_before_depression for the thread is reset to priority?.
not currently depressed, thread_priority for the thread is also reset to priority?. Otherwise,
thread_priority does not change. In addition, if set_maz? is True, the thread_max_priority for
the thread will also be reset to priority?. Note that the thread’s current scheduling priority
may not change as a result of this request, so we state no constraint on the value of

may or

State Changes

thread_sched_priority.

ThreadPrioritylnvariants

If the thread priority is

ThreadInvartants
TasksAndThreads
ThreadSchedPolicy
ThreadInstruction
ThreadErecStatus
ThreadStatistics
ThreadMachineState
Frist

Special PurposePorts
Thread AndProcessorSet

[11 [11 [1] [x] [x] [x] [a] [a] [xd

Thread PriorityState

A Threads

A ThreadPri
ThreadPrioritylnvariants
thread? : THREAD
priority? : 2

set_maz? : BOOLEAN

depressed_threads’ = depressed_threads

thread_priority’ = if thread? € depressed_threads
then thread_priority
else thread_priority @ {thread? — priorily?}
priority_before_depression’ = priority_before_depression
@ {thread? — priority?}
thread_maz_priority’ = if set_maz? = True
then thread_maxz_priority ® {thread? — priority?}
else thread _maz_priority

9.14.6

The following schemas define the general form of athread_priority request.

Complete Request

Processing Thread Priority

ProcessThreadViaThreadPortRequestGood

operation? = Thread_priority_id

Secure Computing Corporation
CAGE Code OHDC7

83-0902024A001 Rev A
1.21, 4 December 1996

CDRL A005
248 Thread Requests

A successful request makes the state changes described in the previous section, and creates a
kernel reply.

Thread Priority Good = (RVThreadPriorityGood A ThreadPriorityState)
>> RequestReturnOnlyStatus

An unsuccessful request returns an error status.

ThreadPriority Bad
= (RVThreadPriority Priority Too High V' RV Thread PriorityInvalid Priority)
>> RequestNoOp

Execution of the request consists of a good execution or an error execution.

FErecute ThreadPriority
= ThreadPriority Good V¥ ThreadPriority Bad

The full specification for kernel processing of a validated thread_priority request consists of
processing the request followed by its execution.

ThreadPriority = Processing ThreadPriority § Fxecute Thread Priority

9.15 thread_resume and thread_resume_secure

The requests thread_resume and thread_resume_secure decrement the suspend count of
a thread by 1. They may impact the thread’s run states as a result. Thethread_resume_—
secure request (which is used in the secure initiation of threads within a task) expects the
parent task to have task creation state 7'cs_thread_state_set (See Section 5.7). It modifies the
state to T'cs_task_ready.

9.15.1 Client Interface

kern_return_t thread_resume
(mach_port_t target_thread_name);

kern_return_t thread_resume_secure
(mach_port_t target_thread_name);

9.15.1.1 Input Parameters The following input parameters are provided by the client of a
thread_resume or thread_resume_secure request:

m targei_thread_name? — the client’s name for the thread that is to be resumed

ThreadResume ClientInputs
target_thread_name? : NAME

A thread_resume request is invoked by sending a message to the port indicated by
target_thread_name? that has the operation field set to Thread_resume_id and has no body.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 249

— Invoke Thread Resume
Invoke MachMsg
ThreadResume ClientInputs

name? = target_thread_name?
operation? = Thread_resume_id

A thread_resume_secure request is invoked by sending a message to the port indicated by
target_thread_name? that has the operation field set to Thread_resume_secure_id and has no
body.

__Invoke Thread ResumeSecure
Invoke MachMsg
ThreadResume ClientInputs

name? = target_thread_name?
operation? = Thread_resume_secure_td

9.15.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread_resume or thread_resume_secure request:

m return! — the status of the request

__ ThreadResume ClientQutputs
return! : KERNEL_RETURN

— ThreadResume Receive Reply
Invoke MachMsgRev
ThreadResume ClientOQutputs

return! = Text_to_status(msg_body)

9.15.2 Kernel Interface

9.15.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread_resume or thread_resume_secure request:

m targei_thread? — the thread that is to be resumed

ThreadResume Inputs
target_thread? : THREAD

9.15.2.2 Output Parameters The following output parameters are returned by the kernel for
a thread_resume or thread_resume_secure request:

m return! — the status of the request

ThreadResume Qutputs
Freturn! : KERNEL_RFETURN

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
250 Thread Requests

9.15.3 Request Criteria

The following criteria are defined for the thread_resume and thread_resume_secure re-
quests.

s C1 — The suspend count of the target thread is positive.

— C1ThreadResumeSuspendCountPositive
ThreadFrecStatus
target_thread? : THREAD

target_thread? € dom thread_suspend_count

thread_suspend_count(target_thread?) > 0

NotC1Thread ResumeSuspend CountPositive =
ThreadFErecStatus A = C'1 Thread ResumeSuspendCount Positive

m C2 — The task creation state of the target thread's owning task must be
Tes_thread_state_set. This criterion applies only to thethread_resume_secure request.

_ C2ThreadResumeThreadStateSet
TasksAndThreads
TaskCreationState
target_thread? : THREAD

target_thread? € dom owning_task
owning_task(target_thread?) € domtask_creation_state

task_creation_state(owning_task(target_thread?)) = Tes_thread_state_set

NotC2ThreadResume ThreadStateSet
= TasksAndThreads N TaskCreationState A = C2ThreadResume ThreadStateSet

9.15.4 Return Values

Table 39 describes the values returned at the completion of the thread_resume request and
the conditions under which each value is returned.

| return! | C1 |
Kern_success | T
Kern_failure F

Table 39: Return Values for thread_resume

— RVThreadResumeGood
C1ThreadResumeSuspend CountPositive
ThreadResume Qutputs

return! = Kern_success

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 251

_ RVThreadResumeFailure
NotC1ThreadResumeSuspendCountPositive
ThreadResume Qutputs

return! = Kern_failure

Table 40 describes the values returned at the completion of the thread_resume_secure
request and the conditions under which each value is returned. In the case where C1 and C2
are both false we assume Kern_insufficient_permission is returned.

Review Note:
C2 is checked first in the prototype.

| return! | C1 | Cc2 |
Kern_success T T
Kern_failure F T
Kern_ansufficient_permission - F

Table 40: Return Values for thread_resume_secure

__ RVThreadResumeSecureGood
C1ThreadResumeSuspend CountPositive
C2ThreadResume ThreadStateSet
ThreadResume Qutputs

return! = Kern_success

__ RVThreadResumeSecureFailure
NotC1ThreadResumeSuspendCountPositive
C2ThreadResume ThreadStateSet
ThreadResume Qutputs

return! = Kern_failure

__ RVThreadResumeSecurelnsufficient Permission
NotC2ThreadResume ThreadStateSet
ThreadResume Qutputs

return! = Kern_insufficient_permission

9.15.5 State Changes

A successful thread_resume or thread_resume_secure request decrements the thread’s
suspend count. If, as a result, the thread’'s suspend count becomes zero, the run state of the
thread will be modified as follows. First, the thread will be taken out of the Stopped and Halted
states. In addition, if the thread is not in the Waiting state, it will be placed in the Running

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
252 Thread Requests

state. The state Uninterruptible is not affected by this request. (Note that a thread may have
the state Uninterruptible without having the state Waiting.) If the suspend count is not zero
after it is decremented, the run state does not change. Nothing else changes due to the request.

_ ThreadResumelnvartants
ThreadInvartants

= ThreadFErist

= TasksAndThreads

= ThreadPri
ThreadSchedPolicy

= Spectal Purpose Ports
Thread AndProcessorSet

1 1

1

[1]

[1]

__ThreadResumeState
ThreadResumelnvartants
A ThreadFErecStatus

A Threads

target_thread? : THREAD

thread_suspend_count’ = thread_suspend_count
@ {target_thread? — thread_suspend_count(target_thread?) — 1}
(thread_suspend_count’ (target_thread?) = 0 A Waiting ¢ run_state(target_thread?))
= run_state’ = run_state
@ {target_thread? — ((run_state(target_thread?) \ {Stopped, Halted})
U {Running })}
(thread_suspend_count' (target_thread?) = 0 A Waiting € run_state(target_thread?))
= run_state’ = run_state
@ {target_thread? — (run_state(target_thread?) \ {Stopped, Halted})}
thread_suspend_count' (target_thread?) # 0 = run_state’ = run_state
swapped_threads’ = swapped_threads
idle_threads’ = idle_threads
threads_wired = threads_wired

For the thread_resume_secure request the task creation state of the parent task is changed
to Tes_task_ready. There is no change to the task creation state of the parent task for a
thread_resume request.

__ThreadResumeSecureState
A TaskCreationState
= TasksAndThreads
target_thread? : THREAD
operation? : OPERATION

(operation? = Thread_resume_secure_id
A target_thread? € dom owning_task
A task_creation_state’ = task_creation_state
& {owning_task(target_thread?) — Tes_task_ready})
V (operation? = Thread_resume_id
A task_creation_state’ = task_creation_state)

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 253

9.15.6 Complete Request

The following schemas define the general forms of the thread_resume and thread_«—
resume_secure requests.

__Processing ThreadResume
ProcessThreadViaThreadPortRequestGood

operation? = Thread_resume_id

__Processing Thread ResumeSecure
ProcessThreadViaThreadPortRequestGood

operation? = Thread_resume_secure_td

A successful request makes the state changes described in the previous section and creates a
kernel reply.

ThreadResume Good
= (RVThreadResumeGood A ThreadResumeState A ThreadResumeSecureState)
>> RequestReturnOnlyStatus
ThreadResumeSecure Good
= (RVThreadResumeSecureGood A ThreadResumeState A Thread ResumeSecureState)
>> RequestReturnOnlyStatus

An unsuccessful request returns an error status.

ThreadResume Bad = RV ThreadResumeFailure >> RequestNoOp
ThreadResumeSecure Bad
= (RVThreadResumeSecureFailure V RV Thread ResumeSecureInsufficient Permission)
>> RequestNoOp

Execution of the request consists of a good execution or an error execution.

Ezecute ThreadResume = ThreadResume Good V Thread Resume Bad
Ezecute ThreadResumeSecure = ThreadResumeSecure Good V Thread ResumeSecure Bad

The full specification for kernel processing of a validated thread_resume or thread_«—
resume_secure request consists of processing the request followed by its execution.

ThreadResume = Processing ThreadResume § Frecute Thread Resume
ThreadResumeSecure = Processing Thread ResumeSecure § Erecute Thread ResumeSecure

9.16 thread_set_special_port

The thread_set_special_port request allows a task to set a specified special port for a speci-
fied thread to be the port associated with one of the task’s send rights.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
254 Thread Requests

9.16.1 Client Interface

kern_return_t thread_set_special_port

(mach_port_t thread_name,
int which_port,
mach_port_t special_port_name);

thread_set_exception_port
Macro form

kern_return_t thread_set_exception_port
(mach_port_t thread_name,
mach_port_t special_port_name);

= thread_set_special_port (thread_name, THREAD_EXCEPTION_PORT,
special_port_name)

thread_set_kernel_port
Macro form

kern_return_t thread_set_kernel_port
(mach_port_t thread_name,
mach_port_t special_port_name);

= thread_set_special_port (thread_name, THREAD_KERNEL_PORT,
special_port_name)

9.16.1.1 Input Parameters The following input parameters are provided by the client of a
thread_set_special_port request:

m thread_name? — the client’s name for the thread whose special port is to be set
m which_port? — the type of special port that is to be set

m special_port_name? — the client’s name for the port to which the target thread’s specified
special port should be set

ThreadSetSpecial Port ClientInputs
thread_name? : NAME
which_port? : THREAD_SPECIAL_PORTS
special_port_name? : NAME

A thread_set_special_port request is invoked by sending a message to the port indicated
by thread_name? that has the operation field set to Thread_set_special_port_id and has a body
consisting of which_port? and special_port_name?.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005

DTOS FTLS 255

—Invoke ThreadSetSpecial Port
Invoke

ThreadSetSpecial Port ClientInputs

trap—id? = Mach_msg_trap
user_spec?.message.header.operation = Thread_set_spectal_port_id

user_spec?.message.header.remote_port = thread_name?
user_spec?.message.body

= Thread_special_port_and_name_to_text(which_port?, special_port_name?)

9.16.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread_set_special_port request:

m return! — the status of the request

_ ThreadSetSpecial Port ClientOQutputs
return! : KERNEL_RETURN

__ThreadSetSpecial Port Receive Reply
Invoke MachMsgRev
ThreadSetSpecial Port ClientOQutputs

return! = Text_to_status(msg_body)

9.16.2 Kernel Interface

9.16.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread_set_special_port request:

m thread? — the thread whose special port is to be set
m which_port? — the type of special port that is to be set

m special_port? — the port to which the target thread’s specified special port should be set

ThreadSetSpecialPort Inputs
thread? : THREAD
which_port? : THREAD_SPECIAL_PORTS
spectal_port? : PORT

9.16.2.2 Output Parameters The following output parameters are returned by the kernel for
a thread_set_special_port request:

m return! — the status of the request

ThreadSetSpecial Port Outputs
return! : KERNEL_RETURN

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
256 Thread Requests

9.16.3 Request Criteria
The following criteria are defined for the thread_set_special_port request.

s C1 — An exception port request is made.

__Cl1ThreadSetFEzceptionPort
which_port? : THREAD_SPECIAL_PORTS

which_port? = Thread_exception_port

NotC1ThreadSetExceptionPort = — C'1ThreadSet ExceptionPort

s C2 — A kernel port request is made.

_ C2ThreadSetKernelPort
which_port? : THREAD_SPECIAL_PORTS

which_port? = Thread_kernel_port

NotC2ThreadSetKernelPort = = C2ThreadSetKernelPort

m C3 — The client has Set_thread_ezception_port permission to the target thread.

Review Note:

In C3 and C4, we've begun the process of dealing with deferred permission checks under the new
execution model. The first schema is used to initiate the permission checking routine and the
criteria schemas will be used after the permission has been retrieved.

— ThreadSetSpecial PortPerm CheckSTEP
Transition

I request : Request; CheckPending; ThreadSetSpecialPort Inputs
o curr_bk?? = Bk_have_request(request)
A request.operation = Thread_set_special _port_id
A thread _self (thread?) = request.service_port
A ssi = task_sid(curr_task??)
A osi = thread_target(curr_task??, thread?)
A breaks' = breaks
@1 curr_th?? — Bk_check_pending(ssi, osi, Set_thread_exception_port, env)}

— C3ThreadCanSetEzceptionPort
Transition

env : ENVIRONMENT

curr_bk?? = Bk_have_ruling(Set_thread_exception_port, True, env)

— NotC3ThreadCanSetEzceptionPort
Transition

env : ENVIRONMENT

curr_bk?? = Bk_have_ruling(Set_thread_exception_port, False, env)

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 257

m C4 — The client has Set_thread_kernel_port permission to the target thread.

— ThreadSetSpecial PortPerm CheckSTKP
Transition

I request : Request; CheckPending; ThreadSetSpecialPort Inputs
o curr_bk?? = Bk_have_request(request)
A request.operation = Thread_set_special_port_id
A thread _self (thread?) = request.service_port
A ssi = task_sid(curr_task??)
A osi = thread _target(curr_task??, thread?)
A breaks’ = breaks
@1 curr_th?? — Bk_check_pending(ssi, osi, Set_thread_kernel_port, env)}

_ C4ThreadCanSetKernelPort
Transttion

env : ENVIRONMENT

curr_bk?? = Bk_have_ruling(Set_thread_kernel_port, True, env)

__NotC4ThreadCanSetKernelPort
Transttion

env : ENVIRONMENT

curr_bk?? = Bk_have_ruling(Set_thread_kernel_port, False, env)

9.16.4 Return Values

Table 41 describes the values returned at the completion of the request and the conditions
under which each value is returned. Note that C1 and C2 are mutually exclusive.

Review Note:

We assume that the prototype will check the conditions in the order {C1, C2 }, {C3 or C4}. However, the
prototype is currently not checking C3 and C4.

|return |C1|C2|C3|C4|
Kern_success T F T -
Kern_success F T - T
Kern_insufficient _permission | T F F -
Kern_insufficient_permission | F T - F
Kern_invalid_argument F F - -

Table 41: Return Values for thread_set_special_port

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
258 Thread Requests

— RVThreadSetFEzceptionPort
C1ThreadSetEzceptionPort
NotC2ThreadSetKernelPort
C3ThreadCanSetFEzceptionPort
ThreadSetSpecial Port Outputs

return! = Kern_success

__ RVThreadSetKernelPort
NotC1ThreadSetExzceptionPort
C2ThreadSetKernelPort
C4ThreadCanSetKernelPort
ThreadSetSpecial Port Outputs

return! = Kern_success

— RVThreadCannotSetEzceptionPort
C1ThreadSetEzceptionPort
NotC2ThreadSetKernelPort
NotC3ThreadCanSetFEzceptionPort
ThreadSetSpecial Port Outputs

return! = Kern_insufficient_permission

__RVThreadCannotSetKernelPort
NotC1ThreadSetExzceptionPort
C2ThreadSetKernelPort
NotC4ThreadCanSetKernelPort
ThreadSetSpecial Port Outputs

return! = Kern_insufficient_permission

_ RVThreadSetSpecial PortInvalid Port Type
NotC1ThreadSetExzceptionPort
NotC2ThreadSetKernelPort
ThreadSetSpecial Port Outputs

return! = Kern_invalid_argument

9.16.5 State Changes

A successful thread_set_special_port request sets the exception or kernel port of the thread
to the given port.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 259

— ThreadSetEzceptionPortState
ThreadInvariants

FErist

Threads

PortNameSpace

Special PurposePorts
Special ThreadPorts
ThreadAndProcessorSet
thread? : THREAD
spectal_port? : PORT

thread_self’ = thread_self
thread_sself’ = thread_sself
thread_eport’ = thread_eport ® {thread? — special_port?}

B> > [01 0

[1]

ThreadSetKernelPortState
ThreadInvartants

Frist

Threads
PortNameSpace

Special PurposePorts
Special ThreadPorts
Thread AndProcessorSet
thread? : THREAD
spectal_port? : PORT

thread_self’ = thread_self
thread_sself’ = thread_sself @ {thread? — special _port?}
thread_eport’ = thread_eport

(11 > [1 11 [1]

Review Note:

The prototype also releases a send right on the former kernel or exception port. This can cause no-sender
notifications to be sent if the number of send rights becomes zero. We have attempted to model the total
number of send rights in TotalSendRights. However, we have not yet modeled the sending of notifications.

9.16.6 Complete Request

The general form of a thread_set_special_port request is

__Processing ThreadSetSpecial Port
ProcessThreadViaThreadPortRequestGood

operation? = Thread_set_special _port_id

A successful request makes the state changes described in the previous section and creates a

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
260 Thread Requests

kernel reply.

ThreadSetSpecialPort Good
= ((RVThreadSetExceptionPort A ThreadSetExceptionPortState)
V (RVThreadSetKernelPort A ThreadSetKernelPortState))
>> ReturnOnlyStatus

An unsuccessful request returns an error status.

ThreadSetSpecialPort Bad
= (RVThreadCannotSetExceptionPort V RV ThreadCannotSetKernelPort
V' RVThreadSetSpecial PortInvalid Port Type)
> NoOp

Execution of the request consists of a good execution or an error execution.

Frecute ThreadSetSpecialPort = (ThreadSetSpecialPort Good NV ThreadSetSpecialPort Bad)

The full specification for the kernel processing of avalidatedthread_set_special_port request
consists of processing the request followed its execution.

ThreadSetSpecialPort = Processing ThreadSetSpecialPort § Execute ThreadSetSpecialPort

9.17 thread_set_state and thread_set_state_secure
The requests thread_set_state and thread_set_state_secure set the machine state of a

specified thread. thread_set_state_secure can be used only if the thread was created using
thread_create_secure.

9.17.1 Client Interface

kern_return_t thread_set_state

(mach_port_t target_thread_name,
int flavor,
thread_state_t new_state,
mach_msg_type_number_t new_state_cnt);

kern_return_t thread_set_state_secure

(mach_port_t target_thread_name,
int flavor,
thread_state_t new_state,
mach_msg_type_number_t new_state_cnt);

9.17.1.1 Input Parameters The following input parameters are provided by the client of a
thread_set_state or thread_set_state_secure request:

m targei_thread_name? — the client's name for the thread whose state information is to be
set

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 261

m flavor? — the type of state information that is to be set
m new_state? — state information of the specified type for the target thread

m new_state_cnt? — the maximum size that should be assumed for the state information
supplied

ThreadSetState ClientInputs
target_thread_name? : NAME

flavor? : THREAD_STATE_INFO_TYPES
new_state? : THREAD_STATE_INFO
new_state_cnt? : N

A thread_set_state request is invoked by sending a message to the port indicated by
target_thread_name? that has the operation field set to Thread_set_state_id and has a body
consisting of flavor?, new_state? and new_state_cnt?.

—_Invoke ThreadSetState
Invoke MachMsg
ThreadSetState ClientInputs

name? = target_thread_name?
operation? = Thread_set_state_id
msg—body = Thread_set_state_params_to_text(flavor?, new_state?, new_state_cnt?)

A thread_set_state_secure request is invoked by sending a message to the port indicated
by target_thread_name? that has the operation field set to Thread_set_state_secure_td and has a
body consisting of flavor?, new_state? and new_state_cnt?

_Invoke ThreadSetStateSecure
Invoke MachMsg
ThreadSetState ClientInputs

name? = target_thread_name?
operation? = Thread_set_state_secure_ud
msg_body = Thread_set_state_params_to_text(flavor?, new_state?, new_state_cnt?)

9.17.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread_set_state or thread_set_state_secure request:

m return! — the status of the request

— ThreadSetState ClientOQuiputs
return! : KERNEL_RETURN

— ThreadSetState Receive Reply
Invoke MachMsgRev
ThreadSetState ClientOutputs

return! = Text_to_status(msg_body)

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
262 Thread Requests

9.17.2 Kernel Interface

9.17.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread_set_state or thread_set_state_secure request:

m targei_thread? — the thread whose state information is to be set
m flavor? — the type of state information that is to be set
m new_state? — state information of the specified type for the target thread

m new_state_cnt? — the maximum size that should be assumed for the state information
supplied

ThreadSetState Inputs
target_thread? : THREAD

flavor? : THREAD_STATE_INFO_TYPES
new_state? : THREAD_STATE_INFO

new_state_cnt? : N

9.17.2.2 Output Parameters The following output parameters are returned by the kernel for
a thread_set_state or thread_set_state_secure request:

m return! — the status of the request

ThreadSetState Qutputs
Treturn! : KERNEL_RFETURN

9.17.3 Request Criteria

The following criteria are defined for the thread_set_state and thread_set_state_secure
requests.

m C1 — The parameter target_thread? is not equal to the client thread.

Editorial Note:

Nothing in the design states the reason that the client thread may not set its own state information.
We believe that it is merely an implementation difficulty in that in order to set state information
the thread must be temporarily stopped. If the client thread stopped itself, it could not set the state
information.

__C1ThreadSetStateNotClient Thread
ThreadsAndProcessors
cpu?? : PROCESSOR
target_thread? : THREAD

(epu??, target_thread?) ¢ active_thread

NotC1ThreadSetState NotClientThread
= ThreadsAndProcessors A = C1ThreadSetState NotClient Thread

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 263

m C2 — The parameter flavor? is a valid type of state information, and new_state_cnt? is
large enough for the requested state information.

__(C2ThreadSetState GoodFlavorAndCount
ThreadMachineState

target_thread? : THREAD

flavor? : THREAD_STATE_INFO_TYPES

new_state_cnt? : N

flavor? € dom Thread_state_count

(target_thread?, flavor?) € dom thread_state
new_state_ent? > Thread_state_count(flavor?)

NotC2ThreadSetState GoodFlavorAndCount
= ThreadMachineState A = C2ThreadSetState GoodFlavorAndCount

m C3 — The task creation state of the target thread's owning task must be
Tes_thread_created. This criterion applies only to the thread_set_state_secure request.

_ (C3ThreadSetStateSecure ThreadCreated
TasksAndThreads

TaskCreationState

target_thread? : THREAD

target_thread? € dom owning_task
owning_task(target_thread?) € domtask_creation_state

task_creation_state(owning_task(target_thread?)) = Tes_thread_created

NotC3ThreadSetStateSecure ThreadCreated
= TasksAndThreads N TaskCreationState
A = O3 ThreadSetStateSecure ThreadCreated

9.17.4 Return Values

Table 42 describes the values returned at the completion of thethread_set_state request and
the conditions under which each value is returned.

| return! | C1 | Cc2 |

Kern_success T | T
Kern_invalid_argument | otherwise

Table 42: Return Values for thread_set_state

— RVThreadSetStateGood
C1ThreadSetState NotClient Thread
C2ThreadSetState GoodFlavorAndCount
ThreadSetState Qutputs

return! = Kern_success

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
264 Thread Requests

__RVThreadSetStateInvalidFlavorOrCount
C1ThreadSetState NotClient Thread
NotC2ThreadSetState GoodFlavorAndCount
ThreadSetState Qutputs

return! = Kern_invalid_argument

_ RVThreadSetStateInvalid Thread
NotC1ThreadSetState NotClientThread
ThreadSetState Qutputs

return! = Kern_invalid_argument

Table 43 describes the values returned at the completion of the thread_set_state_secure
request and the conditions under which each value is returned. In all cases where C1 is false
we assume Kern_invalid_argument is returned. In the case where C1 is true and both C2 and
C3 are false we assume Kern_insufficient_permission is returned.

Review Note:
In the prototype the order in which conditions are checked is C1, C3, C2.

| return! | C1 | Cc2 | C3 |
Kern_success T T T
Kern_insufficient _permission | T - F
Kern_invalid_argument otherwise

Table 43: Return Values for thread_set_state_secure

__RVThreadSetStateSecure Good
C1ThreadSetState NotClient Thread
C2ThreadSetState GoodFlavorAndCount
C3ThreadSetStateSecure ThreadCreated
ThreadSetState Qutputs

return! = Kern_success

— RVThreadSetStateSecurelnsufficient Permission
C1ThreadSetState NotClient Thread
NotC3ThreadSetStateSecure ThreadCreated
ThreadSetState Qutputs

return! = Kern_insufficient_permission

— RVThreadSetStateSecurelnvalid FlavorOrCount
C1ThreadSetState NotClient Thread
NotC2ThreadSetState GoodFlavorAndCount
C3ThreadSetStateSecure ThreadCreated
ThreadSetState Qutputs

return! = Kern_invalid_argument

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 265

_ RVThreadSetStateSecurelnvalid Thread
NotC1ThreadSetState NotClientThread
ThreadSetState Qutputs

return! = Kern_invalid_argument

9.17.5 State Changes

A successful thread_set_state or thread_set_state_secure request sets the state of the
thread to the supplied state information. Any information in new_state? in addition to that
expected for flavor? is ignored. The run state of the thread may also change since the request
must ensure that the thread is temporarily suspended and then perhaps restart it.

_ ThreadSetStateState
A Threads
TasksAndThreads
ThreadPri
ThreadSchedPolicy
ThreadInstruction
ThreadErecStatus
ThreadStatistics
ThreadMachineState
Frist
Special PurposePorts
Thread AndProcessorSet
ThreadInvartants
ThreadSetState Inputs
target_thread? : THREAD

[l [1 [11 [[0 [> (1 10 [[1]

thread_state’ = thread_state & {(target_thread?, flavor?) — new_state?}
ThreadDoWaitThenRelease[larget _thread? /stopping_thread]
swapped_threads’ = swapped_threads
idle_threads’ = idle_threads
thread_suspend_count’ = thread_suspend_count
threads_wired = threads_wired

__ThreadSetStateSecureState
A TaskCreationState
= TasksAndThreads
target_thread? : THREAD
operation? : OPERATION

(operation? = Thread_set_state_secure_id
A target_thread? € dom owning_task
A task_creation_state’ = task_creation_state
& {owning_task(target_thread?) — Tes_thread_state_set})
V (operation? = Thread_set_state_id
A task_creation_state’ = task_creation_state)

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
266 Thread Requests

9.17.6 Complete Request

The following schemas define the general forms of the thread_set_state and thread_set_«—
state_secure requests.

__ Processing ThreadSetState
ProcessThreadViaThreadPortRequestGood

operation? = Thread_set_state_id

— Processing ThreadSetStateSecure
ProcessThreadViaThreadPortRequestGood

operation? = Thread_set_state_secure_ud

A successful request makes the state changes described in the previous section and creates a
kernel reply.

ThreadSetState Good
= (RVThreadSetStateGood A ThreadSetStateState
A ThreadSetStateSecureState)
>> RequestReturnOnlyStatus
ThreadSetStateSecure Good
= (RVThreadSetStateSecure Good N ThreadSetStateState
A ThreadSetStateSecureState)
>> RequestReturnOnlyStatus

An unsuccessful request returns an error status.

ThreadSetState Bad
= (RVThreadSetStateInvalid FlavorOrCount ¥V RV ThreadSetStateInvalid Thread)
>> RequestNoOp
ThreadSetStateSecure Bad
= (RVThreadSetStateSecurelnvalid FlavorOrCount
V RV ThreadSetStateSecurelnsufficient Permission
V RVThreadSetStateSecureInvalid Thread)
>> RequestNoOp

Execution of the request consists of a good execution or an error execution.

Frecute ThreadSetState = (ThreadSetState Good V ThreadSetState Bad)
Frecute ThreadSetStateSecure = (ThreadSetStateSecure Good V ThreadSetStateSecure Bad)

The full specification for kernel processing of a validatedthread_set_state or thread_set_«—
state_secure request consists of processing the request followed by its execution.

ThreadSetState = Processing ThreadSetState § Frecute ThreadSetState
ThreadSetStateSecure = Processing ThreadSetStateSecure § Frecute ThreadSetState

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 267

9.18 thread_suspend

The request thread_suspend increments the suspend count of a thread by 1. If the thread
was not already stopped, it will cause the thread to be stopped.

9.18.1 Client Interface

kern_return_t thread_suspend
(mach_port_t target_thread_name);

9.18.1.1 Input Parameters The following input parameters are provided by the client of a
thread_suspend request:

m target_thread_name? — the client's name for the thread that is to be suspended

ThreadSuspend ClientInputs
target_thread_name? : NAME

A thread_suspend request is invoked by sending a message to the port indicated by
target_thread_name? that has the operation field set to Thread_suspend__:d and has no body.

__Invoke ThreadSuspend
Invoke MachMsg
ThreadSuspend ClientInputs

name? = target_thread_name?

operation? = Thread_suspend_ud

9.18.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread_suspend request:

m return! — the status of the request

ThreadSuspend ClientOQuiputs
Treturn! : KERNEL_RETURN

— ThreadSuspend Receive Reply
Invoke MachMsgRev
ThreadSuspend ClientOQuiputs

return! = Text_to_status(msg_body)

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
268 Thread Requests

9.18.2 Kernel Interface

9.18.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread_suspend request:

m target_thread? — the thread that is to be suspended

ThreadSuspend Inputs
target_thread? : THREAD

9.18.2.2 Output Parameters The following output parameters are returned by the kernel for
a thread_suspend request:

m return! — the status of the request

ThreadSuspend Outputs
Treturn! : KERNEL_RETURN

9.18.3 Request Criteria

No criteria are defined for the thread_suspend request.

9.18.4 Return Values

Table 44 describes the values returned at the completion of the request and the conditions
under which each value is returned.

return!
Kern_success

Table 44: Return Values for thread_suspend

__ RVThreadSuspendGood
ThreadSuspend Outputs

return! = Kern_success

9.18.5 State Changes

A successful thread_suspend request increments the thread’s suspend count. The thread will
obtain the run state of Stopped. (Note it is possible that the thread already has this state.) A
thread in Stopped status cannot execute any user level instructions or system traps. If a thread
is suspending itself, then it will block (see Section 9.1.4.3). Otherwise, the run state Running

will be removed by ThreadDoWait (See Section 9.1.4.3). The OSF documentation states that
any system traps which are in progress when a thread is suspended will return after the thread
resumes (via thread_resume).

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 269

_ ThreadSuspendState
ThreadInvartants
ThreadErist
Threads
TasksAndThreads
ThreadPri
ThreadSchedPolicy
ThreadStatistics
ThreadErecStatus
Fuvents

ThreadSampling

Special PurposePorts
Thread AndProcessorSet
ThreadsAndProcessors
target_thread? : THREAD
cpu?? : PROCESSOR

[l [11 [0 [> [> (10 110 [[[0

cpu?? € dom active_thread

threads_wired’ = threads_wired
thread_suspend_count’ = thread_suspend_count
@ {target_thread? — thread _suspend_count(target_thread?) + 1}

let rs == run_state @ {target_thread? — run_state(target_thread?) U {Stopped } }
o ((thread _suspend_count(target_thread?) = 0
A target_thread? = active_thread(cpu??))
= ThreadBlock[target_thread?/blocking_thread, rs/init_run_state])
A ((thread_suspend_count(target_thread?) =0
A target_thread? # active_thread(cpu??))
= ThreadDoWait[target _thread?/stopping_thread, rs/init_run_state])
A (thread _suspend_count(target_thread?) # 0
= run_state’ = run_state
A swapped_threads’ = swapped_threads
A idle_threads’ = idle_threads)

Review Note:
The DTOS KID states that unpredictable results may occur if a program suspends a thread and alters
its user state so that its direction is changed upon resuming.

9.18.6 Complete Request

The following schema defines the general form of thread_suspend.

— Processing ThreadSuspend
ProcessThreadViaThreadPortRequestGood

operation? = Thread_suspend_ud

A successful request makes the state changes described in the previous section and creates a

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
270 Thread Requests

kernel reply.

ThreadSuspend Good = (RVThreadSuspendGood A ThreadSuspendState)
>> RequestReturnOnlyStatus

Execution of the request consists of a good execution.

Frecute ThreadSuspend = ThreadSuspend Good

The full specification for kernel processing of a validated thread_suspend request consists of
processing the request followed by its execution.

ThreadSuspend = Processing ThreadSuspend § Execute ThreadSuspend

9.19 thread_terminate

The request thread_terminate permanently stops execution of a thread.

9.19.1 Client Interface

kern_return_t thread_terminate
(mach_port_t target_thread_name);

9.19.1.1 Input Parameters The following input parameters are provided by the client of a
thread_terminate request:

m target_thread_name? — the client's name for the thread to be destroyed

Thread Terminate ClientInputs
target_thread_name? : NAME

A thread_terminate request is invoked by sending a message to the port indicated by
target_thread_name? that has the operation field set to Thread_terminate_id and has no body.

— Invoke Thread Terminate
Invoke MachMsg
Thread Terminate ClientInputs

name? = target_thread_name?
operation? = Thread_terminate_id

9.19.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread_terminate request:

m return! — the status of the request

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 271

_ThreadTerminate ClientOuitputs
return! : KERNEL_RETURN

—_Thread Terminate Receive Reply
Invoke MachMsgRev
Thread Terminate ClientQutputs

return! = Text_to_status(msg_body)

9.19.2 Kernel Interface

9.19.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread_terminate request:

m target_thread? — the thread to be destroyed

Thread TerminateInputs
’7 target_thread? : THREAD

9.19.2.2 Output Parameters The following output parameters are returned by the kernel for
a thread_terminate request:

m return! — the status of the request

Thread Terminate Outputs
Treturn! : KERNEL_RETURN

9.19.3 Request Criteria

No criteria are defined for the thread_terminate request.

9.19.4 Return Values

Table 45 describes the values returned at the completion of the request and the conditions
under which each value is returned.

return!
Kern_success

Table 45: Return Values for thread_terminate

Review Note:
It is actually possible for the prototype to return Kern_failure. There are two cases where this appears
to happen.
Secure Computing Corporation 83-0902024A001 Rev A

CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
272 Thread Requests

1. Someone else has already initiated a thread_terminate request on target_thread_name?. Al-
though the current request returns Kern_failure and does not itself destroy the target thread, the
thread is still destroyed by the other request which is in progress.

2. Theclient thread is currently being terminated itself. In this case, the client thread seems to hasten
its own termination rather than finishing the current request. Thus, unless there were additional
termination requests in progress for the target thread, it is not terminated.

It doesn’t appear that our model is deep enough to handle either of these cases.

— RVThread TerminateGood
Thread Terminate Outputs

return! = Kern_success

9.19.5 State Changes

A successful thread_terminate request destroys the thread. The terminated thread is re-
moved from the set of existing threads, and from its relationship with its parent task.

__ThreadTerminateState Exist
A ThreadFErist
A TasksAndThreads
target_thread? : THREAD

thread_exists’ = thread_exists \ {target_thread?}
task_thread_rel’ = task_thread_rel & {target_thread?}

The processor assignment of the thread is also removed.

_ ThreadTerminateState Thread AndProcessorSet
A ThreadAndProcessorSet
target_thread? : THREAD

thread_assignment_rel' = {target_thread?} < thread_assignment_rel
enabled_sp’ = enabled_sp
Bs_ma:p_priority/ = ps—_maz_priority

The thread no longer has information associated with it regarding priorities, scheduling policies,
statistics and sampling.

__ThreadTerminateState Priority
A ThreadPri
target_thread? : THREAD

thread_priority’ = {target_thread?} < thread_priority

thread_maz_priority’ = {target_thread?} < thread_maz_priority
thread_sched_priority’ = {target_thread?} < thread_sched_priority
depressed_threads’ = depressed_threads \ {target_thread?}
priority_before_depression’ = {target_thread?} < priority_before_depression

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 273

_ ThreadTerminateStateSchedPolicy
A ThreadSchedPolicy
target_thread? : THREAD

thread_sched_policy’ = {target_thread?} < thread_sched_policy
thread_sched_policy_data = {largeli_thread?} 4 thread_sched_policy_dala
supported_sp’ = supported_sp

_ ThreadTerminateStateStatistics
A ThreadStatistics
target_thread? : THREAD

wuser_time' = {targel_thread?} € user_lime
system_time' = {{argei_thread?} < system_time
cpu_time’ = {target_thread?} <4 cpu_time
sleep_time’ = {target_thread?} < sleep_time

— Thread TerminateStateSampling
A ThreadSampling
target_thread? : THREAD

sampled_threads’ = sampled_threads \ {target_thread?}
thread_sample_types’ = {target_thread?} < thread_sample_types
thread_sample_sequence_number’

= {target_thread?} 4 thread _sample_sequence_number
thread_samples’ = {target _thread?} < thread_samples

The thread no longer has information associated with it regarding execution status. If the cur-
rent thread is terminating itself, then it uses thread blocking to start another thread running.

Review Note:
The active thread on the CPU might change too. We have not modeled this change at all in the FTLS
and say nothing about it here either.

__ ThreadTerminateState EFxecStatus
A ThreadFErecStatus
ThreadsAndProcessors
ProcessorAndProcessorSet
target_thread? : THREAD
cpu?? : PROCESSOR

((epu??, target_thread?) € active_thread
= (let init_run_state == {{arget_thread?} € run_state
e ThreadBlock[target_thread?/blocking_thread]))
((epu??, target_thread?) ¢ active_thread
= run_state’ = {target_thread?} <9 run_state
A swapped_threads’ = swapped_threads \ {target_thread?})
thread_suspend_count’ = {target_thread?} < thread_suspend_count
threads_wired' = threads_wired \ {target_thread?}

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005

274 Thread Requests

All special ports are removed from the thread.

Review Note:
The prototype releases send rights on the sself port and exception port. This can cause no-sender

notifications to be sent if the number of send rights becomes zero. We have attempted to model the total
number of send rights in TotalSendRights. However, we have not yet modeled the sending of notifications.

__ Thread TerminateStateSpecial Ports
A SpecialPurposePorts

A SpecialThreadPorts
target_thread? : THREAD

thread_self’ = {target_thread?} < thread_self
thread_sself’ = {target_thread?} < thread_sself
thread_eport’ = {target_thread?} < thread_eport

The self port of the thread is destroyed.

__Thread TerminateStateSelfPort
A Ipc

Special ThreadPorts
target_thread? : THREAD

let port == thread_self (target_thread?)
e PortDestroy

Any event for which the thread was waiting is disassociated from the thread. The corresponding
event count is also incremented by 1.

Review Note:
| purposely violated the indentation conventions in this schema to show the nesting of the logical formulas.

_ ThreadTerminateState Event
A Events
target_thread? : THREAD

thread_waiting’ = thread_waiting & {target_thread?}
event_count’
= {event : EVENT_COUNTER; count : N

| event € dom evenl_count

A (((event, target_thread?) ¢ thread _waiting
A count = event_count(event))

V ((event, target_thread?) € thread_waiting

A count = event_count(event) + 1))

o (event, count)}

State information is no longer available for the thread.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 275

_ ThreadTerminateState MachineState
A ThreadMachineState
target_thread? : THREAD

thread_state’
={info: THREAD_STATE_INFO_TYPES
o (target_thread?, info) }
g thread_state

The thread no longer has an instruction pointer.

_ ThreadTerminateStatelnstr
A ThreadInstruction
target_thread? : THREAD

instruction_pointer’ = {targel_thread?} < instruction_pointer

No other changes occur in the system state.

__ ThreadTerminateState
ThreadInvartants
A Threads
= SpecialTaskPorts
ThreadTerminateState Exist
Thread TerminateState Priority
Thread TerminateStateSchedPolicy
Thread TerminateState FxecStatus
ThreadTerminateStateStatistics
Thread TerminateStateSampling
Thread TerminateStateSpecialPorts
Thread TerminateState ThreadAndProcessorSet
Thread TerminateState Event
ThreadTerminateState MachineState
ThreadTerminateStateInstr

9.19.6 Complete Request

The following schema defines the general form of thread_terminate.

__ Processing Thread Terminate
ProcessThreadViaThreadPortRequestGood

operation? = Thread_terminate_id

A request makes the state changes described in the previous section and creates a kernel reply.

Thread Terminate Good = (RVThreadTerminateGood A Thread TerminateState)
>> RequestReturnOnlyStatus

Execution of the request consists of a good execution.

Ezecute Thread Terminate = Thread Terminate Good

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
276 Thread Requests

The full specification for kernel processing of a validated thread_terminate request consists
of processing the request followed by its execution.

ThreadTerminate = Processing Thread Terminate § Execute Thread Terminate

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 277

Section 10
Virtual Memory Requests

10.1 Introduction to Virtual Memory Requests

This chapter describes the virtual memory kernel requests in DTOS.

10.1.1 Constants and Types

The following defines identifiers that are used to represent each of the requests. They are
partitioned into Vm_task_ops and Vm_wire_id:

Vm_allocate_id, Vm_allocate_secure_id, Vim_copy—_id, Vm_deallocate_ud,
Vm_inheriti_id, Vm_machine_attribute_id, Vm_map_id, Vm_protect_id,
Vm_read_id, Vm_region_id, Vim_region_secure_id, Vm_statistics_id,
Vm_write_id : OPERATION

Vm_wire_id : OPERATION

Vm_task_ops : P OPERATION

(Vm_allocate—id, Vm_allocate_secure_id, Vm_copy—_id, Vm_deallocate_id,
Vm_inheriti_id, Vm_machine_attribute_id, Vm_map_id, Vm_protect_id,
Vm_read_id, Vm_region_id, Vim_region_secure_id, Vm_statistics_id, Vm_write_id)

Values_partition Vm_task_ops
Vm_task_ops C Allowed_mach_services(Pc_task)
Vm_wire_id € Allowed_mach_services(Pc_host_control)

10.1.2 Required Permissions

For each operation there is a primary permission that is required to perform the operation. We
define here the portion of the Required_permission function that pertains to vm requests.

{(Vm_allocate_id, Allocate_vm_region),
(Vm_allocate_secure_id, Allocate_vm_region),
(Vm_copy_id, Copy_vm),

(Vm_deallocate_id, Deallocate_vm_region),
(Vm_inherit_id, Set_vm_region_inherit),
(Vm_machine_attribute_id, Access_machine_attribute),
(Vm_map_id, Map_vm_region),

(Vm_protect_id, Chg_vm_region_prot),

(Vm_read_id, Read_vm_region),

(Vm_region_id, Get_vm_region_info),

(Vm_region_secure_id, Get_vm_region_info),

(Vm_statistics_id, Gel_vm_statistics),

(Vm_write_id, Write_vm_region)}

C Required_permission

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
278 Virtual Memory Requests

10.1.3 Invariant Information

No invariants are stated in this version of the VM Requests chapter.

10.1.4 General Information

10.1.4.1 Regions The following functions are needed to determine the pages specified by a
request.

m Get_page(va) — determines the page index for the page of a virtual address va.

n Get_offset(va) — determines the offset on the page of a virtual address va.

m Page_start(va) — maps a virtual address va to the virtual address at the beginning of its
page.

» Address_num(va) — maps a virtual address va to a number on which calculations can be
performed.

n Relative_addr(addr, n) — calculates the address n bytes past the address addr if such an
address exists.

m Page_aligned — denotes the set of virtual addresses that are the beginning of a virtual
page.

We assume that Vm_start and Relative_addr(Vm_end, 1) are page aligned.

Review Note:
It might make sense to move these axioms and the VAWord schema to the state chapter.

Editorial Note:

The definition of these functions as globals implies that there is a single global page size. This may not
be true in a distributed environment with multiple processors of different types. The prototype uses a
single global page size.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 279

Get_page : VIRTUAL_ADDRESS —» PAGE_INDEX

Get_offset : VIRTUAL_ADDRESS —» PAGE_OFFSET

Page_start : VIRTUAL_ADDRESS — VIRTUAL_ADDRESS
Page_aligned : P VIRTUAL_ADDRESS

Address_num : VIRTUAL_ADDRESS — N

Relative_addr : VIRTUAL_ADDRESS x N— VIRTUAL_ADDRESS

Page_start o Page_start = Page_start

Vway,vas : VIRTUAL_ADDRESS

e Get_page(var) = Get_page(vas) < Page_start(va,) = Page_start(vas)
A vay € Page_aligned < va; = Page_start(vay)

Vway,vas : VIRTUAL_ADDRESS

| Get_page(var) = Get_page(vas) A Get_offset(vay) = Get_offset(vas)

® U1 = Vay

dom Relative_addr = { addr : VIRTUAL_ADDRESS; n : N
| Address_num(addr) + n € ran Address_num }

Vaddr : VIRTUAL_ADDRESS; n :N

| (addr, n) € dom Relative_addr

e Relative_addr(addr,n) = Address_num”™ (Address_num(addr) 4+ n)

Vm_start € Page_aligned

Relative_addr(Vm_end, 1) € Page_aligned

The contents of a task’s address space at a particular virtual address is denoted by the function
va_word.

— VAWord
PageAndMemory

AddressSpace

va_word : TASK x VIRTUAL_ADDRESS — WORD

Vtask : TASK; va: VIRTUAL_ADDRESS
| (task, Get_page(va)) € dom map_rel
A map_rel(task, Get_page(va)) € dom representing_page
A representing_page(map_rel(task, Get_page(va))) € dom page_word_fun
e va_word(task, va)
= (page—_word_fun(representing_page(map_rel(task,
Get_page(va)))))(Get_offset(va))

We use Region_of (va, size) to denote the region of size bytes starting at the page containing va
in some task’s address space. Since a region consists of a sequence of pages, the return from
this function is the set of page indices denoting pages containing an address betweenwva and
va + size — 1. Because of this rounding to virtual page boundaries, the amount of memory in a
region may be greater than size.

Region_of : VIRTUAL_ADDRESS x N— P PAGE_INDEX

Vwa: VIRTUAL_ADDRESS; size : N

e Region_of (wva, size) = {vay : VIRTUAL_ADDRESS
| Address_num(vay) € Address_num(va) .. (Address_num(va) + size — 1)
e Get_page(vay)}

VmRegionInUse[task, address, size] denotes that Region_of (address, size) contains at least one
page that is allocated in task’s address space, and VmRegion NotinUse denotes that none of the

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
280 Virtual Memory Requests

pages are allocated.

— VmRegioninUse
AddressSpace
task : TASK

address : VIRTUAL_ADDRESS
stze N

Region_of (address, size) N allocated ({ task }) # &

VmRegionNotInUse = AddressSpace A — VmRegionInUse

All addresses within a valid region must lie in the range Vm_start..Vm_end. We use
VmGoodRegion[address,size] to denote that the region of length s:ze starting at address is valid.

Review Note:

Since we are assuming Vm_start and Vm_end + 1 are page aligned we do not need to round address and
size.

— VmGoodRegion
address : VIRTUAL_ADDRESS
stze N

Address_num(address) .. Address_num(address) + size — 1
C Address_num(Vm_start) .. Address_num(Vm_end)

Set_region_attr defines a function that maps all of the pages in a virtual memory region to a
particular attribute.
=i
Set_region_attr : (P(TASK x PAGE_INDEX) x R)
—((TASK x PAGE_INDEX) —+ R)
Vregion : P(TASK x PAGE_INDEX); ¢ : R
e Set_region_attr(region, z) =

{ task_va_pair : TASK x PAGE_INDEX | task_va_pair € region
e task_va_pair — 1 }

The vm_write request takes a vm map copy parameter that describes a region of virtual

memory including the offset, the size and the task from whose address space the memory was
copied. We model this with MapCopy.

Review Note:

In the prototype, a map copy does not contain a direct reference to the task. Although we are uncertain,
it is even possible that the task from whose address space the map copy was produced no longer exists.
It is conceivable that the task was destroyed after the map copy was created, and the map entries are
still present since the map copy holds a reference to them. The correct solution here would be to model

maps as entities in there own right independent of tasks. This would require significant changes to the
state description.

83-0902024A001 Rev A

Secure Computing Corporation
1.21, 4 December 1996

CAGE Code OHDC7

CDRL A005
DTOS FTLS 281

MapCopy
task : TASK
offset : VIRTUAL_ADDRESS

stze N

10.1.4.2 Parameter Packaging Functions When invoking a kernel request, the following func-
tions package the parameters into a message body:

Address_to_body : VIRTUAL_ADDRESS — MESSAGE_BODY
Region_to_body : (VIRTUAL_ADDRESS x N) — MESSAGE_BODY
Region_bool_to_body : (VIRTUAL_ADDRESS x N x BOOLEAN)

—MESSAGE_BODY
Region_inheritance_to_body :

(VIRTUAL_ADDRESS x Nx INHERITANCE_OPTION) — MESSAGE_BODY
Region_bool_sid_to_body :

(VIRTUAL_ADDRESS x Nx BOOLEAN x OSI) — MESSAGE_BODY
Region_bool_prot_to_body :

(VIRTUAL_ADDRESS x Nx BOOLEAN x P PROTECTION)

—MESSAGE_BODY

Address_data_to_body :

(VIRTUAL_ADDRESS x MapCopy x N) — MESSAGE_BODY
Name_region_prot_to_body :

(NAME x VIRTUAL_ADDRESS x N x P PROTECTION) — MESSAGE_BODY

When creating a reply message from a request, the following functions package the output
parameters into a kernel reply:

Address_to_reply : VIRTUAL_ADDRESS — KFERNEL_REPLY
Attributes_to_reply : (VIRTUAL_ADDRESS x Nx P PROTECTION
x P PROTECTION x INHERITANCE_OPTION
x BOOLEAN x Capability x OFFSET)
—KERNEL_REPLY
Secure_attributes_to_reply : (VIRTUAL_ADDRESS x N x P PROTECTION
X INHERITANCE_OPTION x BOOLEAN x Capability
x P PROTECTION x OFFSET
x OSI x P Kernel_permission)
—KERNEL_REPLY

When receiving a reply message from the kernel the following functions unpack the message
body to obtain the output parameters (including the return status):

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

282

CDRL A005
Virtual Memory Requests

Text_to_address_and_status : MESSAGE_BODY
—(VIRTUAL_ADDRESS x KERNEL_RETURN)
Text_to_region_info_and_status : MESSAGE_BODY
—(VIRTUAL_ADDRESS x N x P PROTECTION
x P PROTECTION X INHERITANCE_OPTION x BOOLEAN
x Capability x OFFSET x KERNEL_RETURN)
Text_to_region_secure_info_and_status : MESSAGE_BODY
—(VIRTUAL_ADDRESS x N x P PROTECTION
x P PROTECTION X INHERITANCE_OPTION x BOOLEAN
x Capability x OFFSET x P PROTECTION
x OSI x P Kernel_permission x KERNEL_RETURN)

Review Note:
The command Text_to_status is also used in this chapter. It is declared in the Thread Request chapter
introduction.

10.1.5 Kernel Processing

The kernel performs processing for a VM request only when it detects a break indicating that
a request has been received through a port of the appropriate class, Pc_task or Pc_host_control.

For a request sent to a task port, if the specified service port no longer exists, then a
Kern_invalid_argument status code is returned.

— NotTaskPort
ProcessRequest

= Mach

reply_to_port! : P PORT
reply! : KERNEL_REPLY
return! : KERNEL_RETURN

pc? = Pc_task
operation? € Vm_task_ops
service_port? ¢ dom self _task

reply_to_port! = reply_to_port?
return! = Kern_invalid_argument

For a vm_wire request, which must be sent to a host control port, if the service port no longer
exists, then a Kern_invalid_host status code is returned.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 283

__NotHostTaskPort
ProcessRequest
= Mach
reply_to_port! : P PORT
reply! : KERNEL_REPLY
return! : KERNEL_RETURN

pc? = Pc_host_control
operation? = Vm_wire_id
service_port? # host_control_port

reply_to_port! = reply_to_port?
return! = Kern_invalid_host

ProcessVMRequestBad = (NotTaskPort V NotHostTaskPort) >> RequestNoOp

Otherwise, the kernel processes the request. In this case, we use the following schema to
represent the parameters to the requests:

__ VMParameters
address? : VIRTUAL_ADDRESS
anywhere? : BOOLEAN

copy? : BOOLEAN

count? : N

cur_protection? : P PROTECTION

data? : MapCopy

data_count? : N

dest_address? : VIRTUAL_ADDRESS
host_priw? : HOST

mheritance? : INHERITANCE_OPTION
mask? : VIRTUAL_ADDRESS
maz_protection? : P PROTECTION
memory_object? : Capability
new_tnheritance? : INHERITANCE_OPTION
new_protection? : P PROTECTION
protection? : P PROTECTION

obj_sid? : OST

offset? . OFFSET

set_martmum? : BOOLEAN

shared? : BOOLEAN

stze? o N

source_address? : VIRTUAL_ADDRESS
target_task? : TASK

wired_access? : P PROTECTION

The interpretation of the components of this schema are:

address? — starting address for a region.

anywhere? — a Boolean indicating whether the region can be anywhere in the target task’s
address space.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
284 Virtual Memory Requests

copy? — a Boolean indicating whether a copy is made of an area of a memory object.
count? — the number of bytes in a region.

cur_protection? — the initial current protection for a region.

data? — a copy of a portion of a memory map.

data_count? — the number of bytes in a data array (ignored).

dest_address? — starting address for the destination region.

host_priv? — the host on which the target task executes.

inheritance? — the inheritance attribute for the region.

mask? — alignment restrictions for the starting address of a region.
maz_protection? — the maximum protection for a region.

memory_object? — the port naming a memory object.

new_inheritance? — the new inheritance attribute for the region.
new_protection? — the new protection for the region.

protection? — the current protection for a region including those protections
obj_sid? — the security identifier for a region.

offset? — an offset within a memory object, in bytes.

set_marimum? — a Boolean indicating whether the maximum protection or the current pro-
tection should be set.

shared? — a Boolean indicating whether the region is shared with another task.
size? — the number of bytes in a region.

source_address? — starting address for the source region.

target_task? — the task to whose address space the command applies.

wired_access? — the pageability of a region.

The following schema determines the target task based upon the task service port to which a
task operation request has been sent.

— MessageToVMParameters
ProcessRequest
SpecialTaskPorts
VMParameters

pc? = Pc_task
operation? € Vm_task_ops
service_port? € dom self _task
target_task? = self_task(service_port?)

The following schema verifies that avm_wire request has been sent to the host control port.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 285

— MessageToHostParamelers
ProcessRequest
HostsAndPorts
VMParameters

pc? = Pc_host_control
operation? = Vm_wire_id
service_port? = host_control_port

10.1.6 Security Server Request

For some requests (e.g., vm_allocate) a second security check is needed. In this case the access
vector cache will be checked for the needed information. If the information is not present (or
not valid for the client thread) the security server is queried, and the kernel must wait for the
response before continuing the execution of the request. We represent this waiting time by
adding an element to the set of pending requests that contains the current request, the client
thread, and the OSI associated with the security server request. The schemaVmSecurityRequest
checks the cache for permission perm from the subject ssi to the object os:. If it is not found
(i.e., Cache_undefined), the request is placed in PENDINGREQUEST.

Vm_request_to_pending_request : Request x THREAD x OS]
— PENDREQUEST

__ VmSecurityRequest
Transition
KernelAllows
A PendingRequests
ThreadsAndProcessors
Request?
perm : PERMISSION
ss1: SST
ost : OST
let thread == active_thread(cpu??)

e cache_allows(thread, ssi, osi, perm) = Cache_undefined

A PENDINGREQUEST' = PENDINGREQUEST
W [Vin_request_to_pending_request(6 Request?, thread, osi)]

After the security request has been processed, the kernel request is removed from the set of
pending requests by the schema VmContinue. The client thread and the OSI supplied in the
security server request are also retrieved.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
286 Virtual Memory Requests

— VmContinue
A PendingRequests
SpecialTaskPorts
VMParameters
Request?

thread' : THREAD
obj_sid' : OSI

I pending_request : PENDREQUEST
o pending_request E PENDINGREQUEST
A pending_request
= Vm_request_to_pending_request(0 Request?, thread’, obj_sid")
A PENDINGREQUEST' = PENDINGREQUEST [pending_request]
A pc? = Pc_task
A operation? € Vm_task_ops

If the required permission is already in the access vector cache, the security server request will
not be necessary. VmNoSecurityRequest describes this case.

__ VmNoSecurityRequest
Transition
KernelAllows
ThreadsAndProcessors
Request?

perm : PERMISSION
sst : SST

ost = OS5I

let thread == active_thread(cpu??)
e cache_allows(thread, ssi, osi, perm) # Cache_undefined

We now describe the individual virtual memory requests.

10.2 vm_allocate and vm_allocate_secure

The vm_allocate and vm_allocate_secure task requests allocate a zero-filled region of mem-
ory in the target task’s address space. The physical memory is not allocated until an executing
thread references the new virtual memory, and a memory object managed by the default man-
ager is not created until the region must be swapped out. vm_allocate_secure allows the
client to specify a security identifier for the allocated region, whilevm_allocate uses a default
security identifier.

10.2.1 Client Interface

kern_return_t vm_allocate

(mach_port_t target_task_name,
vm_address_t* address,
vm_size_t size,
boolean_t anywhere);
83-0902024A001 Rev A Secure Computing Corporation

1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 287

kern_return_t vm_allocate_secure

(mach_port_t target_task_name,
vm_address_t* address,
vm_size_t size,
boolean_t anywhere,
security_id_t obj_sid);

10.2.1.1 Input Parameters The following input parameters are provided by the client of a
vm_allocate request:

m target_task_name? — the client’s name for the task in whose virtual address space the
region is to be allocated

m address? — the requested starting address for the region. This parameter is ignored if
anywhere? is True. Otherwise, it is rounded down to the start of a page boundary.

m size? — the number of bytes to allocate. It is rounded up to an integer number of pages.
(This differs from the interpretation of size? used in the other VM requests.)

m anywhere? — a Boolean indicating whether the allocated region can be placed anywhere
in the target task’s address space or must be placed at address?

VmAllocate ClientInputs
target_task_name? : NAME
address? : VIRTUAL_ADDRESS
size? N

anywhere? : BOOLEAN

The following additional parameter must be provided by the client of avm_allocate_secure
request:

m obj_sid? — security identifier that will be attached to the newly allocated region.

VmAllocateSecure ClientInputs
|7 VmAllocate ClientInputs

obj_sid? : OST

A vm_allocate request is invoked by sending a message to the port indicated by
target_task_name? that has the operation field set to Vm_allocate_id and has a body consisting
of address?, size?, and anywhere?.

— Invoke VmAllocate
Invoke MachMsg
VmAllocate ClientInputs

name? = target_task_name?
operation? = Vm_allocate_id
msg_body = Region_bool_to_body (address?, size?, anywhere?)

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
288 Virtual Memory Requests

A vm_allocate_secure request is invoked by sending a message to the port indicated by
target_task_name? that has the operation field set to Vm_allocate_secure_id and has a body
consisting of address?, size?, anywhere?, and obj_sid?.

— Invoke VmAllocateSecure
Invoke MachMsg
VmAllocateSecure ClientInputs

name? = target_task_name?
operation? = Vm_allocate_secure_id
msg_body = Region_bool_sid_to_body (address?, size?, anywhere?, obj_sid?)

10.2.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a vm_allocate or vm_allocate_secure request:

m address! — the actual starting address for the memory object
m return! — the status of the request
— VmAllocate ClientOutputs

address! : VIRTUAL_ADDRESS
return! : KERNEL_RETURN

__ VmAllocate Receive Reply
Invoke MachMsgRev
VmAllocate ClientOQutputs

(address!, return!) = Text_to_address_and_status(msg_body)

10.2.2 Kernel Interface

10.2.2.1 Input Parameters The following input parameters are provided to the kernel for a
vm_allocate request:

m target_task? — the task in whose virtual address space the region is to be allocated

m address? — the requested starting address for the region. This parameter is ignored if
anywhere? is True. Otherwise, it is rounded down to the start of a page boundary.

m size? — the number of bytes to allocate. It is rounded up to an integer number of pages.
(This differs from the interpretation of size? used in the other VM requests.)

m anywhere? — a Boolean indicating whether the allocated region can be placed anywhere
in the target task’s address space or must be placed at address?

VmAllocate Inputs
target_task? : TASK

address? : VIRTUAL_ADDRESS
size? N

anywhere? : BOOLEAN

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 289

The following additional parameter must be provided by the client of avm_allocate_secure
request:

m obj_sid? — security identifier that will be attached to the newly allocated region.

VmAllocateSecure Inputs
|7 VmAllocate Inputs

obj_sid? : OST

10.2.2.2 Output Parameters The following output parameters are returned by the kernel for
a vm_allocate or vm_allocate_secure request:

m address! — the actual starting address for the memory object

m return! — the status of the request

VmAllocate Outputs
|7 address! : VIRTUAL_ADDRESS

return! : KERNEL_RETURN

Upon completion of the processing of either avm_allocate or a vm_allocate_secure request,
a reply message is built from the output parameters.

— VmAllocate Reply
RequestReturn
address? : VIRTUAL_ADDRESS

reply? = Address_to_reply(address?)

10.2.3 Request Criteria

The following criteria are defined for the vm_allocate and vm_allocate_secure requests.

s C1 — The security identifier for the new region can be specified by the client thread,
active_thread(cpu??), as determined from the result of a security policy query. The value
of obj_sid is either vm_port_sid(targei_task?) for a vm_allocate request or the input pa-
rameter obj_s:d? for avm_allocate_secure request. The binding of 0bj_sid is determined
by the appropriate processing schema from Section 10.2.6.

— C1VmAllocateGoodSecurityld
SubjectSid
KernelAllows
ThreadsAndProcessors
thread : THREAD
obj_sid : OST
cpu?? : PROCESSOR

thread = active_thread(cpu??)
thread € dom thread_sid
cache_allows(thread, thread__sid (thread), obj_sid, Map_vm_region)
= Cache_allowed

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
290 Virtual Memory Requests

NotC1VmAllocate GoodSecurityld = SubjectSid A KernelAllows
A ThreadsAndProcessors A = C1VmAllocate GoodSecurityld

m C2 — The task remains after a possible second security server query has been made. The
port service_port? is the port through which the request was received.

— C2VmAllocate TaskRemains
SpecialTaskPorts
target_task? : TASK
service_port? : PORT

(service_port?, target_task?) € self _task

NotC2VmAllocate TaskRemains = SpecialTaskPorts A — C2VmAllocate TaskRemains

m C3 — The parameter size? is greater than zero.

_ (C3VmAllocatePositiveSize
size? N

size? > 0

NotC3VmAllocatePositiveSize = = C3 VmAllocatePositiveSize

s C4 — The parameter anywhere? = True, or the addresses specified for the region (when
rounded) are valid.

__C4VmAllocateGoodAddress
address? : VIRTUAL_ADDRESS
stze? o N

anywhere? : BOOLEAN

anywhere? = True
V (let address == Page_start(address?); size == size?
e VmGoodRegion)

NotC4VmAllocate GoodAddress = = C4 VmAllocate GoodAddress

m C5 — There is room in target_task?s address space to allocate a region of length size?
starting at a page boundary. If anywhere? = False, there is room starting at the beginning
of the page containing address?.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 201

__CbVmAllocateRoomToAllocate
AddressSpace
target_task? : TASK
address? : VIRTUAL_ADDRESS
stze? o N
anywhere? : BOOLEAN
address : VIRTUAL_ADDRESS

Jsize : N
o (anywhere? = True V address = Page_start(address?))
A address € Page_aligned
A size = size?
A VmGoodRegion
A VmRegionNotInUse[target_task? [task]

NotC5VmAllocate RoomToAllocate = AddressSpace A — C5VmAllocate RoomToAllocate

Review Note:
Do we also require Have_execute, Have_read and Have_write permissions for the target task?

10.2.4 Return Values

Table 46 describes the values returned at the completion of the request and the conditions under
which each value is returned. The value address is any address that satisfied the criterion C5.
When anywhere? is False, this is the address at the start of the page containing address?. When
anywhere? is True, the starting address of the allocated region depends upon address?, size? and
the allocated pages of target _task?. The relationship between these three items and the address
returned depends upon the implementation algorithm. In the prototype if C3 if false and C1
and C2 are true, the zero address, Address_num™(0), is returned. We leave unspecified the
precise address returned in cases where return! # Kern_success.

Editorial Note:
The algorithm currently used in the prototype will never yield a page that starts earlier in the memory
than the beginning of the page containing address?. Thus, if the client specifies the last page and it is

already allocated, the return value will be Kern_no_space even if there are pages available earlier in the
address space.

The value of address! when an error occurs is undefined in the design and therefore also depends
on the implementation algorithm and is left unspecified. In the case where more than one error
occurs we assume that the first applicable return status from the following list is returned:
Kern_insufficient _permission, Kern_invalid_argument, Kern_invalid_address and Kern_no_space.

Review Note:
The prototype checks the conditions in the order C1, C2, C3, C4 and C5.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
292 Virtual Memory Requests

@)
'_\
@)
N
@)
W
Q)
N
@)
(63}

| address! return! |

address Kern_success

— Kern_no_space

— Kern_invalid_address
Address_num™(0) | Kern_success

— Kern_invalid_argument

— Kern_insufficient _permission

||| = |
||| =<

Table 46: Return Values for vm_allocate and vm_allocate_secure

— RVVmAlocateSuccessful
AddressSpace
VmAllocate Outputs
C1lVmAllocate GoodSecurityld
C2VmAllocate TaskRemains
C3VmAllocatePosttiveSize
C4VmAllocate GoodAddress
ChVmAllocateRoomToAllocate

address! = address
return! = Kern_success

__RVVmAllocateNoSpace
AddressSpace
VmAllocate Outputs
C1lVmAllocate GoodSecurityld
C2VmAllocate TaskRemains
C3VmAllocatePosttiveSize
C4VmAllocate GoodAddress
NotChVmAllocate RoomToAllocate

return! = Kern_no_space

__RVVmAllocate BadAddress
AddressSpace
VmAllocate Outputs
C1lVmAllocate GoodSecurityld
C2VmAllocate TaskRemains
C3VmAllocatePosttiveSize
NotC4VmAllocate GoodAddress

return! = Kern_invalid_address

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 293

__RVVmAllocateVacuous
AddressSpace
VmAllocate Outputs
C1lVmAllocate GoodSecurityld
C2VmAllocate TaskRemains
NotC3VmAllocatePosttiveSize

address! = Address_num™ (0)

return! = Kern_success

— RVVmAllocate BadArgument
AddressSpace
VmAllocate Outputs
C1lVmAllocate GoodSecurityld
NotC2VmAllocate TaskRemains

return! = Kern_invalid_argument

__RVVmAllocate BadSecurityld
AddressSpace
VmAllocate Outputs
NotC1VmAllocate GoodSecurityld

return! = Kern_insufficient_permission

10.2.5 State Changes

When the request is successful, a new region size? in length is added to the mapped address
space for target_task? starting at address! (one of the outputs calculated above). This region is
initially mapped to the null memory object. The maximum protections for the new region are
set so that they allow all accesses, and the current protections allow reading and writing. The
inheritance for the region is initialized to Inheritance_option_copy. The initial value of O will be
set later when the region is first accessed.

Review Note:
The c_protection’ should take into account the access vector contents. It should be the intersection of
read and write with the permissions allowed from the target task to its vm port sid.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
294 Virtual Memory Requests

__VmAllocateState
A AddressSpace
A Protection
A Inheritance
Memory
address! : VIRTUAL_ADDRESS
stze? o N
target_task? : TASK

let region == { target_task? } X Region_of (address!, size?)
o allocated’ = allocated U region
A map_rel' (region) C ({ Null_memory} x OFFSET)
A m_protection’ = m_protection
®Set_region_attr(region, { Read, Write, Frecute})
A c_protection’ = c_protection & Set_region_attr(region, { Read, Write})
A inheritance’ = inheritance & Set_region_attr(region, Inheritance_option_copy)

_ VmAllocateSecureState
A PageSid
address! : VIRTUAL_ADDRESS
stze? o N
target_task? : TASK
obj_sid : OST

Bage_sid/ = page_sid
®Set_region_attr(({ target_task? } x Region_of (address!, size?)), obj_sid)

10.2.6 Complete Request

The general form of a vm_allocate request received through a task port has the following
form. If a security server request is needed, then after the processing is begun the security
request is made and the kernel request is marked as pending. It will later be continued by
VmContinue. Note that obj_sid’ is set to the default virtual memory security identifier for the
target task.

__ProcessingVmAllocateSignature
PortSid
MessageToVMParameters

= DtosAdditions

= Validated Requests
obj_sid' - OSI
thread’ : THREAD

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 295

__ ProcessingVmAllocate NoRequest
Transition
ProcessingVmAllocateSignature

operation? = Vm_allocate_id
thread' = active_thread(cpu??)
obj_sid" = vm_port_sid(target_task?)
let subject == thread_sid(thread’)
e VmNoSecurityRequest[subject /ssi, obj_sid’ [osi, Map_vm_region / perm)]

__ ProcessingVmAllocate With Request
Transition
ProcessingVmAllocateSignature

operation? = Vm_allocate_id

thread’ = active_thread(cpu??)

obj_sid" = vm_port_sid(target_task?)

let subject == thread_sid(thread’)

o VmSecurityRequest[subject/ssi, obj_sid’ [0si, Map_vm_region/perm]

The general form of a vm_allocate_secure request received through a task port has the
following form. If a security server request is needed, then after the processing is begun the
security request is made and the kernel request is marked as pending. It will later be continued
by VmContinue. Note that obj_sid" is set to the security identifier specified by obj_sid?.

—_ProcessingVmAllocateSecure NoRequest
Transition
ProcessingVmAllocateSignature

operation? = Vm_allocate_secure_id

thread’ = active_thread(cpu??)

obj_sid’ = obj_sid?

let subject == thread_sid(thread")

e VmNoSecurityRequest[subject/ssi, obj_sid’ [0osi, Map_vm_region/perm)]

— ProcessingVmAllocateSecure WithRequest
Transition
ProcessingVmAllocateSignature

operation? = Vm_allocate_secure_id

thread' = active_thread(cpu??)

obj_sid' = obj_sid?

let subject == thread_sid(thread’)

o VmSecurityRequest[subject /ssi, obj_sid' [0si, Map_vm_region/perm)

A successful request makes the state changes described in the previous section and creates a
kernel reply.

VmAllocate Good
= ((RVVmAllocateSuccessful v RVVmAllocate Vacuous)
A VmAllocateState A VmAllocateSecureState)
>> VmAllocate Reply

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
296 Virtual Memory Requests

An unsuccessful request returns an error status.

VmAllocate Bad
= (RVVmAllocate BadSecurityld V RVVmAllocate Bad Argument

V RVVmAllocate BadAddress V RVVmAllocate NoSpace)
>> RequestNoOp

Execution of the request consists of a good execution or an error execution.

Review Note:
The component address is hidden so that Ezecute VmAllocate has a signature consistent with other

requests.

Frecute VmAllocate = (VmAllocate Good Vv VmAllocate Bad) \ (address)

The full specification for kernel processing of a validated vm_allocate or vm_allocate_«—
secure request consists of processing the request, waiting until the correct information is in
the access vector cache (if necessary), and then executing the request.

VmAllocate
= ([VmContinue | operation? = Vm_allocate_id] V ProcessingVmAllocate NoRequest)

s Frecute VmAllocate
VmAllocateSecure
= ([VmContinue | operation? = Vm_allocate_secure_id]
V ProcessingVmAllocateSecure No Request)
s Frecute VmAllocate

10.3 vm_deallocate

The vm_deallocate task request deallocates a region of memory in the target task’s address
space.

10.3.1 Client Interface

kern_return_t vm_deallocate

(mach_port_t target_task_name,
vm_address_t address,
vm_size_t size);

10.3.1.1 Input Parameters The following input parameters are provided by the client of a
vm_deallocate request:

m target_task_name? — the client’s name for the task in whose virtual address space the
region is to be deallocated

m address? — starting address for the region

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005

DTOS FTLS 297

m size? — the number of bytes to deallocate. Any page that contains an address in the range
address? .. (address? + size? — 1) will be deallocated.

VmDeallocate ClientInputs
target_task_name? : NAME
address? : VIRTUAL_ADDRESS

size? N

A vm_deallocate request is invoked by sending a message to the port indicated by

target_task_name? that has the operation field set to Vm_deallocate_id and has a body con-
sisting of address? and size?.

—Invoke VmDeallocate
Invoke MachMsg
VmDeallocate ClientInputs

name? = target_task_name?
operation? = Vm_deallocate_id
msg_body = Region_to_body (address?, size?)

bl

10.3.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a vm_deallocate request:

m return! — the status of the request

— VmDeallocate ClientOutputs
return! : KERNEL_RETURN

— VmDeallocate Receive Reply
Invoke MachMsgRev
VmDeallocate ClientOutputs

return! = Text_to_status(msg_body)

10.3.2 Kernel Interface

10.3.2.1 Input Parameters The following input parameters are provided to the kernel for a
vm_deallocate request:

m target_task? — the task in whose virtual address space the region is to be deallocated

m address? — starting address for the region

m size? — the number of bytes to deallocate. Any page that contains an address in the range
address? .. (address? + size? — 1) will be deallocated.

VmDeallocate Inputs
target_task? : TASK
address? : VIRTUAL_ADDRESS

size? N

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
298 Virtual Memory Requests

10.3.2.2 Output Parameters The following output parameters are returned by the kernel for
a vm_deallocate request:

m return! — the status of the request

VmDeallocate Qutputs
Treturn! : KERNEL_RFETURN

10.3.3 Request Criteria

No criteria are defined for the vm_deallocate request.

10.3.4 Return Values

Table 47 describes the values returned at the completion of the request and the conditions
under which each value is returned.

Editorial Note:
As noted by CLI, the OSF KID states that Kern_invalid_address is returned if there are any unallocated
pages in the region to be deallocated. The prototype always returns Kern_success.

return!
Kern_success

Table 47: Return Values for vm_deallocate

— RVVmDeallocateSuccessful
VmDeallocate Qutputs

return! = Kern_success

10.3.5 State Changes

A successful vm_deallocate request deallocates virtual memory. It also deletes any system
attributes that are only defined for allocated memory (protections, inheritance, security iden-
tifier).

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 299

__VmDeallocateState
A AddressSpace
A Protection
A Inheritance
address? : VIRTUAL_ADDRESS
stze? o N
target_task? : TASK

let region == { target_task? } X Region_of (address?, size?)
e allocated’ = allocated \ region

A map_rel’ = region € map_rel

A m_protection’ = region 4 m_protection

A c_protection’ = region < c_protection

A inheritance’ = region < inheritance

— VmDeallocateSecureState
A PageSid
address? : VIRTUAL_ADDRESS
stze? o N
target_task? : TASK

Bage_sid/ = ({ target_task? } x Region_of (address?, size?)) < page_sid

10.3.6 Complete Request

The general form of a vm_deallocate request received through a task port has the following
form.

__Processing VmDeallocate
MessageToVMParameters

operation? = Vm_deallocate_id

A successful request makes the state changes described in the previous section and creates a
kernel reply.

VmDeallocate Good = (RVVmDeallocateSuccessful A VmDeallocateState)
>> RequestReturnOnlyStatus

Execution of the request consists of a good execution.

Ezecute VmDeallocate = VmDeallocate Good

The full specification for kernel processing of a validated vm_deallocate request consists of
processing the request followed by its execution.

VmDeallocate = Processing VmDeallocate § Fxecute VmDeallocate

10.4 vm_inherit

The vm_inherit task request sets the inheritance attribute for a region within a specified
task’s address space.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
300 Virtual Memory Requests

10.4.1 Client Interface

kern_return_t vm_inherit

(mach_port_t target_task_name,
vm_address_t address,
vm_size_t size,
vm_inherit_t new_inheritance);

10.4.1.1 Input Parameters The following input parameters are provided by the client of a
vm_inherit request:

m target_task_name? — the client’s name for the task in whose virtual address space the
region is contained

m address? — starting address for the region

m size? — the number of bytes in the region. The inheritance attributes will be modified for
any page that contains an address in the range address? .. (address? + size? — 1).

m new_inheritance? — the new inheritance attribute for the region

VmiInherit Clientinputs
target_task_name? : NAME

address? : VIRTUAL_ADDRESS

stze? o N

new_tnheritance? : INHERITANCE_OPTION

A vm_inherit request is invoked by sending a message to the port indicated by
target_task_name? that has the operation field set to Vmm_inkerit_id and has a body consist-
ing of address?, size?, and new_inheritance?.

__Invoke VmlInherit
Invoke MachMsg
VmiInherit Clientinputs

name? = target_task_name?
operation? = Vm_inherit_id
msg_body = Region_inheritance_to_body (address?, size?, new_inheritance?)

10.4.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a vm_inherit request:

m return! — the status of the request

VmiInherit ClientOQuiputs
Freturn! : KERNEL_RETURN

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 301

_ VmliInherit Recetve Reply
Invoke MachMsgRev
VmiInherit ClientOQuiputs

return! = Text_to_status(msg_body)

10.4.2 Kernel Interface

10.4.2.1 Input Parameters The following input parameters are provided to the kernel for a
vm_inherit request:

m target_task? — the task in whose virtual address space the region is contained
m address? — starting address for the region

m size? — the number of bytes in the region. The inheritance attributes will be modified for
any page that contains an address in the range address? .. (address? + size? — 1).

m new_inheritance? — the new inheritance attribute for the region

VmiInherit Inputs
target_task? : TASK

address? : VIRTUAL_ADDRESS
size? : N

new_inheritance? : INHERITANCE_OPTION

10.4.2.2 Output Parameters The following output parameters are returned by the kernel for
a vm_inherit request:

m return! — the status of the request

VmiInherit Qutputs
Freturn! : KERNEL_RETURN

10.4.3 Request Criteria
The following criteria are defined for the vm_inherit request.

m C1 — The value of new_inheritance? is valid.

_ C1VmInheritGoodInheritance
new_inheritance? : INHERITANCE_OPTION

new_inheritance? € { Inheritance_option_share, Inheritance_option_copy, Inherilance_oplion_none }

NotC1lVmiInheritGoodInheritance = = C'1 VmInheritGoodInheritance

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
302 Virtual Memory Requests

10.4.4 Return Values

Table 48 describes the values returned at the completion of the request and the conditions
under which each value is returned.

Review Note:

Although the OSF KID states that Kern_invalid_address is returned if the address is illegal or specifies
a non-allocated region, in the prototype, Kern_invalid_address is never returned for this request. It
appears that Kern_success is returned in the case of a bad address. CLI has also noted this discrepancy.

| return! | C1 |

Kern_success T
Kern_invalid_argument | F

Table 48: Return Values for vm_inherit

— RVVmliInheritSuccessful
VmiInherit Qutputs
ClVmliInheritGoodInheritance

return! = Kern_success

__ RVVmlInheritBadInheritance
VmiInherit Qutputs
NotC'1VmiInheritGoodInheritance

return! = Kern_invalid_argument

10.4.5 State Changes

A successful vm_inherit sets the inheritance attribute for the region defined by address? and
size? to the value specified by new_inheritance?.

—_ VmiInheritState
A Inheritance
= AddressSpace
target_task? : TASK

address? : VIRTUAL_ADDRESS
stze? o N

new_inheritance? : INHERITANCE_OPTION

let region == { page_index : PAGE_INDEX
| page_index € Region_of (address?, size?)
A (target_task?, page_index) € allocated
o (target_task?, page_index) }
e inheritance’ = inheritance & Set_region_attr(region, new_inheritance?)

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 303

10.4.6 Complete Request
The general form of a vm_inherit request received through a task port has the following form.

— Processing VmlInherit
MessageToVMParameters

operation? = Vm_inherit_id

A successful request makes the state changes described in the previous section and creates a
kernel reply.

VmInherit Good = (RVVmInheritSuccessful A VimInheritState)
>> RequestReturnOnlyStatus

An unsuccessful request returns an error status.

VmlInherit Bad
= RVVmInheritBadInheritance >> RequestNoOp

Execution of the request consists of a good execution or an error execution.

Ezecute VmiInherit = Vminherit Good ¥V Vminherit Bad

The full specification for kernel processing of a validated vm_inherit request consists of pro-
cessing the request followed by its execution.

VmlInherit = Processing VmlInherit § Execute VmInherit

10.5 vm_protect

The vm_protect task request sets the current and/or maximum protections for a region within
a specified task’s address space. If the parameter set_mazimum? is False, only the current
protections are set. If set_mazimum? is True, the maximum protections are set, and the current
protections are also set so that they do not exceed the new maximum. Note that this request
cannot be used to increase the maximum protections but only to decrease them.

10.5.1 Client Interface

kern_return_t vm_protect

(mach_port_t target_task_name,
vm_address_t address,
vm_size_t size,
boolean_t set_maximum,
vm_prot_t new_protection);

Secure Computing Corporation 83-0902024A001 Rev A

CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
304 Virtual Memory Requests

10.5.1.1 Input Parameters The following input parameters are provided by the client of a
vm_protect request:

m target_task_name? — the client’s name for the task in whose virtual address space the
region is contained

m address? — starting address for the region

m size? — the number of bytes in the region. The protections will be modified for any page
that contains an address in the range address? .. (address? + size? — 1).

m set_mazimum? — a Boolean indicating whether the maximum protection should be set.
A value of True indicates the maximum protection should be set. (The current protection
is also set if it violates the new maximum.) A value of False indicates only the current
protection is set.

m new_protection? — the new protection for the region

VmProtect ClientInputs
target_task_name? : NAME
address? : VIRTUAL_ADDRESS
size? : N

set_mazimum? : BOOLEAN
new_protection? : P PROTECTION

A vm_protect request is invoked by sending a message to the port indicated by
target_task_name? that has the operation field set to Vm_protect_id and has a body consisting
of address?, size?, set_mazimum?, and new_protection?.

— Invoke VmProtect
Invoke MachMsg
VmProtect ClientInputs

name? = target_task_name?
operation? = Vm_protect_id
msg_body
= Region_bool_prot_to_body(address?, size?, set_mazimum?, new_protection?)

10.5.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a vm_protect request:

m return! — the status of the request

__ VmProtect ClientOutputs
return! : KERNEL_RETURN

— VmProtect Receive Reply
Invoke MachMsgRev
VmProtect ClientOutputs

return! = Text_to_status(msg_body)

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 305

10.5.2 Kernel Interface

10.5.2.1 Input Parameters The following input parameters are provided to the kernel for a
vm_protect request:

m target_task? — the task in whose virtual address space the region is contained
m address? — starting address for the region

m size? — the number of bytes in the region. The protections will be modified for any page
that contains an address in the range address? .. (address? + size? — 1).

m set_mazimum? — a Boolean indicating whether the maximum protection should be set.
A value of True indicates the maximum protection should be set. (The current protection
is also set if it violates the new maximum.) A value of False indicates only the current
protection is set.

m new_protection? — the new protection for the region

VmProtectInputs
target_task? : TASK

address? : VIRTUAL_ADDRESS
size? : N

set_mazimum? : BOOLEAN
new_protection? : P PROTECTION

10.5.2.2 Output Parameters The following output parameters are returned by the kernel for
a vm_protect request:

m return! — the status of the request

VmProtect Qutputs
return! : KERNEL_RETURN

10.5.3 Request Criteria
The following criteria are defined for the vm_protect request.

m C1 — The new protection is less than the existing maximum protection.

—_C1VmProtectGoodProtection
Protection

target_task? : TASK
address? : VIRTUAL_ADDRESS
stze? o N

new_protection? : P PROTECTION

YV page_index : PAGE_INDEX
| page_index € Region_of (address?, size?)
o (target_task?, page_inder) € dom m_protection
A new_protection? C m_protection (target_task?, page_index)

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
306 Virtual Memory Requests

NotC1VmProtectGoodProtection = Protection A = C1VmProtectGoodProtection

10.5.4 Return Values

Table 49 describes the values returned at the completion of the request and the conditions
under which each value is returned.

Review Note:
Although the OSF KID states that Kern_invalid_address is returned if the address is illegal or specifies
a non-allocated region, in the prototype, Kern_invalid_address is never returned for this request. It
appears that Kern_success is returned in the case of an unallocated page. CLI has also noted this
discrepancy.

| return! | C1 |

| Kern_success T
| Kern_protection_failure | F

Table 49: Return Values for vm_protect

— RVVmProtectSuccessful
VmProtect Qutputs
C1VmProtectGoodProtection

return! = Kern_success

__ RVVmProtectBadProtection
VmProtect Qutputs
NotC'1VmProtectGoodProtection

return! = Kern_protection_failure

10.5.5 State Changes

A successful vm_protect sets either the maximum or the current memory protection (read,
write, and/or execute) allowed for the region, depending on whether set_mazimum? is True or
False. If the maximum is set below the current protection, the current protection must also be
adjusted to remove any permissions that are not within the new maximum.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 307

__ VmProtectState
A Protection
= AddressSpace
target_task? : TASK
address? : VIRTUAL_ADDRESS
stze? o N
set_martmum? : BOOLEAN
new_protection? : P PROTECTION

let region == { page_index : PAGE_INDEX
| page_index € Region_of (address?, size?)
A (target_task?, page_index) € allocated
o (target_task?, page_index) }
o (set_mazimum? = True
A m_protection’ = m_protection & Set_region_attr(region, new_protection?)
A c_protection’ = c_protection
@{ task_va_pair : TASK x PAGE_INDEX | task_va_pair € region
e task_va_pair — c_protection(task_va_pair) N new_protection? })
V (set_mazimum? = False
A c_protection’ = c_protection & Set_region_attr(region, new_protection?))

Review Note:
This ignores the protections coming from the security server. Right now these protections are not in the
model of the state.

10.5.6 Complete Request

The general form of a vm_protect request received through a task port has the following form.

— Processing Vm Protect
MessageToVMParameters

operation? = Vm_protect_id

A successful request makes the state changes described in the previous section and creates a
kernel reply.

VmProtect Good = (RVVmProtectSuccessful A VmProtectState)
>> RequestReturnOnlyStatus
An unsuccessful request returns an error status.
VmProtect Bad
= RVVmProtectBadProtection >> RequestNoOp
Execution of the request consists of a good execution or an error execution.
Ezecute VmProtect = VmProtect Good ¥V VmProtect Bad
The full specification for kernel processing of a validated vm_protect request consists of
processing the request followed by its execution.

VmProtect = Processing VmProtect § Frecute VmProtect

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
308 Virtual Memory Requests

10.6 vm_write

The vm_write task request writes an allocated region in the target task’s address space.

10.6.1 Client Interface

kern_return_t vm_write

(mach_port_t target_task_name,
vm_address_t address,
vm_offset_t data,
mach_msg_type_number_t data_count);

10.6.1.1 Input Parameters The following input parameters are provided by the client of a
vm_write request:

m target_task_name? — the client’s name for the task in whose virtual address space the
region is to be written

m address? — starting address for the destination region, which must be the start of a page
boundary

m data? — the data to be written

Editorial Note:

In the DTOS KID, this parameter is described as a page-aligned array of data. However, in the
prototype the date? parameter is a pointer to a vm_map_copy structure which encodes information
about the source region to copy including its offset, size, a type and a memory map. The type
describes how this structure represents the data. The three possibilities are an entry list, an object
and a page list (only entry lists are currently supported by the prototype). This structure is returned
by a vm_read request. We will model this structure as a MapCopy containing the offset, the size
and the task from whose address space the copy was made.

m data_count? — ignored

Editorial Note:

In the DTOS KID this parameter denotes the number of bytes in the array pointed to by the data?
parameter. However, the number of bytes is included in the vm.map_copy structure, and the
data_count? parameter is ignored in the prototype.

Vm Write ClientInputs
target_task_name? : NAME
address? : VIRTUAL_ADDRESS
data? : MapCopy

data_count? : N

Avm_write request is invoked by sending a message to the port indicated bytarget_task_name?
that has the operation field set to Vm_write_id and has a body consisting of address?, data?, and
data_count?.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 309

— Invoke VmWrite
Invoke MachMsg
Vm Write ClientInputs

name? = target_task_name?
operation? = Vm_write_id
msg_body = Address_data_to_body (address?, data?, data_count?)

10.6.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a vm_write request:

m return! — the status of the request

— VmWrite ClientOQutputs
return! : KERNEL_RETURN

— VmWrite Receive Reply
Invoke MachMsgRev
Vm Write ClientQutputs

return! = Text_to_status(msg_body)

10.6.2 Kernel Interface

10.6.2.1 Input Parameters The following input parameters are provided to the kernel for a
vm_write request:

m target_task? — the task in whose virtual address space the region is to be written

m address? — starting address for the destination region, which must be the start of a page
boundary

m data? — the data to be written

Editorial Note:

In the DTOS KID, this parameter is described as a page-aligned array of data. However, in the
prototype the data? parameter is a pointer to a vm_nmap_copy structure which encodes information
about the source region to copy including its offset, size, a type and a memory map. The type
describes how this structure represents the data. The three possibilities are an entry list, an object
and a page list (only entry lists are currently supported by the prototype). This structure is returned
by a vm_read request. We will model this structure as a MapCopy containing the offset, the size
and the task from whose address space the copy was made.

m data_count? — ignored

Editorial Note:

In the DTOS KID this parameter denotes the number of bytes in the array pointed to by the data?
parameter. However, the number of bytes is included in the vm.map_copy structure, and the
data_count? parameter is ignored in the prototype.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
310 Virtual Memory Requests

Vm WriteInputs
target_task? : TASK

address? : VIRTUAL_ADDRESS
data? : MapCopy

data_count? : N

10.6.2.2 Output Parameters The following output parameters are returned by the kernel for
a vm_write request:

m return! — the status of the request

Vm Write Qutputs
’»return! : KERNEL_RETURN

10.6.3 Request Criteria
The following criteria are defined for the vm_write request.

m C1 — The parameter address? and the offset included in the parameter data? are on a
page boundary. Also, the size included in data? is an integer number of pages.

— C1VmWritePageAligned
address? : VIRTUAL_ADDRESS
data? : MapCopy

{address?, data?.offset, Address_num™ (data?.size)} C Page_aligned

NotC1VmWritePageAligned = — C1VmWritePageAligned

m C2 — The addresses specified for the destination region are valid and are allocated.

— C2VmWriteGoodAddress
AddressSpace
target_task? : TASK
address? : VIRTUAL_ADDRESS
data? : MapCopy

let data_size == data?.size
o VmGoodRegion[address?/address, data_size [size]
A Region_of (address?, data_size) C allocated ({ target_task? })

NotC2VmWriteGoodAddress = AddressSpace A = C2VmWriteGood Address

s C3 — The target task has permission to write to the region.

Review Note:
I believe the security server should be queried to make sure the target task still has write permission.

However, | don't think the prototype currently makes this check (11/15/94).

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 311

_C3VmWrite Writable
Protection
target_task? : TASK
address? : VIRTUAL_ADDRESS
data? : MapCopy

V page : PAGE_INDEX
| page € Region_of (address?, data? . size)
A (target_task?, page) € dom c_protection
e Write € c_protection(target_task?, page)

NotC3VmWrite Writable = Protection A = C3 Vm Write Writable

Review Note:
Should we state that read permission is required on the source region? The prototype does require this,
but I am not certain what protections there will be on the map copy object.

10.6.4 Return Values

Table 50 describes the values returned at the completion of the request and the conditions
under which each value is returned.

| return! | C1 | Cc2 | C3 |
Kern_success T T T
Kern_protection_failure | T T F
Kern_invalid_address T F -
Kern_invalid_argument | F - -

Table 50: Return Values for vm_write

— RVVmWriteSuccessful
Vm Write Qutputs
ClVmWritePageAligned
C2VmWriteGoodAddress
C3VmWrite Writable

return! = Kern_success

_ RVVmWnriteProtectFail
Vm Write Qutputs

ClVmWritePageAligned
C2VmWriteGoodAddress
NotC3VmWrite Writable

return! = Kern_protection_failure

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
312 Virtual Memory Requests

_ RVVmWriteBadAddress
Vm Write Qutputs
ClVmWritePageAligned
NotC2VmWriteGoodAddress

return! = Kern_invalid_address

_ RVVmWritelnvalidArg
Vm Write Qutputs
NotC1VmWritePageAligned

return! = Kern_invalid_argument

Review Note:

The prototype also checks (after Cl) whether the size of the MapCopy is zero. If so, it returns
Kern_success without checking conditions C2 and C3. No changes are made to the state. Since, when
the size is zero, conditions C2 and C3 are automatically true and no words are changed below, this cir-
cumstance is covered by the Kern_success case, and we do not state the extra criterion.

10.6.5 State Changes

A successful vm_write request writes the data to the memory pages associated with the
specified area of virtual memory. The data written into the address space of the target task
originated from the address space of some task (e.g., it was read from that address space using
vm_read).

— VmWriteState
A VAWord
target_task? : TASK

address? : VIRTUAL_ADDRESS
data? : MapCopy

Vz:0..data?.size —1
| (address?, z) € dom Relative_addr
o va_word’ (target_task?, Relative_addr(address?, z))
= va_word (data?.task, Relative_addr(data?. offset, z))

Review Note:

It would be better to model memory maps explicitly (independent of tasks) in the state description instead
of just associating virtual addresses with tasks. This would allow map copies to be modeled as a special
memory map that has no directly associated task.

10.6.6 Complete Request

The general form of a vm_write request received through a task port has the following form.

— Processing Vm Write
MessageToVMParameters

operation? = Vm_write_id

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 313

A successful request makes the state changes described in the previous section and creates a
kernel reply.

VmWrite Good = (RVVmWriteSuccessful A VinWriteState)
>> RequestReturnOnlyStatus

An unsuccessful request returns an error status.

VmWrite Bad
= (RVVmWriteInvalidArg V RVVmWriteBadAddress V. RVVmWrite ProtectFail)

>> RequestNoOp

Execution of the request consists of a good execution or an error execution.

Ezecute VmWrite = Vm Write Good V Vm Write Bad

The full specification for kernel processing of a validated vm_write request consists of pro-
cessing the request followed by its execution.

VmWrite = Processing VmWrite § Frecute VmWrite

Review Note:

No interaction with memory managers for the region being written is specified. Any pages not backed
by Null_memory must not be locked against writing, but we only have locking information for cached
segments of the memory objects.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

Section

CDRL A005
314 Notes

11
Notes

11.1 Acronyms

CCA Covert Channel Analysis
CMU Carnegie Mellon University
DTOS Distributed Trusted Operating System
FSPM Formal Security Policy Model
IPC Interprocess Communication
KID Kernel Interface Document
MLS Multi-Level Secure

OSC Object Security Context

OSF Open Software Foundation
OSI Object Security Identifier

SID Security Identifier

SSC Subject Security Context

SSI Subject Security Identifier

VM Virtual Memory

11.2 Glossary

dirty page A page in kernel memory is dirty if the pager associated with the page has not yet
been made aware of modifications that have been made to the page.

permission A permission is an access mode enforced by the kernel. The kernel ensures that
a service is provided only when the client of the service has the appropriate permission.

precious page A page in kernel memory is precious if the pager associated with the page has
indicated that it is not maintaining a copy of the page. Regardless of whether the page
is dirty, the kernel must send the contents of the page to the pager before removing the
page from memory.

security server A security server is a user space task that provides access computations to
the kernel.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 315

Appendix A

Bibliography

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

William R. Bevier and Lawrence M. Smith. A Mathematical Description of the Mach
Kernel: Virtual Memory Services (Draft). Technical report, Computational Logic, Incor-
porated, August 1993.

William R. Bevier and Lawrence M. Smith. A Mathematical Model of the Mach Kernel:
Entities and Relations (Draft). Technical report, Computational Logic, Incorporated, April
1993.

William R. Bevier and Lawrence M. Smith. A Mathematical Model of the Mach Kernel:
Port Services (Draft). Technical report, Computational Logic, Incorporated, August 1993.

William R. Bevier and Lawrence M. Smith. A Mathematical Model of the Mach Kernel:
Task and Thread Services (Draft). Technical report, Computational Logic, Incorporated,
August 1993.

Todd Fine, Carol Muehrcke, and Edward A. Schneider. Formal Top Level Specification for
Distributed Trusted Mach. Technical report, Secure Computing Corporation, 2675 Long
Lake Road, Roseville, Minnesota 55113-2536, April 1993. DTMach CDRL A012.

Keith Loepere. Mach 3 Kernel Interfaces. Open Software Foundation and Carnegie Mellon
University, November 1992.

Keith Loepere. OSF Mach Kernel Principles. Open Software Foundation and Carnegie
Mellon University, final draft edition, May 1993.

Secure Computing Corporation. DTOS Kernel Interfaces Document. Technical report,
Secure Computing Corporation, 2675 Long Lake Road, Roseville, Minnesota 55113-2536,
April 1995. DTOS CDRL A003.

Secure Computing Corporation. DTOS Formal Security Policy Model (FSPM). Technical
report, Secure Computing Corporation, 2675 Long Lake Road, Roseville, Minnesota 55113-
2536, September 1996. DTOS CDRL A004.

Secure Computing Corporation. DTOS Lessons Learned Report. Technical report, Secure
Computing Corporation, 2675 Long Lake Road, Roseville, Minnesota 55113-2536, October
1996. DTOS CDRL A008.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
316 Z Extensions

Appendix B
Z Extensions

This section describes “extensions” to the Z specification language that are used in the DTOS
FTLS. All of these extensions are defined in terms of constructs in the Z specification language,
so they are not technically extensions to the language.

B.1 Disjointness and Partitions

It is often necessary to indicate that each element of a collection of values is unique. For
example, consider specifying that valy, . . ., val, are unique values. Since n might be relatively
large, it is undesirable to enumerate each pair:

valy # vals A valy # vals A valy # valy . ..

Although disjoint is part of the Z mathematical toolkit, it addresses disjointness of sets instead
of disjointness of values. While we could convert values to singleton sets of values as follows:

disjoint ({ valy },. .., { val, })

this is somewhat inconvenient. Another possibility would be to specify that:

(valy, ... valy)

is, when viewed as a function, injective. However, the expression:

(valy, ... valy) EN+ X

is a rather unintuitive way to express disjointness.

Instead, the generic predicate Values_disjoint is defined to state such disjointness properties.
The expression Values_disjoint{valy, ..., val,) denotes that valy, ..., val, are unique values.

Mach Definition 109

=[X]
Values_disjoint — : P(seq X)

YV val_seq : seq X

o Values_disjoint val_seq

& (Y, 0 : N | i € domwal_seq A iz € domval_seq A iy # iz
o val_seq(iy) # val_seq(iz))

Similarly, the expression (valy, ..., val,) Values_partition S denotes that the values valy, . . ., val,
are unique values that together comprise the setval_set.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 317

Mach Definition 110

=[X]
_ Values_partition _ : (seq X) = P X

Y val_seq : seq X; val_set : P X
o val_seq Values_partition val_set
& (Values_disjoint val_seq A val_set = ran val_seq)

B.2 Partial Orders

A partial ordering is a relation that isreflexive, antisymmetric, and transitive.

A reflexive relation is one that relates each element to itself; in other words, the identity
relation is contained in every reflexive relation.

An antisymmetric relation is a relation containing no cycles of the form (valy, vals) € R A
(valy, valy) € R for distinct val; and val,. Since (vals, valy) € R is equivalent to (valq, valy) € R™,

~

a relation is antisymmetric exactly when (valy, vals) € R A (valy, vals) € R~ only holds for
valy = wals. In other words, a relation is antisymmetric when its intersection with its inverse
is contained in «d.

A relation is transitive when:

(valy, vals) € R A (valy, vals) € R = (valy, vals) € R

In other words, whenever it is possible to get from val; to vals through repeated iteration of R,
R relates val, to wals directly. This is equivalent to R* being contained in R. For each type X,
the following sets of relations are defined:

» Reflexive[X] — the set of all reflexive relations on X
n Anti_symmeltric[X] — the set of all antisymmetric relations on X
n Transitive[X | — the set of all transitive relations on X

m Posel[X] — the set of all relations on X that are posets; this is simply the intersection of
Reflexive[X, Anti_symmetric[X], and Transitive[X]

Mach Definition 111

=[X]
Poset : P(X + X)

Reflexive : P(X + X)
Anti_symmetric : P(X = X)
Transitive : P(X <= X)

Poset = Reflexive N Anti_symmetric N Transitive
Reflexive ={R : X «+= X |id X C R}
Anti_symmetric={R: X +— X | RN R~ Cid X}
Transitive = {R : X «— X | R* C R}

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
318 Z Extensions

B.3 Sequences

The expression val_seq Add_value val is used to denote the sequence resulting from adding the
element val to the end of the sequence val_seq. The expression s Wrap_value val is used to denote
the sequence resulting from replacing the first element of val_seq with wval.

Mach Definition 112

—[X]
_Add_value _: (seq X) x X — (seq X)
— Wrap_value _: (seq X) x X — (seq X)

YV val_seq :seq X; val : X
o val_seq Add_value val = val_seq ~ {1 — val}
A (Fval_seq > 0 = val_seq Wrap_value val = val_seq & {1 — val})

The expression Seg_plus(.S) where S is a sequence of numbers returns the sum of the numbers
ins.
Mach Definition 113

Seq_plus : seq2 — 2

Seq_plus({)) =0
VS iseq; 2
o Seq_plus(S) = head(S) + Seq_plus(tail(5))

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 319

Appendix C
IPC

C.1 IPC Requests

This section describes the mach_msg request.

Review Note:
This section has not yet been updated for DTOS. Currently, this section is a direct copy of the correspond-
ing DTMach section with minor changes required for DTOS sections that depend on this section.

C.1.1 Constants and Types

We use the following type to denote mach_msg return codes:

[MACH_MSG_RETURN)

The return values defined in Mach are:

Mm_no_op : MACH_MSG_RETURN
Mm_send_msg_too_small : MACH_MSG_RETURN
Mm_send_no_buffer : MACH_MSG_RETURN
Mm_send_invalid_header : MACH_MSG_RETURN
Mm_send_wnvalid_dest : MACH_MSG_RETURN
Mm_send_wnvalid_reply - MACH_MSG_RETURN
Mm_send_invalid_notify : MACH_MSG_RETURN
Mm_rcv_invalid_notify : MACH_MSG_RETURN
Mm_rcv_invalid_name : MACH_MSG_RETURN
Mm_rcv_in_set : MACH_MSG_RETURN
Mm_rcv_timed_out : MACH_MSG_RETURN
Mm_rcv_too_large : MACH_MSG_RETURN
Mm_send_will_notify : MACH_MSG_RETURN
Mm_success : MACH_MSG_RETURN
Mm_send_wnvalid_right : MACH_MSG_RETURN
Mm_send_invalid_memory : MACH_MSG_RETURN
Mm_send_invalid_type : MACH_MSG_RETURN
Mm_rcv_port_died : MACH_MSG_RETURN
Mm_rcv_port_changed : MACH_MSG_RETURN

Values_disjoint(Mm_no_op, Mm_send_msg_too_small, Mm_send_invalid_header,
Mm_send_invalid_dest, Mm_send_invalid_reply, Mm_send_invalid_notify,
Mm_rcv_invalid_name, Mm_rcv_in_set, Mm_rcv_timed_out,
Mm_rcv_too_large, Mm_send_will_notify, Mm_success,
Mm_send_invalid_right, Mm_send_invalid_memory, Mm_send_invalid_type,
Mm_rev_port_died, Mm_rcv_port_changed)

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
320 IPC

C.2 mach_msg

Review Note:
This section has not yet been updated for DTOS. Currently, this section is a direct copy of the correspond-
ing DTMach section with minor changes required for DTOS sections that depend on this section.

The request mach_msg allows a thread to send and receive messages.'*

The request has the following input parameters:

m client? — the thread sending or receiving a message

m msgh? — the message header; note that this is only relevant when a message is being
sent

m option? — message options
m send_size? — specifies the size of msgh? when a message is being sent
m rcv_size? — specifies the size of msgh? when a message is being received

m rcv_name? — specifies the port or port set from which to receive a message when a
message is being received

m time_out? — specifies the amount of time to wait for the operation to complete before
giving up

m notify? — specifies the notification port to use in the case in which notifications are
requested

m msg_body? — the message body; note that this is only relevant when a message is being
sent

The request has the following output parameters:

m msgh!l — the message buffer; note that this is only relevant when a message is being
received

m rcv_size! — specifies the size of the message when an attempt is made to receive a message
that is too large

m msg_body! — the in-line data portion of the message; note that this is only an output in
the case when a message is being received

m msg_return! — the status of the request

The request is initiated by a schema of the following form.

14 The specification of this request is incomplete. See Section C.2.3 for a description of the work that remains to be
done.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 321

— MachMsgSignature
A DtosFErec
client? : THREAD
msgh . MachMsgHeader
option? : P MACH_MSG_OPTION
send_size? : N
rev_size? : N
rev_size! . N
rcv_name? : NAME
time_out? : N
notify? : NAME
msg_body : MESSAGE_BODY
msg_return! : MACH_MSG_RETURN

client? € dom owning_task
owning_task client? € task_exists

where the meaning of the parameters is as described earlier!®
If option? includes neither Mach_send_msg nor Mach_rcv_msg, then no processing occurs.'®
— MachMsgNoOp

= DiosExec
MachMsgSignature

{ Mach_send_msg, Mach_rcv_msg } N option? = &
msg_return! = Mm_no_op

C.2.1 Message Send

The mach_msg request can be used to send a message by including Mach_send_msg in option?
and not including Mach_rcv_msg.

_ MachMsgSend
MachMsgSignature

Mach_send_msg € option?
Mach_rcv_msg ¢ option?

There are four general cases to consider:

m An error condition occurs during the initial processing, and the request is a no-op.

m A subsequent error condition occurs and the message is returned through a pseudo-receive
operation.

= A subsequent error condition occurs and some of the message is lost during delivery.

15Note that the msgh? and msgh! parameters are both represented by msgh. Similarly, msg_body? and msg_body!
are both represented by msg_body.

16 The DTMach Kernel Interface does not define a return status for this case. We have introduced the return status
Mm_no_op to denote the return status in this case.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
322 IPC

m The message is successfully delivered.

The first case is discussed in Section C.2.1.1. The remaining cases are described in Sec-
tion C.2.1.2.

C.2.1.1 Initial Processing We use the following schema to describe send operations that are
processed as no-ops due to error conditions that arise during the initial processing of the
request:

MachMsgSendNoOp
= Dtos
MachMsgSend

If send_size? is too small, then an error message is returned and no further processing occurs.
We define the following constant to denote the minimum send size.

| Min_send_size : N

The case in which the message is too small is specified as follows:

— MachMsgSendMsgTooSmall
MachMsgSendNoOp

send_size? < Min_send_size
msg_return! = Mm_send_msg_too_small

If there is not enough memory available for the kernel to process the request, then an error
message is returned and no further processing occurs. We use the following predicate to indicate
when there is insufficient memory available:

| cannot_allocate_send_buffer — : P Mach

The specification of the processing is as follows:'”

— MachMsgSendSize Ok

send_size? : N

send_size? > Min_send_size

— MachMsgSendNoBuffer
MachMsgSendNoOp
MachMsgSendSize Ok

cannot_allocate_send_buffer(6 Mach)
msg_return! = Mm_send_no_buffer

17For convenience, we define a schema representing the negation of the earlier tests before defining the schema repre-
senting the processing for a given case. For example, the schema MachMsgSendSize Ok is the negation of the previously
described test of whether send_size? is too small. The schema MachMsgSendNoBuffer uses MachMsgSendSizeOk to
define the processing for the case in which there is insufficient memory available to process the request.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 323

If the rights specified for the local or remote port are invalid, then an error message is returned
and no further processing occurs. The rights specified for the remote port are valid only if they
provide the receiver with either aSend or Send_once right. Thus, the rights are invalid if they do
not include any of Mmi_make_send, Mmi_copy_send, Mmi_move_send, Mmi_make_send_once,
and Mmi_move_send_once. We define the set TRANSFER_SEND_RIGHTS to denote this set of
values of type MACH_MSG_TYPE.

TRANSFER_SEND_RIGHTS == { Mmi_make_send, Mmt_copy_send, Mmil_move_send,
Mmi_make_send_once, Mml_move_send_once }

The remote port rights are valid exactly when they contain an element of this set. Similarly,
the local port rights are valid when they contain an element of TRANSFER_SEND_RIGHTS.
In addition, the local port rights are also valid when they are empty and the local port is null.

The specification for the case in which either the remote or local port rights are invalid is as
follows:

_ MachMsgSendCanAllocate Buffer
Mach
MachMsgSendSize Ok

= cannot_allocate_send_buffer (0 Mach)

— MachMsgSendInvalidHeader
MachMsgSendCanAllocate Buffer
MachMsgSendNoOp

(msgh.remote_rights ¢ TRANSFER_SEND_RIGHTS V
TRANSFER_SEND_RIGHTS N msgh.local _rights = & A
(msgh.local_rights £ &V
msgh.local_port £ Mach_port_null) vV
= msgh.remote_rights € Recognized_transfer_options V
= msgh.local_rights C Recognized_transfer_options)
msg_return! = Mm_send_invalid_header

Otherwise, if the client task does not have the right required by msgh.remote_rights, then an
error message is returned and no further processing occurs. We use the following function to
denote the right required for each type of transfer:

Required_right : Recognized_transfer_options — RIGHT

Required_right =
{ Mmit_make_send — Receive,
Mmi_move_send — Send,
Mmi_copy_send — Send,
Mmi_make_send_once — Receive,
Mmi_move_send_once — Send_once,
Mmit_move_receive — Receive }

This function captures the following semantics of port right transfers in Mach:

m A receive right can be moved or used to create a send or send-once right.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
324 IPC

m A send right can be moved or copied.

= A send-once right can be moved.

Using this function, we specify the case in which the destination port is valid as follows:

_ MachMsgSendValidHeader
MachMsgSendCanAllocate Buffer
msgh . MachMsgHeader

msgh.remote_rights € TRANSFER_SEND_RIGHTS
(TRANSFER_SEND_RIGHTS N msgh.local_rights # &V
(msgh.local_rights = & A
msgh.local_port = Mach_port_null))
msgh.remote_rights € Recognized_transfer_options
msgh.local_rights C Recognized_transfer_options

— MachMsgSendInvalidDest
MachMsgSendValidHeader

MachMsgSendNoOp

(let needed_rights == Required_right(msgh.remote_rights);

port == named_port(owning_task(client?), msgh.remote_port) e
Vi:Ne

(owning_task(client?), port, msgh.remote_port, needed_rights, i)
¢ port_right_rel)
msg_return! = Mm_send_invalid_dest

Otherwise, if the client task does not have the right specified in msgh.local_rights, then an
error message is returned and no further processing occurs. Note that if the client task spec-
ifies Mmi_move_send or Mmi_move_send_once in msgh.remote_rights, then it loses a reference
to msgh.remote_port. This change in the number of references must be accounted for when
determining whether the client has sufficient rights formsgh.local_port.

Before defining the functions for manipulating the port name space, we first define the following
schema to denote that the previous checks were successful:

— MachMsgSendValidDest
MachMsgSendValidHeader
client? : THREAD

(let needed_rights == Required_right(msgh.remote_rights);
port == named_port(owning_task(client?), msgh.remote_port) e
di:Ne
(owning_task(client?), port, msgh.remote_port, needed_rights, i)
€ port_right_rel)

We use the following type to denote the kernel data structure defining the port name spaces
for each task. This structure has the same format and meaning as the relationpori_right_rel
in the definition of the Mach system state.

PORT_NAME_SPACE == P(TASK x PORT x NAME x RIGHT x Nj)

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 325

The function Change_ref_count is used to change the reference count associated with a name
and a right in a task’s port name space by a specified amount. If subtracting the specified
amount from the current count results in a positive value, then the new count is that positive
value. Otherwise, the name and right are not present in the port name space returned by this
function.

Change_ref _count : 2 x TASK x NAME x RIGHT x PORT_NAME_SPACE—
PORT_NAME_SPACE

Vtask, tasky : TASK; port : PORT; name, namey : NAME; right, right, : RIGHT;
1:Ny;n:2; pns: PORT_NAME_SPACE e

(task, port, name, right, i) €
Change_ref _count(n, tasky, namey, right,, pns) <

((task, port, name, right, 1) € pns A
(task, name, right) # (tasky, namey, righty)) V

((task, port, name, right, i + n) € pns A
(task, name, right) = (tasky, namey, righty))

The functions Change_receive_count, Change_send_count, and Change_send_once_count USe
Change_ref _count to change the count associated with a receive, send, or send-once right.

Change_receive_count : 2 x TASK x NAMFE x PORT_NAME_SPACE—
PORT_NAME_SPACE

Van:2; task : TASK; name : NAME; pns : PORT_NAME_SPACE e
Change_receive_count(n, task, name, pns) =
Change_ref _count(n, task, name, Receive, pns)

Change_send_count : 2 x TASK X NAME x PORT_NAME_SPACE
—PORT_NAME_SPACE

Van:2; task : TASK; name : NAME; pns : PORT_NAME_SPACE e
Change_send_count(n, task, name, pns) =
Change_ref _count(n, task, name, Send, pns)

Change_send_once_count : Z X TASK x NAME x PORT_NAMFE_SPACE—
PORT_NAME_SPACE

Van:2; task : TASK; name : NAME; pns : PORT_NAME_SPACE e
Change_send_once_count(n, task, name, pns) =
Change_ref _count(n, task, name, Send_once, pns)

The function Process_right computes a new port name space from an old port name space, a
task, a name, and a set of transfer options. If none of the transfer options requires moving
a right, then the resulting name space is the same as the input name space. Otherwise, the
count for each type of right that is moved is decremented.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
326 IPC

Process_right : P Recognized_transfer_options x TASK x NAME x
PORT_NAME_SPACE — PORT_NAME_SPACE

Y mmi_set : P Recognized_transfer_options; task : TASK; name : NAME,
pns : PORT_NAME_SPACE e
({ Mmt_move_receive, Mmt_move_send, Mmi_move_send_once } N mmi_set = & =
Process_right(mmi_set, task, name, pns) = pns) A
(Mmit_move_receive € mmi_set =
(let mmi_set; == mmi_set \ { Mmt_move_receive };
pns,; == Change_receive_count(1, task, name, pns) o
Process_right(mmi_set, task, name, pns) =
Process_right(mmi_sety, task, name, pns,))) A
(Mmt_move_send € mmit_set =
(let mmi_set; == mmi_set \ { Mmt_move_send };
pns; == Change_send_count(1, task, name, pns) o
Process_right(mmi_set, task, name, pns) =
Process_right(mmi_sety, task, name, pns,))) A
(Mmit_move_send_once € mmit_set =
(let mmi_set; == mmi_set \ { Mmt_move_send_once };
pns; == Change_send_once_count(1, task, name, pns) e
Process_right(mmi_set, task, name, pns) =
Process_right(mmt_sety, task, name, pns,)))

Using these functions, the case in which the reply port is invalid can be specified as follows.

__ MachMsgSendInvalidReply
MachMsgSendValidHeader
MachMsgSendNoOp

let needed_rights == Required_right(msgh.local_rights);
new_port_right_rel ==
Process_right({msgh.remote_rights}, owning_task client?,

msgh.remote_port, port_right_rel);
port == named_port(ow_ning_task client?, msgh.local_port) e

Aright : RIGHT |

right € needed_rights e
Vi:Ne
(owning_task client? port, msgh.local_port, right, i)
¢ new_port_right_rel

msg_return! = Mm_send_invalid_reply

This is analogous to the case in which the destination port is invalid. The main difference is
that the reference counts for the destination port are decremented, if necessary, before testing
the reply port. When the reply and destination ports are the same, this decrementing can
influence whether the reply port is valid.

If the client specifies the Mach_send_cancel option and msgh.notify does not denote a receive
right, then an error message is returned and no further processing takes place. As before,
it is necessary to decrement reference counts associated with earlier right transfers before
performing this test.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 327

— MachMsgSendValidReply
MachMsgSendValidHeader
MachMsgSendNoOp

let needed_rights == Required_right(msgh.local_rights);

new_port_right_rel ==
Process_right({msgh.remote_rights}, owning_task client?,

msgh.remote_port, port_right_rel);
port == named_port(ow_ning_task client?, msgh.local_port) e

Voright : RIGHT |

right € needed_rights e
di:Ne
(owning_task client? port, msgh.local_port, right, i)
€ new_port_right_rel

__ MachMsgSendInvalidNotify
MachMsgSendValidReply
MachMsgSendNoOp

Mach_send_cancel € option?
let new_port_right_rel ==
Process_right({msgh.remote_rights}, owning_task client?,
msgh.remote_port, port_right_rel)
o let new_port_right_r671 ==
Process_right(msgh local_rights, owning_task client?,
msgh.local_port, new_port_right_rel) o
(Vport: PORT;i:Ne
(owning_task client? port, notify?, Receive, i) ¢ new_port_right_rel;)
msg_return! = Mm_send_invalid_notify

The following schema denotes the case in which the kernel can continue processing the message.

_ MachMsgSendValid
MachMsgSignature
MachMsgSendValidReply

option? : P MACH_MSG_OPTION
notify? : NAME

Mach_send_cancel ¢ option? Vv
(let new_port_right_rel ==
Process_right({msgh.remote_rights}, owning_task client?,
msgh.remote_port, port_right_rel)
o let new_port_right_rel, ==
Process_right(msgh local_rights, owning_task client?,
msgh.local_port, new_port_right_rel) o
(Fport : PORT;i:Ne
(owning_task client? port, notify?, Receive, 1) € new—_port_right_rel;))

In this case, the message specified by the client is added to the set of messages in user space.
Before describing this processing, we first describe functions that convert a message from its
format in user space to its format in kernel space.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
328 IPC

The function Msgh_to_internal_msgh converts the message header. The remote_port and
local_port fields are filled in as specified by the two port parameters to the function. The
remaining fields are copied without change.

Msgh_to_internal_msgh : PORT x P PORT x MachMsgHeader — MachInternalHeader

YV msgh : MachMsgHeader; int_msgh : MachInternalHeader; port, : PORT; port, : P PORT |
Msgh_to_internal_msgh(port,, porty, msgh) = int_msgh e
msgh.local _rights = int_msgh local _rights A
msgh.remote_rights = int_msgh.remote_rights A
msgh.size = wnt_msgh.size A
msgh.operation = int_msgh.operation A
porty = it_msgh.remote_port A
porty = int_msgh.local _port

Editorial Note:

The previous definition used to state that the complexr field of the internal message header was copied
from the user space message header. It appears that it is really generated by the kernel parsing the
message.

The function Msg_data_to_msg_value converts an element of type MSG_DATA to an element of
type MSG_VALUE.

Msg_data_to_msg_value : MSG_DATA — MSG_VALUE

V msg_data : MSG_DATA e
Msg_data_to_msg_value msg_data = V_data(msg_data, V_data_in)

The function Msg_data_seq_to_msg_value_seq converts an element of type seq MSG_DATA to an
element of type seq MSG_VALUE.

| Msg_data_seq_to_msg_value_seq : seq MSG_DATA — seq MSG_VALUE

YV data_seq : seq MSG_DATA e
Msg_data_seq_to_msg_value_seq data_seq = Msg_data_to_msg_value o data_seq

The function Msge_to_internal_msge converts a single element of a message body. Elements in a
message in user space are either /n_line or Out_of _line. The former are converted to Msg_value
entries, and the latter are converted to Msg_region entries. The function’s task parameter is
associated with the element to record the task in whose space out-of-line data and port rights
should later be resolved.

Msge_to_internal_msge : TASK X Msg_element — Internal_element

Vn :N; mach_msg_type : MACH_MSG_TYPFE; data_seq : seq MSG_DATA,
va : VIRTUAL_ADDRESS; int_msge : Internal_element; task : TASK; olsd : OLSD e

(let value_seq == Msg_data_seq_to_msg_value_seq data_seq o
(Msge_to_internal_msge(task, In_line(n, mach_msg_type, data_seq))
= ni_msge

= int_msge = Msg_value(n, mach_msg_type, (task, value_seq)))
A (Msge_to_internal_msge(task, Out_of _line(n, mach_msg_type, va, olsd))
= ni_msge
= int_msge = Msg_region(n, mach_msg_type, (task, va, olsd))))

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 329

The function Msgb_to_internal_msgb converts a message body by applying
Msge_to_internal_msge to each element in the body.

Msgb_to_internal_msgh : TASK x MESSAGE_BODY — INTERNAL_BODY

YV msgb : MESSAGE_BODY ; int_msgb : INTERNAL_BODY ; task : TASK |
Msgb_to_internal_msgb(task, msgb) = int_msgb o
H#msgh = #int_msgb A
(Vi:N|i € dommsghe
int_msgh(i) = Msge_to_internal_msge(task, msgb(1)))

Finally, a message in user space is converted to a message in user space by using
Msgh_to_internal_msgh to convert the header and using Msgb_to_internal_msgb to convert the
body.

Msg_to_internal_msg : N X N x P MACH _MSG_OPTION x PORT x PORT x TASK x
Message — InternalMessage

Vtask : TASK; port,, port, : PORT; msg : Message; int_msg : InternalMessage;
current_time, time_out : N; option? : P MACH_MSG_OPTION
| Msg_to_internal_msg(current_time, time_out, option?, porty, port,, task, msyg)
= ni_msg
o Msgh_to_internal_msgh(port,, {porty}, msg.header) = int_msg.header A
Msgb_to_internal_msgb(task, msg.body) = int_msg.body A
wmi_msg.option = option? A
mi_msg.time_oul_al = if Mach_send_timeout € option?
then { current_time + ttme_out }
else O A
mi_msg.status = Msg_stat_send A
mi_msg.error = &

Note that:

m The time_out_at field is set to indicate the earliest time at which the send request can
time out.

If the client specified a time out was desired, then this field is set to the current time plus
the specified time out duration. Otherwise, the time_out_at field is set to & to denote that
the send request should block rather than time out.

m The status field is set to indicate that the message should be processed as part of a send
request.

m The error field is initialized to @.

The function Msgh_to_internal_msgh requires inputs indicating the remote and local ports. The
remote port can be determined by using named_port to resolve the remote port name in the
task’s name space. When the local port name is not null, the same approach can be used to
determine the local port. In the cases in which the local port name is null, we use Null_port to
denote the local port.

| Null_port : PORT

Before the message is moved into kernel space, the appropriate reference counts are decre-
mented and the make send count is incremented for any port for which a send right was made.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
330 IPC

The function Update_ms_count defines the changes that need to be made to make_send_count.
The count for the remote port must be incremented by 1 if a send right was made. Similarly,
the count for the local port must be incremented by 1 if it exists and a send right was made for
it.

Update_ms_count : (PORT x P Recognized_transfer_options)x
(PORT x P Recognized_transfer_options) x P PORT x
(PORT -+ N) — (PORT —+ N)

Y porty, porty, : PORT; old_ms_count : PORT -+ N;
mmi_sety, mmi_sets : P MACH_MSG_TYPE; port_set : P PORT e
Update_ms_count((porty, mmit_sety), (port,, mmit_sets), port_set, old_ms_count) =
if port, ¢ port_sel
then old_ms_count ® { port, —
old_ms_count porty + #({ Mmit_make_send } N mmi_sety) }
elseif port; = port,
then old_ms_count & { port, —
old_ms_count porty + #({ Mmt_make_send } N mmi_set1)+
#{ Mmt_make_send } N mmi_sets) }
else
old_ms_count & { port, —
old_ms_count port; + #({ Mmt_make_send } N mmit_sety),
porty — old_ms_count port, + #({ Mmt_make_send } N mmi_sets) }

Note that the above definition accounts for the possibility that the local and remote ports are
the same by counting the send rights made for either port against the common port.

The function Update_name_space performs any necessary decrementing of the reference counts
for the local and remote ports. It does so by first using Process_right to address the remote port
and then using Process_right on the result to address the local port.

Update_name_space : (P MACH_MSG_TYPE x NAME)x
(P MACH_MSG_TYPE x NAME)x
TASK x PORT_NAME_SPACE — PORT_NAME_SPACE

V mmi_set;, mmi_sets : P MACH_MSG_TYPE, task : TASK; name, names : NAME,
pns : PORT_NAME_SPACE e
Update_name_space((mmi_sety, namey), (mmi_seta, names), task, pns) =
(let pns; == Process_right(mmi_sety, task, namey, pns) o
Process_right(mmi_seta, task, names, pns,))

Using the previously defined functions, the entering of a send message request into kernel
space can be specified as follows:

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 331

— MachMsgSendStart
MachMsgSendValid

Imessage : MESSAGE; msg : Message;
porty, porty, : PORT; task : TASK e
message € message_evists’ \ message_cxists A
msg.header = msgh A
msg.body = msg_body A
task = owning_task client? A
porty = named_port(task, msgh.remote_port) A
(port, = if (task, msgh.local_port) € dom named_port
then named_port(task, msgh.local_port)
else Null_port) A
msg_contents’ = msg_contents U { message —
Msg_to_internal_msg(host_time, time_out?, option?, porty, portsy,
task, msg) }
A make_send_count’ =
(let pairy, == (porty, {msgh.remote_rights});
pairy == (porty, msgh.local_rights) e
Update_ms_count(pairy, pairy, port_ezists, make_send_count))
(let pairy == ({msgh.remote_rights}, msgh.rzmote_port);
pairy == (msgh.local_rights, msgh.local_port) e
Bort_right_rel/ = Update_name_space(pairy, pairy, owning_task client?,
port_right_rel))

C.2.1.2 Kernel Processing In this section, we describe the processing of messages in kernel
space that are not yet queued at a port.

The function Unprocessed_rights returns the set of port rights in transit that must be processed
before a message can be enqueued. An element(message, i, j) belongs to the resulting set exactly
when the ' element of message’s body is a data element whose j** entry is an unresolved
port right. Note that regardless of the types of the data elements in a message body, no
rights are transferred unless the complex field of the message header indicates rights are being
transferred.

Unprocessed_rights : Mach — P(MESSAGE x N x N)

VY mach_st : Mach e
Unprocessed_righls mach_st = {message : MESSAGE; i,j : N |
message € mach_st.message_exists N\
Co_carries_rights € (mach_st.msg_contents message).header.complex A
(mach_st.msg_contents message).status = Msg_stat_send A
(let int_msgb == (mach_st.msg_contents message).body e
1 € dom int_msgb A
(In :N; mach_msg_type : MACH_MSG_TYPE;
value_seq : seq MSG_VALUFE; task : TASK,
msg_data : MSG_DATA; v_data_l : V_DATA_LOCATION
e int_msgb(i) = Msg_value(n, mach_msg_type, (task, value_seq)) A
mach_msg_type € Recognized_transfer_options A
J € dom value_seq A
value_seq(j) = V_data(msg_data, v_data_l)))}

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

332

CDRL A005
IPC

The function Unprocessed_memories returns the set of memory objects in transit that must
be processed before a message can be enqueued. An element (message, i) belongs to the re-
sulting set exactly when the i'* element of message’s body is an unprocessed out-of-line data
element. Note that regardless of the types of the data elements in a message body, no memories
are transferred unless the complex field of the message header indicates memories are being

transferred.

Unprocessed_memories : Mach — P(MESSAGE x N)

¥V mach_st : Mach o

Unprocessed_memories mach_st = {message : MESSAGE; ¢ : N |
message € mach_st.message_exists N\
Co_carries_memory € (mach_st.msg_contents message).header.complex A
(mach_st.msg_contents message).status = Msg_stat_send A
(let int_msgb == (mach_st.msg_contents message).body e
1 € dom int_msgb A
(In :N; mach_msg_type : MACH_MSG_TYPE; olsd : OLSD;
task : TASK; va : VIRTUAL_ADDRESS o
int_msgh(i) = Msg_region(n, mach_msg_type, (task, va, olsd)))) }

The function Element_type returns the type of an element in a message body.

Element_type : Internal_element — MACH_MSG_TYPE

Y inte : Internal_element; n : N; mach_msg_type : MACH_MSG_TYPE,

value_seq : seq MSG_VALUFE; task : TASK,

va : VIRTUAL_ADDRESS; olsd : OLSD;

memory : MEMORY ; offset : OFFSET |

mnte €
{ Msg—_value(n, mach_msg_type, (task, value_seq)),
Msg_region(n, mach—msg_type, (task, va, olsd)),
Transit_memory(n, mach—msg_type, (task, memory, offset)) } o
Element_type inte = mach_msg_type

The set Invalid_msg_types indicates the set of message elements having invalid data types. An
element (message, 1) belongs to the resulting set exactly when the type specified for the i/
element of message’'s body is invalid. The set Valid_data_types defines the set of valid data

types.

Valid_data_types : P MACH_MSG_TYPE
Invalid_msg_types : Mach — P(MESSAGE x N)

Recognized_transfer_options C Valid_data_types

VY mach_st : Mach e
Invalid_msg_types mach_st = { message : MESSAGE; i : N |
message € mach_st.message_exists N\
i € dom(mach_st.msg_contents message).body A
FElement_type((mach_st.msg_contents message).body(i)) ¢ Valid_data_types }

The set Processed_messages indicates the set of messages that are not yet enqueued but require
no further processing. In other words, these are messages that have no elements with invalid
data types or unprocessed rights or memories and that are not present in any message queue.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 333

Processed_messages : Mach — P MESSAGE

VY mach_st : Mach e
Processed_messages mach_st =
mach_st.message_exisis\
({message : MESSAGE; i,5 :N |
(message, i,j) € Unprocessed_rights mach_st & message }U
{message : MESSAGE; i : N |
(message, i) € Invalid_msg_types mach_st o message }U
{message : MESSAGE; i : N |
(message, i) € Unprocessed_memories mach_st ® message }U
{ message : MESSAGE | (3 port : PORT e
message € ran(mach_st.message_in_port_rel port)) U
{ message : MESSAGE | (mach_st.msg_contents message).status
Msg_stat_send })

The function Address_to_index is used to convert a virtual address into a page index.

| Address_to_index : VIRTUAL_ADDRESS — PAGE_INDEX

Before describing the processing of message elements, we define the following schema to rep-
resent parts of the processing that are common to the various cases to be considered:

— GeneralSendProcessing
A DtosEzec
message : MESSAGE
,n:N
ml_msgy, int_msg, : InternalMessage
v_data_l: V_DATA_LOCATION
task : TASK
value_seqq, value_seq, : seq MSG_VALUFE
mach_msg_type : MACH_MSG_TYPE
va : VIRTUAL_ADDRESS
olsd : OLSD
memory : MEMORY
offset : OFFSET
error : MSG_FERROR
page_inder : PAGE_INDEX

message € message_exists
mmi_msg, = msg_contents message
i € dom(int_msyg,.body)
int_msg,.body(i) €
{ Msg_value(n, mach_msg_type, (task, value_seq,)),
Msg_region(n, mach_msg_type, (task, va, olsd)),
Transit_memory(n, mach_msg_type, (task, memory, offset)) }
msg_conlents’ = msg_conlenls @ { message — inl_msg, }
ml_msg,.header = ini_msg,.header
mi_msgy.option = ini_msg,.option
mi_msg,.time_oui_at = int_msg,.time_out_at
int_msg,.error £ & = int_msg,.error = int_msg,.error
page_indexr = Address_to_index va

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
334 IPC

This schema requires that message is an existing message and : is a valid index for the body
of the message associated with message. The processing of the element is accomplished by
modifying the body of the message. The components int_msg, and nt_msg, are introduced
to denote the initial and final values for the message. It is required that the header, option,
and time_oui_at fields of the message are not altered. Furthermore, it is required that the
error field cannot be altered if it is nonempty. The remaining components of the schema are
introduced to define the general form of the :'* element of the message body.

The function replace_entry replaces a specified entry in a sequence with a specified value.

=[]
replace_entry : Ni x X X seq X — seq X

Vi:Ny;z: X;z_seq:seqX |t € domz_seq e
replace_entry(i, z,z_seq) = x_seq ® { i — z }

The function Data_to_name converts an element of type MSG_DATA to an element of type
NAME. It is assumed that this function is an injection.

| Data_to_name : MSG_DATA —~+ NAME

From the schema GeneralSendProcessing, we build the following schema for processing port
rights:

__GeneralSendProcessing?
GeneralSendProcessing
J:N
value_seq, : seq MSG_VALUE
port : PORT
msg_data : MSG_DATA
name : NAME

int_msg,.body(i) = Msg_value(n, mach_msg_type, (task, value_seq,))
mach_msg_type € Recognized_transfer_options
Co_carries_rights € int_msg,.header.complex
J € dom value_seq,
value_seq,(j) = V_data(msg_data, v_data_l)
name = Data_to_name msg_data
port = if (task, name) € dom named_port A
(Fk:Ne
(task, named_port(task, name), name, Required_right(mach_msg_type), k) €
port_right_rel)
then named_port(task, name)
else Null_port
value_seqy, = replace_entry(j, V_port(port, v_data_l), value_seq,)
ml_msg,.body =
replace_entry(i, Msg_value(n, mach_msg_type, (task, value_seq,)),
int_msg,.body)

This schema requires that the message element being processing is of the Msg_value form and
the type of the message element indicates that a port right is being transferred. The compo-
nent j indicates the index into value_seq, denoting the right to be processed. The component

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 335

value_seq., is introduced to denote the new sequence of values to be stored as the i element
in the body. The new sequence is obtained by replacing the j!* entry of the original sequence
with an entry indicating the port to which the transferred right resolves. The componentport
is introduced to denote this port. The component name is introduced to represent the name of
the transferred right. The name is defined by the data in the;j** element of the sequence. If
the name is in the task’s name space and the task has the appropriate rights to transfer the
port, then port is defined to be the port associated with the name in the task’s name space.
Otherwise, port is defined to be the Null_port.

If a message contains an element with an invalid data type, then progress can be made in
processing the message by processing that element. The message element is processed by
removing it from the body and recording the error condition if no error condition has previously
been recorded.

The function remove_entry removes a specified entry from a sequence.

=[]
remove—_entry : N X seq X — seq X

Vi:N;z_seq:seq X o
remove_entry(i, z_seq) = (1 ..4) 1 z—seq) " (1 + 1) .. #z_seq) | z_seq)

Using this function, the processing of a data element with an invalid type is as follows:

— ProcessInvalid Type
GeneralSendProcessing

(message, 1) € Invalid_msg_types(d Mach)
int_msgy.body = remove_entry(i, int_msyg,.body)
imt_msg,.status = int_msg,.status
ml_msg,.error = & =

inl_msg,.error = { Msg_error_invalid_type }

If a message contains port rights that have not yet been processed, then progress can be made
in processing the message by processing one of the port rights. The first case to consider is
that in which the name being processed does not denote a right appropriate for the type of
transfer requested. In this case, GeneralSendProcessing? resolves the name to Null_port. Thus,
the processing for this case can be specified as follows:

__ ProcessRightBad
GeneralSendProcessing?

(message, i,j) € Unprocessed_rights(d Mach)
port = Null_port

imt_msg,.status = int_msg,.status
ml_msg,.error = & =

inl_msgq.error = { Msg_error_invalid_right }

In other words, the invalid right is replaced by a right for Null_port. The conversion from an
entry of type V_data to V_port makes progress towards completion of the request since there
is one less unprocessed right in the resulting state.

The only differences between this and the processing of a valid port right are:

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
336 IPC

m it is not necessary to record an error for a valid port right

s the task’s port name space and port's make-send count must be updated

—_ ProcessRightGood
GeneralSendProcessing?

(message, i,j) € Unprocessed_rights(d Mach)
port # Null_port
port_right_rel' = Process_right({ mach_msg_type }, task, name, port_right_rel)
_make_send_count/ = make_send_count @ { port B
make_send_count port + #({ mach_msg_type } N { Mmt_make_send }) }
int_msg,.status = ini_msg, .status A
mi_msg,.error = int_msg,.error

The case in which an out-of-line memory region is inaccessible to the sending task is specified
as follows:

__ ProcessMemoryBad
GeneralSendProcessing

(message, i) € Unprocessed_memories(§ Mach)

int_msg,.body(i) = Msg_region(n, mach_msg_type, (task, va, olsd))
((task, page_index) ¢ allocated v

Read ¢ protection(task, page_index))
int_msgy.body = remove_entry(i, int_msg,.body)
mi_msgy.status = int_msg, .status A
ml_msg,.error = & =

inl_msgy.error = { Msg_error_invalid_memory }

If an out-of-line memory region is accessible and does not carry any port rights, then the
element of form Msg_region can be converted into an element of form Transit_memory.

— ProcessMemoryGood
GeneralSendProcessing

(message, i) € Unprocessed_memories(§ Mach)

int_msg,.body(i) = Msg_region(n, mach_msg_type, (task, va, olsd))

(task, page_indez) € allocated

Read ¢ protection(task, page_index)

(mach_msg_type ¢ Recognized_transfer_options V
Co_carries_rights ¢ int_msg,.header.complex)

((task, page_index), (memory, offset)) € map_rel

(let inte == Transit_memory(n, mach_msg_type, (task, memory, offset)) o
int_msgy.body = replace_entry(i, inte, int_msg, .body))

map_rel’ = if olsd = Msg_deallocate
then { (task, page_index) } Q@ map_rel else map_rel

int_msg,.status = ini_msg, .status A

mi_msg,.error = int_msg,.error

Note that the transferred memory is deallocated from the address space of the sending task if
olsd indicates that it should be deallocated.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 337

If an out-of-line memory region is accessible, carries port rights, and is currently in memory,
then the element of form Msg_region can be converted into an element of form Msg_value. The
resulting element will subsequently be processed by ProcessRightGood or ProcessRightBad.

The function Va_offset is used to add an integer to a virtual address.

| Va_offset : VIRTUAL_ADDRESS x N— VIRTUAL_ADDRESS

The function Index_to_offset is used to convert a page index to a page offset.

‘ Index_to_offset : PAGE_INDEX — PAGE_OFFSET

The function Word_to_data is used to convert a word on a page to a data item.

| Word_to_data : WORD — MSG_DATA

— ProcessAvailable QutOfLine Rights

GeneralSendProcessing

(message, i) € Unprocessed_memories(§ Mach)
int_msg,.body(i) = Msg_region(n, mach_msg_type, (task, va, olsd))
mach_msg_type € Recognized_transfer_options
Co_carries_rights € int_msg,.header.complex
dpage_reference_set : P(N x VIRTUAL_ADDRESS x PAGE_INDEX) o
page_reference_sel = {m :N; va; : VIRTUAL_ADDRESS,;
page_inder, : PAGE_INDEX |
mel..n A
vay = Va_offset(va, m) A
page_inder, = Address_to_index vay } A
value_seq, = {k : N; vas : VIRTUAL_ADDRESS;;
page : PAGE; page_offset : PAGE_OFFSET; word : WORD;
page_inders : PAGE_INDEX ; memory, : MEMORY ; offset, : OFFSET;
msg_data : MSG_DATA |
(k, vas, page_index) € page_reference_set A
page_inder, = Address_to_index vas A
(task, page_index,) € allocated A
Read € protection(task, page_index,) A
((task, page_index,), (memory,, offsety)) € map_rel A
(page, (memory,, offset,)) € represents_rel A
page—offset = Index_to_offset page_inder, A
((page, page_offset), word) € page_word_rel A
msg_data = Word_to_data word e
(k, V_data(msg_data, V_data_out)) } A
(let inte == Msg_value(n, mach_msg_type, (task, value_seq,)) o
int_msgy.body = replace_entry(i, inte, int_msg, .body)) A
map_rel' = if olsd = Msg_deallocate
then { r :N; vas : VIRTUAL_ADDRESS; page_indexs : PAGE_INDEX |
(r, vag, page_indexs) € page_reference_set o
(task, page_indery) } € map_rel
else map_rel
int_msg,.status = ini_msg, .status A
mt_msg,.error = int_msg,.error

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
338 IPC

The set page_reference_set denotes the pages that are referenced by the message element. If
each page is in memory, the necessary data can be read from the pages and stored invalue_seq,.
Note that if olsd indicates that the region should be deallocated, then each of the referenced
pages is removed from the address space of the sending task.

If a page referenced by the message element is not accessible, then the processing is analogous
to that described by ProcessMemoryBad.

__ ProcessRightsMemoryBad
GeneralSendProcessing

(message, i) € Unprocessed_memories(§ Mach)
int_msg,.body(i) = Msg_region(n, mach_msg_type, (task, va, olsd))
mach_msg_type € Recognized_transfer_options
Co_carries_rights € int_msg,.header.complex
Jdpage_reference_set : P(N x VIRTUAL_ADDRESS x PAGE_INDEX) o
page_reference_sel = {m :N; va; : VIRTUAL_ADDRESS,;
page_inder, : PAGE_INDEX |
mel..n A
vay = Va_offset(va, m) A
page_inder,; = Address_to_index vay } A
(3% :N; vag : VIRTUAL_ADDRESS;
page_inder, : PAGE_INDEX o
(k, vas, page_index) € page_reference_set A
page_inder, = Address_to_index vas A
((task, page_index) ¢ allocated vV
Read ¢ protection(task, page_index,))) A
map_rel' = if olsd = Msg_deallocate
then { r :N; vas : VIRTUAL_ADDRESS; page_indexs : PAGE_INDEX |
(r, vag, page_indexs) € page_reference_set ®
(task, page_indery) } € map_rel
else map_rel
int_msgsy.body = remove_entry(i, int_msyg,.body)
mmt_msg,.status = int_msg,.status
ml_msg,.error = & =
inl_msgy.error = { Msg_error_invalid_memory }

If a page referenced by the message element is accessible but is not in memory, then the kernel
must request the page’s data from the page's memory manager.

The following function is used to build the header for the request sent to the memory manager.

Mach_object_data_request : OPERATION
Build_data_request _header : PORT x PORT — MachinternalHeader

Y porty, porty : PORT; inl_msgh : MachInternalHeader |
Build_data_request_header(port,, porty) = int_msgh e

int_msgh.local_rights = { Mmi_copy_send } A
wmi_msgh.remote_rights = Mmi_make_send_once A
wmi_msgh.complex = & A
int_msgh.remote_port = port; A
int_msgh.local_port = {port,} A
mt_msgh.operation = Mach_object _data_request

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 339

The first port parameter is the remote port and the second one is the local port. The operation
is specified as being Mach_object_data_request.

The following functions are used to build the body for the request sent to the memory manager.

Mmi_integer : MACH_MSG_TYPE

Mmi_protection : MACH_MSG_TYPE

Integer_to_data :N— MSG_DATA

Protection_to_data : P PROTECTION — MSG_DATA

Build_data_request _body : TASK x Nx N x P PROTECTION — INTERNAL_BODY

Vtask : TASK; 1,5 : N; prot_set : P PROTECTION e
Build_data_request_body(task, i, 7, prot_set) =
(let value_seq; ==
(V_data(Integer_to_data i, V_data_in), V_data(Integer_to_data j, V_data_in));
value_seq, == {V _data(Protection_to_data proi_set, V_data_in)) e
(Msg_value(2, Mmi_integer, (task, value_seq,)),
Msg_value(1, Mmi_protection, (task, value_seq,))))

The integers indicate, respectively, the desired offset in the memory object and length of the
data. The set of protections specify the access modes desired for the object.

The following function is used to build the request sent to the memory manager.

Build_data_request : TASK x PORT x PORT xNxN x P PROTECTION—

InternalMessage

Viask : TASK; porty, ports : PORT; 1,5 :N; prot_set : P PROTECTION;
ini_msg : InternalMessage |
int_msg = Build_data_request(task, port,, ports, 1,7, prot_set) o
int_msg.header = Build_data_request_header(port,, porty) A
int_msg.body = Build_data_request_body(task,i,j, prot_set) A
int_msg.option = { Mach_send_msg } A
mt_msg.time_out_at = I N
mi_msg.status = Msg_stat_send A
mit_msg.error = &

The function Index_to_nat is used to convert a page index to an integer.

| Index_to_nat : PAGE_INDEX ~+ N

The constant Page_size denotes the number of words on a page.

| Page_size : N

Using these definitions, the sending of a request to the memory manager can be specified as
follows:

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005

340 IPC

__ RequestRightsData
GeneralSendProcessing
mi_msg! . InternalMessage

(message, i) € Unprocessed_memories(§ Mach)
int_msg,.body(i) = Msg_region(n, mach_msg_type, (task, va, olsd))
mach_msg_type € Recognized_transfer_options
Co_carries_rights € int_msg,.header.complex
Jdpage_reference_set : P(N x VIRTUAL_ADDRESS x PAGE_INDEX) o
page_reference_sel = {m :N; vay : VIRTUAL_ADDRESS,;
page_index, : PAGE_INDEX |
mel..n A
vay = Va_offset(va, m) A
page_index,; = Address_to_index vay } A
(3% :N; page : PAGE; vas : VIRTUAL_ADDRESS;
page_inder, : PAGE_INDEX ; memory, : MEMORY ; offset, : OFFSET o
(k, vas, page_index) € page_reference_set A
page_inder, = Address_to_index vas A
(task, page_index,) € allocated A
Read € protection(task, page_index,) A
((task, page_index,), (memory,, offset,)) € map_rel A
(page, (memory., offset,)) ¢ represents_rel A
mi_msg! =
(let port; == object_port memory,;
porty, == conirol_port memorys;
prol_sel == { Read, Write, Execute };
r == Index_to_nat page_index,;
s == maz{ Page_size,n — (k — 1) * Page_size } ®
Build_data_request(kernel, porty, porty, . s, prot_set)))
int_msgy.body = remove_entry(i, int_msyg,.body)
imt_msg,.status = int_msg, .status
int_msg,.error = int_msg,.error

Note that ini_msg! denotes the message that should be sent to the memory manager. The
“sending” of this message would be represented by adding it to the range of msg_contents. For
simplicity, we do not address that processing here.

If the destination port for a message that has been processed does not exist, then the message
can be discarded.

Editorial Note:

The model of the state component f orcibly_queuned was previously as a function from a port to a message.
This model was based upon the Kernel Principles document which states ‘mach_nsg provides an option
allowing one message to be left waiting to be queued.” However, this is not one message per port, but
one message per port right. The model has now been fixed, but its ramifications on this section have not
been determined. Therefore all mention of f orcibly_gquexed within the Z has been commented out in this
section (though none of the text has been changed).

CAR 4041 has been filed to address this issue.

83-0902024A001 Rev A

Secure Computing Corporation
1.21, 4 December 1996

CAGE Code OHDC7

CDRL A005
DTOS FTLS 341

__PortDied
A DiosErec
message : MESSAGE

message € Processed_messages(0 Mach)
(msg_contents message).header.remote_port ¢ port_ewists
message_cxisls’ = message_ewists \ { message }

A message that has been processed can be queued at its destination port if that port exists and
there is room in the message queue associated with the port or if the message was sent using
a send-once right. The return status is as defined by the error component of the message if it
is nonempty. Otherwise, the status is Mm_success.

The function Error_to_status converts an element of type MSG_EFRROR to an element of type
MACH_MSG_RETURN.

Error_to_status : P MSG_ERROR — MACH_MSG_RETURN

Error_to_status = {{ Msg_error_invalid_memory } — Mm_send_invalid_memory,
{ Msg_error_invalid_right } — Mm_send_invalid_right,
{ Msg_error_invalid_type } — Mm_send_invalid_type,
{ Msg_error_msg_too_small } — Mm_send_msg_too_small }

— EnqueueMsg
A DtosEzec
message : MESSAGE

msg_return! : MACH_MSG_RETURN

message € Processed_messages(0 Mach)
(let port == (msg_contents message).header.remote_port o
port € port_exisis A
(q_limﬁport > port_size port V
B (msg_contents message).header.remote_rights €
{ Mmi_move_send_once, Mmt_make_send_once }) A
message_in_port_rel' = message_in_port_rel & { port —
message_in_port_rel port ” (message) })
msg_return! =
(let msg_error == (msg_contents message).error e
if msg_error £ @ then Frror_to_status msg_error
else Mm_success)

If the following conditions hold:

= The message was sent using a send right rather than a send-once right.

m The client specified the Mach_send_notify option and the message either does not have a
time out specified or the time out period has passed.

m The destination port exists and has a full message queue.

» No message is currently forcibly enqueued at the port.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
342 IPC

then the message can be forcibly enqueued at the port.

If there already is a message forcibly queued at the port, then an error message is returned
and a pseudo-receive is initiated. We represent that a pseudo receive has been initiated by
changing the message status from Msg_stat_send to Msg_stat_pseudo.

If a time out was specified and the time out period has passed, then the message can time out
with a pseudo receive operation being generated.

— MsgSendTimeQut
A DtosEzec
message : MESSAGE

msg_return! : MACH_MSG_RETURN

message € Processed_messages(0 Mach)
i :N| ¢ € (msg_contents message).time_out_at e
1 < host_time
Mach_send_notify € (msg_contents message).option
(msg_contents’ message).option = (msg_contents message).option
(msg_contents’ message).time_out_at = (msg_contents message).time_out_at
(msg_contents’ message).status = Msg_stat_pseudo
(msg—contents’ message).error =
if (msg_contents message).error = & then { Msg_error_timed_out }
else (msg_contents message).error

C.2.2 Message Receive
The mach_msg request can be used to receive a message by including Mach_rcv_msg in option?
and not including Mach_send_msyg.

— MachMsgRev
MachMsgSignature

Mach_rcv_msg € option?
Mach_send_msg ¢ oplion?

C.2.2.1 Initial Processing We use the following schema to describe receive operations that
are processed as no-ops due to error conditions that arise during the initial processing of the
request:

MachMsgRcuNoOp
= Dtos
MachMsgRcv

If recv_name? does not denote a receive right or a port set for the client task, then an error
message is returned and no further processing occurs.

— MachMsgRecvInvalidName
MachMsgNoOp

(owning_task client? rcv_name?) ¢ (r_right U port_set_namep)
msg_return! = Mm_rcv_invalid_name

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 343

Otherwise, if rcv_name? is a member of a port set, then an error message is returned and no
further processing occurs.

— MachMsgRevValidName
Mach
client? : THREAD
rev_name? : NAME

(owning_task client? rcv_name?) € r_right U port_set_namep

— MachMsgRecvInSet
MachMsgRcvValidName
MachMsgRcuNoOp

(owning_task client?, rcv_name?) € port_set_namep
msg_return! = Mm_rcv_in_set

Otherwise, the request is queued at the end of the list of pending receives.

__ MachMsgRevNotInSet
MachMsgRcvValidName

(owning_task client?, rcv_name?) ¢ port_set_namep

— MachMsgRcvMakePending
MachMsgRcv
MachMsgRcvNotInSet

Y p_rcv : PendingReceive |
p_rev.notify = notify? A
p_rev.option = option? A
p_rev.Teu_size = rev_size? A
prev.time_oul_al = if Mach_rcv_timeout € option?
then & else { time_out? + host_iime } @
pending_receives’ = pending_receives®
~ {(owning_task client? rcv_name?) —
pending_receives(owning_task client?, rev_name?) ~ {p_rcv) }

C.2.2.2 Kernel Processing Only the first request in the sequence associated with a port can
be processed when a message is detected at the port. We introduce the following schema to
denote processing of the first request.

__GeneralRevProcessing
A DtosEzec
p_rev : PendingReceive
task : TASK
name : NAME

(task,name) € local_namep N dom p ending_receives
#(pending_receives (task, name)) # 0
(pending_receives (task, name))(1) = p_rcv

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
344 IPC

The components tesk and naeme denote the task that initiated the receive operation and the
name that task specified as rcv_name?. We require that fask is an existing task, name is a name
that is in use in task’s name space, there is a sequence of pending receive requests associated
with (task, name), and the sequence of requests is nonempty. We introduce the componentp_rcv
to denote the first request in the sequence.

For a receive operation to be successful, the name specified by the client must either be a receive
right or the name of a port set. The following schema defines the processing for the case in
which the name is neither a receive right nor a port set:

__RcvPortDied
GeneralRevProcessing

msg_return! : MACH_MSG_RETURN

(task,name) & (r_right U port_set_namep)
pending_receives’ = pending_receives @ { (task, name)
B tail(p ending_rec_eives(task, name)) }

msg_return! = Mm_rcv_port_died

The request also fails if the specified name is a receive right that belongs to a port set.

_ RcvPortChanged
GeneralRevProcessing

msg_return! : MACH_MSG_RETURN

(task,name) € r_right
dname; : NAME o
(task, namey) € port_set_namep A
named_port(task, name) € port_set(task, name;)
pending_receives’ = pending_receives @ { (task, name)
B tail(p ending_rec_eives(task, name)) }
msg_return! = Mm_rcv_pori_changed

The following schemas define the negation of the previous checks.

__GeneralRcvProcessing?
GeneralRevProcessing
namey : NAME

port : PORT

message : MESSAGE

mt_msgy : InternalMessage

(((Fi:Ne
(task, port, name, Receive, i) € port_right_rel) A
namey = name) V B
((task, name) € pori_set_namep A
port € port_set(task, name) A
named_port(task, namey) = port))
(Mach_rcv_large ¢ p_rcv.option V
(msg_contents (message_in_port_rel port 1)).header.size < p_rev.rev_size)
#(message_in_port_rel port) # 0
(message_in_port_rel port)(1) = message
mmi_msg, = msg_contents message

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 345

If Mach_rcv_large is specified in option? and the message to be received is larger than rcv_size,
then an error message is returned, msghl.rcv_size is set to the size of the message, and no
further processing occurs.

_ MachMsgRevTooLarge
GeneralRevProcessing?
rev_size! : N

msg_return! : MACH_MSG_RETURN

Mach_rcv_large € p_rcv.option

(msg_contents (message_in_port_rel port 1)).header.size > p_rcv.rev_size

Bending_receivesl = pending_receives & { (task, name) —
tail(pending_receives(task, name)) }

rev_sizel = (msg_contents (message_in_port_rel port 1)).header.size

msg_return! = Mm_rcv_too_large

— GeneralRcvProcessing3
GeneralRevProcessing?
ml_msg, : InternalMessage

msg_conlents’ = msg_conlenls @ { message — inl_msg, }
ml_msg,.header = inli_msg,.header
int_msg,.time_oul_at = inl_msg, .teme_out_at

Using this schema, we represent the initiation of the processing by setting the status of the
message to Msg_stat_rcv.

__Initiate MsgRcv
GeneralRevProcessing3

int_msg,.body = int_msg,.body
mt_msg,.status = Msg_stat_rcv
mi_msg,.error = J

Subsequent processing occurs only on messages having a status of Msg_stat_rcv. We use the
following schema to represent processing of that form.

— GeneralRevProcessing4
GeneralRevProcessing?

imt_msg, .status = Msg_stat_rcv

— GeneralRcvProcessingb
GeneralRevProcessing3

imt_msyg, .status = Msg_stat_rcv

If the client did not specify Mach_rcv_large and the message is larger than the specified receive
size, then the message is dequeued and destroyed.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
346 IPC

The following schema denotes the dequeueing and destruction of a message:

__DestroyMessage
A DtosEzec
message : MESSAGE

port : PORT

msg_return! : MACH_MSG_RETURN

port € dom message_in_port_rel
#(message_in_port_rel port) # 0
(message_in_port_rel port)(1) = message
message_cxisls’ = message_ewists \ { message }
msg_conlenls’ = { message } 9 msg_conlents
message_in_port_rel = message_in_port_rel ® { port —
tail(message_in_port_rel port) }

Using this schema, the processing of a message that is too large can be specified as follows:

— MachMsgRecvTooLarge2
GeneralRevProcessing4
DestroyMessage

Mach_rcv_large ¢ p_rcv.option
ml_msg,.header.size > p_rcv.rev_size
msg_return! = Mm_rcv_too_large

If the client specified the Mach_rcv_notify option and the notify argument does not denote a
valid receive right, then the processing is similar.

— MachMsgReceivelnvalidNotify
GeneralRevProcessing4
DestroyMessage

(Mach_rcv_large € p_rcv.option V
int_msg,.header.size < p_rcv.rev_size)

Mach_rcv_notify € p_rcv.option

(task, p_rcv.notify) & r_right

msg_return! = Mm_rcv_invalid_notify

C.2.3 Notes

In this section we describe aspects of the mach_msg processing that are not addressed in the
preceding section and issues concerning the correctness of the specification. The main gaps in
the current specification are the kernel processing of receive and pseudo-receive requests.

The majority of this processing is concerned with transforming a message from type
InternalMessage to type Message. To a large extent, this processing is simply the reverse of
the processing described for the send request to transform a message from type Message to
type InternalMessage. There do not appear to be any major obstacles to defining this “reverse”
processing.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 347

A more serious problem with completing the specification of receive requests is the concur-
rency present in the system. For example, it is not clear from the available documentation
what happens if a task loses the receive right for a port while the kernel is in the middle of
dequeueing a message from that port. The kernel interface document states that a status of
Mm_rcv_pori_died is returned to the client, but is unclear about other aspects of the processing.
In particular, it is not clear from the documentation whether transferred port rights become
visible only after the kernel commits to dequeueing the message.

A related problem is addressing side-effects of send and receive operations. For example, when
a receive operation dequeues and destroys a message, receive rights for ports can be destroyed.
This requires the modeling of the destruction of the ports and the generation of notification
messages that must be sent.

Another problem that is common to all of the specifications in the FTLS is that input and output
parameters are represented by value while they are actually implemented as references. In
reality, the client specifies a virtual address rather than specifying a message header and
body. The kernel assumes that the message header starts at the specified address and that
the message body starts directly after the message header. One example of the ramifications
of this simplification in the specification is that the specification does not address the case in
which the sender of a message does not have access to the memory containing the header or
body. In this case, the implementation treats the request as a no-op and returns a status of
mm_send_invalid_data. A more complicated example is that the specification does not address
the case in which the memory indicated by the virtual address is not resident. In this case, the
kernel must enter a dialogue with a memory manager to determine the message header and
body to use for the request.

Several subtle aspects of Mach are unclear from the available documentation. Examples
include:

m It is not clear what the types of the remote_rights and local_rights fields of the message
header are. The specifications models them both as sets of MACH_MSG_TYPE. This
means that a send or send-once right must be transferred to the receiving task. Without
examining the Mach source code, it is not possible to tell whether this is really how Mach
works. A related question is whether more than one type of right can be passed at a time.
If not, then the sets of MACH_MSG_TYPFE should be constrained to having at most one
element.

= When determining whether an area of out-of-line memory is accessible by a client, it is
not clear whether the client’'s access to all of the pages comprising the region must be
checked or whether it suffices to simply check access to the first page. The latter would be
more efficient, but it requires that the kernel ensure that a client have the same access
to all pages comprising a memory object. Although this property is desirable, it is not yet
captured in the FTLS state.

» For simplicity, the current specification assumes that all of the pages containing port rights
passed in out-of-line memory must be resident before the kernel can process the rights.
It is possible that the implementation allows the kernel to process the rights contained
on resident pages while waiting for the data containing the other rights. Modeling this
capability would slightly complicate the model since provision would have to be made for
data elements that are partially in-line and partially out-of-line.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

Appendix

CDRL A005
348 Refinements of the State Model

D
Refinements of the State Model

In this appendix we refine portions of the state model to a lower level of detail. This models
some of the data types and relationships that are used to implement the high-level abstract
model described in the Basic Kernel State Definition and DTOS State Extensions chapters.

D.1 Additional Z Extensions

We define a function Gen_set to model generic queues. This function will be used in refining
many of the components of the state model. A generic queue has a head element that points
to the first element of a linked list of queue elements. HEAD is the generic type of the head
element of the queue, and FLEM is the generic type of the elements of the queue. If head_fnc
maps the head of a queue to the first element of the queue and nexzt_fnc maps a queue element
to its successor, then the expression Gen_set(head_fnc, nexzt_fnc) denotes a function mapping
each element of HEAD to the set of elements in its queue. We define a function Gen_seq
to model generic sequences. This function will also be used in refining components of the
state model. A generic sequence has a head element that points to the first element of a
sequence of elements. The expression Gen_seq(head_frc, next_fanc) denotes a function mapping
each element of HEAD to its sequence of elements.’® Note that for certain values of next_fnc
Gen_seq(head_fnc, next_fnc) may be infinite and therefore not of the typeseq ELEM .

_[HEAD, ELEM]

Gen_set : (HEAD ~ ELEM) x (ELEM — ELEM)
. (HEAD — P ELEM)

Gen_seq : (HEAD + ELEM) x (ELEM - ELEM)
. (HEAD — (Ny + ELEM))

Y head_fnc: HEAD +— ELEM,;
next_fnc : ELEM -+ ELEM,
head : HEAD
o Gen_seq(head_fnc, next_fnc)(head)
={i:Ny;e: ELEM | (head, ¢) € head_fnc ¢ (ne:pt_fnci_l)}
A Gen_set(head_fnc, next_fonc)(head)
= ran(Gen_seq(head_fnc, next_fac)(head))

D.2 Refinement of IPC Name Spaces

In refining the specification of IPC name spaces we introduce the following additional types:

[IPC_SPACE,IPC_ENTRY ,IPC_OBJECT, PORT_SET,IPC_SPLAY _TREFE,
IPC_TREE_NODEF]
IPC_TABLE == N; — IPC_ENTRY

18The Z expression Q ; R denotes the composition of two relations with @ applied first followed by R. The expression
RF¥ denotes the relation resulting from k applications of relation R. If k = 0, R* denotes the identity relation. Thus,
Q 3 (R¥) denotes one application of @ followed by applications of R.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 349

IPC_SPACE is the representation of a name space. Each name space consists of a set of
elements of type /PC_ENTRY . Some of these entries point to an /PC_OBJECT which may be
either a portor a port set. Note that we are introducing an explicit given type for port sets rather
than representing them merely as a set of ports. This agrees with the prototype and makes it
easier to model properties of port sets such as the message queue of a port set. The entries in
a space are organized into two data structures, an /PC_TABLE and an IPC_SPLAY _TREE.
An IPC_TABLE is simply a sequence of /PC_ENTRY that may have gaps in it. A splay tree is
a search tree containing nodes of type /IPC_TREE_NODE. Each I[PC_TREFE_NODFE points to
an /PC_ENTRY .

The expression task_space(tk) denotes the IPC_SPACE associated with task ¢k. No two tasks
have the same value for this expression. The set spacep denotes the existing IPC name
spaces. The expression space_table(sp) denotes the ITPC_TABLE associated with space sp,
and space_table_size(sp) denotes the current maximum size of this table. Note that this value
may change dynamically to improve performance and memory utilization. The expression
space_tree(sp) denotes the TPC_SPLAY _TREFE associated with space sp. Every space has both
a table and a splay tree although one or both of these could be empty.

—_IpeSpace
TaskFrist

task_space : TASK —+ IPC_SPACE

spacep : P IPC_SPACE

space_table : IPC_SPACE - IPC_TABLE
space_table_size : IPC_SPACE N

space_tree : IPC_SPACE -+ IPC_SPLAY _TREE

dom task_space = task_exists

ran task_space = spacep

dom space_table = dom space_table_size = dom space_tree = spacep
V sp : spacep @ maz(dom(space_tablesp)) < space_table_size(sp)

We augment the set of rights to contain Port_set_right and Dead_name_right. The former is the
right associated with an entry for a port set, and the latter is a right that may be associated
with a dead name. Because the marking of dead rights in Mach is performed lazily, a dead right
need not be marked Dead_name_right. It is also recognized as dead if it points to an inactive
IPC_OBJECT.

ALL_RIGHTS ::= Right_for_port{ RIGHT)) | Port_set_right | Dead_name_right

Recewve_right, Send_right, Send_once_right : ALL_RIGHTS

Receive_right = Right_for_port(Receive)
Send_right = Right_for_port(Send)
Send_once_right = Right_for_port(Send_once)

The set entryp denotes the existing /PC_ENTRY elements. An entry is marked with a gener-
ation that is used in determining whether it is out of date. The expression entry_gen(entry)
denotes the generation of entry. The expression entry_object(entry) denotes the IPC_OBJECT
associated with entry. The expression entry_rights(entry) denotes the setof ALL_RIGHTS asso-
ciated with entry. Finally, the expression entry_count(entry) denotes the number of send rights
denoted by entry when a name denotes multiple send rights for a task. If entry_count(entry) is
positive, then entry must denote a Send_right, Send_once_right or Dead_name_right.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
350 Refinements of the State Model

Editorial Note:
Should probably add dead name notification requests to this.

__IpcEntry
entryp : P IPC_ENTRY
entry_gen : IPC_ENTRY —— N
entry_object : IPC_ENTRY - IPC_OBJECT
entry_rights : IPC_ENTRY =P ALL_RIGHTS
entry_count : IPC_ENTRY N

dom entry_gen = dom entry_object = dom entry_rights = dom entry_count
= entryp
Ventry : IPC_ENTRY
| entry_count(entry) > 0
e entry_rights(entry) N {Send_right, Send_once_right, Dead_name_right} # &

Every entry in the table associated with a space must denote some right.

__IpcTable Entry
IpeSpace
IpcEntry

Ventry : IPC_ENTRY; table : IPC_TABLE
| table € ran space_table A enlry € ran table
e entry_rights(entry) # Q&

The set o bjectp denotes the existing /PC_OBJECT elements. An existing object may be inactive.
The active objects are denoted by active_objects. An IPC_OBJECT may be either a port or a
port set. The expressions object_as_port(oby) and object_as_port_set(obj) denote the associated
port or port set. The domains of these two functions partition the set of existing objects.

—IpcObject
objectp : PIPC_OBJECT
actwe_objects : P IPC_OBJECT
object_as_port : IPC_OBJECT —+ PORT
object_as_port_set : IPC_OBJECT —~+ PORT_SET

actiwve_objects C objectp
{(dom gbject_as_port, dom g bject_as_port_set)
partition objectp

A port port is in a port set P if and only if (port, P) € port_in_set.

__PortInSet
PortErist
port_setp : P PORT_SET
port_in_set : PORT —+ PORT_SET

dom pori_in_set C port_exists
ran port_in_set C pori_setp

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 351

Each NAMFE n encodes an index denoted pame_index(n) and a generation denoted name_gen(n).
If names n; and n, have the same index and generation, then they are the same name.

__ Name
name_inder : NAME — N
name_gen : NAME — N

Vo, ng: NAME

| name_indexr(ny) = name_index(ny)
A name_gen(ny) = name_gen(nz)

® N = Ny

The set splay_treep denotes the existing splay trees. For efficiency of lookup, a splay tree is
represented internally by three (possibly empty) tree structures, a left, a right and a middle
tree. The root /PC_TREE_NODE of each of these trees (when the tree is nonempty) is denoted,
respectively, by tree_left(splay), tree_right(splay) and tree_middle(splay). A pair (splay, node) is
in tree_trees if and only if node is the root of one of the three trees associated with splay.

— IpcSplayTree
splay_treep : PIPC_SPLAY _TREE
tree_middle : IPC_SPLAY _TREE +— IPC_TREE_NODE
tree_left : IPC_SPLAY_TREF - IPC_TREE_NODE
tree_right . IPC_SPLAY _TRFEE + IPC_TREE_NODE
tree_trees : IPC_SPLAY_TREF +— IPC_TREE_NODE

dom tree_trees C splay_treep
tree_trees = tree_middle U tree_left U tree_right

The set tree_nodep denotes the set of existing /PC_TREE_NODE elements. Each tree node
node points to an IPC_ENTRY which is denoted tree_node_entry(node). The expression
iree_node_name(node) denotes a NAMFE associated with node. Each tree node may have a
left and a right child tree node. These are denoted by the expressions iree_node_Ichild(node)
and tree_node_rchild(node). A pair (nodey, nodes) is in tree_node_children if and only if nodes is
either the left of right child of node; .

__IpcTreeNode
tree_nodep : PIPC_TREE_NODE
tree_node_entry : IPC_TREE_NODFE - [PC_ENTRY
tree_node_name : IPC_TREE_NODE —+— NAMFE
tree_node_lchild : IPC_TREE_NODE -+ IPC_TREE_NODFE
tree_node_rchild : IPC_TREE_NODE —« IPC_TREFE_NODE
tree_node_children : IPC_TREE_NODFE + IPC_TREE_NODE

dom tree_node_entry = domtree_node_name = tree_nodep
dom tree_node_Ichild C tree_nodep

dom tree_node_rchild C tree_nodep

tree_node_children = tree_node_Ilchild U tree_node_rchild

We are now ready to define the relations port_right_rel, port_set_rel, and dead_right_rel. All
three share the requirement that the space of the task must contain an entry with the appro-
priate name. If the entry is in the table, then the index of the name must match the position

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
352 Refinements of the State Model

of the name in the table, and the generations of the name and entry must be identical. If the
entry is in the splay tree, then the name in the tree node must equal the given name. This
requirement is abstracted by the relation entry_in_space. A triple (task, name, entry) is in this
relation if an only if it satisfies the above requirement.

__ EntrylnSpace
TaskFrist
IpcTable Entry
Name
IpeSplayTree
IpcTreeNode
entry_in_space : P(TASK x NAME x IPC_ENTRY)

Vik: TASK; n: NAME; entry : IPC_ENTRY
o (th, n, entry) € entry_in_space
& (th € task_exists
A entry € entryp
A (((name_index(n), entry) € space_table(task_space(tk))
A name_gen(n) = entry_gen(entry))
V (Isplay : IPC_SPLAY _TREFE;
tree_nodes : seq; IPC_TREE_NODE
(ask_space(tk), splay) € space_tree
splay, tree_nodes(1)) € tree_trees
last tree_nodes, entry) € tree_node_entry
last tree_nodes, n) € tree_node_name
Vi:2.. #tree_nodes
o (tree_nodes(i — 1), tree_nodes(i)) € tree_node_children))))

°
A
A
A
A

(
(
(
(

A 5-tuple (tk, p, n,r, count) is in pori_right _rel if and only if there exists an IPC_ENTRY , entry
such that

m (th, n, entry) is in entry_in_space,

r is one of the rights associated with the entry all of which are rights to use a port (i.e.,
not port set rights nor dead rights),

m an active object is associated with the entry,

the object is a port, and

either

— risareceive right and count is 1, or

— r is not a receive right and count is the right count of the entry.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 353

—_ PortRightRefinement
TasksAndPorts
EntrylnSpace
IpcObject

Vik: TASK; p: PORT;n: NAME; r: RIGHT; count : Ny

o (th,p,n,r, count) € port_right_rel

& (Jentry : IPC_ENTRY
o (th, n, entry) € entry_in_space
A Right_for_port(r) € entry_rights(entry) C ran Right_for_port
A entry_object(entry) € active_objects
A (entry_object(entry), p) € object_as_port
A ((r = Receive A count = 1)

V (7 # Receive A count = entry_count(entry))))

Editorial Note:

This is to cover up the name vs. port discrepancy in version 1.13 of the FTLS. When we incorporate this
refinement is a new version of the FTLS in which this discrepancy is fixed, we must remove this schema
and replace n ew_port_set below with port_set.

NewPortSets

TasksAndRights
new_port_set : (TASK x NAME) - P PORT

We define port_set_rel indirectly by defining new_port_set. A port port is in new_port_set(tk, n)
if and only if there exists an /PC_ENTRY , entry and a port set PS such that

m (th, n, entry) IS in entry_in_space,
» the right associated with the entry is Port_set_right,

m an active object is associated with the entry,

the object is PS and

port is an element of PS.

— PortSetRefinement
NewPortSets
EntrylnSpace
IpcObject
PortinSet

Vitk: TASK; port : PORT; n: NAME

e port € new_port_set(tk, n)

& (Jentry : IPC_ENTRY; PS : PORT_SET
o (th, n, entry) € entry_in_space
A entry_rights(entry) = { Port_sei_right}
A entry_object(entry) € active_objects
A (entry_object(entry), PS) € object_as_port_set
A (port, PS) € port_in_set)

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
354 Refinements of the State Model

A triple (tk, n, count) is in dead_right_rel if and only if there exists an JPC_ENTRY, entry such
that

m (th, n, entry) is in entry_in_space,

m either the rights associated with the entry include Dead_name_right, or the entry points
to an inactive object,

m count is the right count of the entry;,

__DeadRightRefinement
DeadRights
EntrylnSpace
IpcObject

Vik: TASK; n: NAME; count : Ny
o (th,n, count) € dead_right_rel
< (Jentry : IPC_ENTRY
o (th, n, entry) € entry_in_space
A (Dead_name_right € entry_rights(entry)
V entry_object(entry) ¢ active_objects)
A count = entry_count(entry))

The schema IpcRefinement defines the refinements for IPC name spaces.

IpcRefinement
PortRightRefinement
PortSetRefinement

DeadRightRefinement

D.3 Refinement of Pending Receives

The expression port_waiting_threads_head(port) denotes the first THREAD, if one exists,
in the sequence of threads waiting to receive a message from port. The expression
port_set_waiting_threads_head (pset) denotes the first THREAD, if one exists, in the sequence of
threads waiting to receive a message from port setpset. The expression next_waiting_thread (th)
denotes the successor THREAD of th, if one exists, in the sequence of threads waiting to receive
a message from the port or port set from which ¢h is waiting to receive a message.

— WaitingThreads
ThreadFxist
PortErist
PortinSet
port_waiting_threads_head : PORT - THREAD
;ort_set_waiting_threads_head : PORT_SET - THREAD
next_waiting_thread : THREAD —~ THREAD

dom p ori_waiting—threads_head C port_exists
dom port_sel_waiting_threads_head C port_selp
dom n ext_waiting_thread C thread_cxists

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 355

The expression thread_pending_receive(th) denotes the PendingReceive data stored in a thread
th that is waiting to receive a message.

__StoredReceiveState
ThreadExist
thread_pending_receive : THREAD —+ PendingReceive

dom thread_pending_receive C thread_exists

The expression named_port_set(tk, nm) denotes the port set named by nm in the IPC name
space of task k.

Editorial Note:
It might make more sense to have this in the regular state, not the refinements. Since it is here, we will
refine it right away.

— TasksAndPortSets
EntrylnSpace
IpcObject
named_port_set : (TASK x NAME) -+ PORT_SET

Vik: TASK; n: NAME; ps : PORT_SET
e ps = named_port_set(tk, n)
< (Jentry : IPC_ENTRY
o (th, n, entry) € entry_in_space
A entry_rights(entry) = { Port_sei_right}
A entry_object(entry) € active_objects
A (entry_object(entry), ps) € object_as_port_set)

The expression waiting_for_port(tk,nm) denotes the sequence of threads that are wait-
ing for a message on the port named by nm in the IPC name space of ¢tk. Note that
Gen_seq(port_waiting_threads_head, next_waiting_thread) denotes a function of type PORT —+
seq THREAD where a thread th is in the sequence associated with a portp if and only if th is
waiting to receive a message from p.'° The expression waiting_for_pori_set(tk, nm) denotes the
sequence of threads that are waiting for a message on the port set named by nm in the IPC
name space of tk. A name may not name both a port and a port set for the same task. Thus, the
domains of waiting_for_port and waiting_for_port_set are disjoint. For convenience, we define
waiting_for_message to be the union of the functions waiting_for_port and waiting_for_pori_set.
Because the two domains are disjoint, waiting_for_message is necessarily a function. Every
thread that is waiting for a message holds PendingReceive information.

19The Z expression Q ; R denotes the composition of two relations with Q applied first followed by R.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
356 Refinements of the State Model

_ TasksAndWaiting
Waziting Threads
TasksAndPorts
TasksAndPortSets
Stored ReceiveState

watting_for_port : TASK x NAMFE — seq THREAD
watting_for_pori_set : TASK X NAME -+ seq THREAD
waiting_for_message : TASK X NAME -+ seq THREAD

watting_for_port = named_port

s Gen_seq(port_waiting_threads_head, next_waiting_thread)
waiting_for_pori_set = named_port_set

s Gen_seq(port_set_waiting_threads_head, next_waiting_thread)
waiting_for_megsage = watting_for_port U waiting_for_port_set
Vik: TASK;n: NAME
e ran(waiting_for_message(tk, n)) C domthread_pending_receive

We now refine the definition of pending_receives. For any (tk,n) pair the sequence
of PendingReceive values associated with name n for task ¢k is found by extracting
(via thread_pending_receive) the PendingReceive data from each thread in the sequence

waiting_for_message(tk, n).

_ PendingRecetve Refinement
TasksAndWaiting
Messages

Vik: TASK;n: NAME
o pending_receives(tk, n)
= waiting_for_message(tk,n) 5 thread_pending_receive

D.4 Refinement of Virtual Memory
In refining the specification of virtual memory we introduce the following additional types:

[VM_MAP, VM_ENTRY , VM_MAP_OBJECT]

VM _MAP is the representation of a virtual address space. Each map consists of a sequence of
elements of type VM_ENTRY . A VM_ENTRY denotes a contiguous range of virtual addresses
that share the same properties (e.g., protections and inheritance options). Some of these entries
pointtoa VM_MAP_OBJECT which may be either a memory object or a another memory map

called a submap.

The expression task_map(tk) denotes the VA _MAP associated with task tk. Tasks running in
kernel space may have the same map (the kernel map). No two kernel-external tasks have the
same value for task_map. The set map_exists denotes the existing VM maps. The expression
vm_entries_head(map) denotes the first VM _ENTRY, if one exists, in the sequence of entries

associated with map.

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 357

— VmMapStructure
TaskErist
task_map : TASK - VM_MAP
map_exists :P VM_MAP
vm_entries_head : VM _MAP - VM_ENTRY

dom task_map = task_exists
dom vm_entries_head C map_exists

The set wm_entry_exists denotes the existing VM_FENTRY elements, and the set
vm_entry_submap_p denotes the entries that are submaps?® The following functions are de-
fined on VM_ENTRY:

n peri_vm_entry(e) — denotes the next entry after ¢, if there is one, in the sequence of VM
entries associated with some VM map,

m vm_entry_start(e) — denotes the starting address of e,

m ym_entry_end(e) — denotes the first address after the end of e,

m ym_entry_map_object(e) — denotes the VM_MAP_OBJECT associated with e,

m vm_entry_offset(e) — denotes the offset at which e is mapped into a memory object,
m vm_entry_prot(e) — denotes the current protections associated with e,

m vm_entry_maz_prot(e) — denotes the maximum protections that e may take,

m vm_entry_inh(e) — denotes the inheritance option in effect for e,

m vm_entry_wire_count(e) — denotes the number of times that ¢ has been wired, and

» ym_entry_sid(e) — denotes the OSI associated with e.

Every existing entry has a start and an end address, an offset, a protection, a maximum
protection, an inheritance option and a wire count. Every entry that is a submap has
an associated map object while an entry that is not a submap might not have any associ-
ated VM_MAP_OBJECT. For convenience we define map_entries(map) to denote the set of
VM _ENTRY contained in map.

20The only map known to have submaps isker nel _map. It has the following submaps:

= devi ce_i o_map,
= | pc_kernel _map,
= kal | oc_map,

= zone_map, and

= the map of any task running in kernel space that does not use the entire kernel map.

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005
358 Refinements of the State Model

— VmEntry
VmMapStructure
vm_entry_exists : P VM_ENTRY
vm_entry_submap_p :P VM_ENTRY
next_vm_entry : VM_ENTRY 4 VM_ENTRY
vm_entry_start : VM_ENTRY -+ PAGE_INDEX
vm_entry_end : VM_ENTRY —+ PAGE_INDEX
vm_entry_map_object : VM_ENTRY +— VM_MAP_OBJECT
vm_entry_offset : VM_ENTRY -+ OFFSET
vm_entry_prot : VM_ENTRY - P PROTECTION
vm_entry_maz_prot : VM_ENTRY - P PROTECTION
vm_entry_inh : VM_ENTRY - INHERITANCE_OPTION
vm_entry_wire_count : VM_ENTRY —+ N
vm_entry_sid : VM_ENTRY — OSI
map_entries : VM_MAP — P VM_ENTRY

dom vm_entry_start = domvm_entry_end = domvm_entry_offset
= domuvm_entry_prot = domvm_entry_maz_prot = dom vm_entry_inh
= domvm_entry_wire_count = dom vm_entry_sid = vm_entry_exists
dom pext_vm_entry C vm_entry_exists
vm_entry_submap_p C domvm_entry_map_object C vm_entry_ecxists
map_entries = Gen_set(vm_entries_head, next_vm_eniry)

The set vm_map_object_cxists denotes the existing VM_MAP_OBJECT elements. A
VM_MAP_OBJECT may be either a memory object or another VM map. The expres-
sions map_object_as_memory(obj) and map_object _as_submap(obj) denote the associated mem-
ory object or VM map. The domains of these two functions partition the set of existing
map objects. The function vm_entry_map_object maps a submap entry to an element of
the domain of map_object_as_submap, and it maps other entries to elements of the domain
of map_object_as_memory. For convenience, we define the functions vm_entry_memory and
vm_entry_submap as the compositions of vm_entry_map_object with map_object_as_memory and
map_object_as_submap, respectively.

— VmMapObject
VmEntry
vm_map_object_exists :P VM_MAP_OBJECT
map_object_as_memory : VM _MAP_OBJECT ~+ MEMORY
map_object_as_submap : VM_MAP_OBJECT —+ VM_MAP
vm_entry_memory : VM_ENTRY - MEMORY
vm_entry_submap : VM_ENTRY —+ VM_MAP

(dom map_object_as_memory, dom map_object_as_submap)

partition vm_map_object_exists
dommap_object_as_memory = ran(vm_entry_submap_p € vm_entry_map_object)
dommap_object_as_submap = ran(vm_entry_submap_p < vm_entry_map_object)
vm_entry_memory = vm_entry_map_object § map_object_as_memory
vm_entry_submap = vm_entry_map_object § map_object_as_submap

We define a global function Page_indez_int that maps a PAGE_INDEX to anon-negative integer.
This allows the numeric comparison of page addresses.

| Page_index_int : PAGE_INDEX —N

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005

DTOS FTLS 359

For use in refining the model of the VM system, we define the functions vm_map_lookup and
vm_map_lookup_entry which each map a(tk, pindez) pairtoa VM _ENTRY . For vm_map_lookup,
the pair is mapped to entry if and only if entry is not a submap, and there is a non-empty
sequence lookup_seq of VM _MAP x VM _ENTRY pairs such that

m task_map(tk) is the first component of the first element of lockup_seq,
m entry is the second component of the last element of lookup_seq,
» for each element (m, ¢) of lookup_seq:

— e isin the set of entries for m,
— pindez is in the address range defined by the start and end addresses ofe,

— if (m, ¢) is not the last element of lookup_seq, then e is a submap entry with the first
component of the next pair in the sequence as its submap.

For vm_map_lookup_entry, a (tk, pindex) pair is mapped to entry if and only if entry is in the
set of entries for task_map(tk), and pindex is in the address range defined by the start and end

addresses of entry,

— VmLookup
VmMapStructure
VmEntry

VmMapObject
vm_map_lookup_entry : TASK X PAGE_INDEX - VM _ENTRY

vm_map_lookup : TASK X PAGE_INDEX - VM_ENTRY

Ventry : VM_ENTRY; tk : TASK; pindex : PAGE_INDEX
e entry = vm_map_lookup_entry(tk, pindez)
< (Imap : VM_MAP
e task_map(tk) = map
A entry € map_entries(map)
A Page_index_int(vm_entry_start(entry)) < Page_index_int(pindex)
< Page_index_int(vm_entry_end (entry)))
Ventry : VM_ENTRY; tk : TASK; pindex : PAGE_INDEX
e entry = vm_map_lookup(tk, pindex)
& (entry & vm_entry_submap_p
A (Flookup_seq : seq(VM_MAP x VM_ENTRY)
o task_map(tk) = first(head lookup_seq)
A entry = second(last lookup_seq)
AVi:l.. lookup_seq; e : VM_ENTRY
| e = second(lookup_seq(i))
e ¢ € map_entries(first(lookup_seq(i)))
A Page_index_int(vm_entry_start(e)) < Page_index_int(pindex)
< Page_index_int(vm_entry_end(e))
A (i < F#lookup_seq
= (e, first(lookup_seq(i + 1))) € vm_entry_submap))))

Now, we define mapped_memory and mapped_offset by composing wvm_map_lookup with
vm_entry_memory and vm_entry_offset, respectively. We define mapped_offset, protection,
maz_protection, inheritance and wire_count by composing vm_map_lookup_entry with the ap-

propriate VM entry functions.

83-0902024A001 Rev A

Secure Computing Corporation
1.21, 4 December 1996

CAGE Code OHDC7

CDRL A005
360 Refinements of the State Model

Editorial Note:
It is unclear whether mapped_memory and mapped_offset are best defined as below or whether it would

be better to use vm_map_lookup_entry for them as well. The question is whether, when p:ndex denotes a
submap for task ¢k, the pair (tk, pindexr) should be in the domains of mapped_memory and mapped_offset.
The prototype appears to follow the submap link when dealing with page faults. However, when accessing
and returning state information associated with a region, it does not look at the submap. Furthermore,
vm_region returns a null name for the memory object when the address leads to a submap.

— VmRefinement
VmLookup
AddressSpace
Protection
Inheritance
Wired

PageSid

mapped_memory = vm_map_lookup § vm_entry_memory
mapped_offset = vm_map_lookup § vm_entry_offset

protection = vm_map_lookup_entry § vm_entry_prot
maz_protection = vm_map_lookup_entry ¢ vm_entry_maz_prot
inheritance = vm_map_lookup_entry § vm_entry_inh
wire_count = vm_map_lookup_entry § vm_entry_wire_count
page_sid = vm_map_lookup_entry § vm_entry_sid

D.5 Miscellaneous Refinements

The expression threads_head(tk) denotes the first THREAD, if one exists, in the sequence of
threads belonging to task tk. The expression next_thread(th) denotes the successor THREAD
of th, if one exists, in the sequence of threads belonging to the owning task of threadh.

— ThreadList
TasksAndThreads

threads_head : TASK — THREAD
next_thread : THREAD - THREAD

threads = Gen_set(threads_head, next_thread)

The expression processors_head(pset) denotes the first PROCESSOR, if one exists, in the se-
quence of processors belonging to processor set pset. The expression next_processor(proc) de-
notes the successor PROCESSOR of proc, if one exists, in the sequence of processors belonging
to the processor set of which proc is a member.

__ProcessorList
ProcessorAndProcessorSet

processors_head : PROCESSOR_SET - PROCESSOR
next_processor : PROCESSOR + PROCESSOR

processors = Gen_set(processors_head, next_processor)

The expression assigned_tasks_head(pset) denotes the first TASK, if one exists, in the sequence
of tasks belonging to processor set pset. The expression nezt_assigned_task(tk) denotes the

83-0902024A001 Rev A Secure Computing Corporation
1.21, 4 December 1996 CAGE Code OHDC7

CDRL A005
DTOS FTLS 361

successor TASK of tk, if one exists, in the sequence of tasks belonging to the processor set to
which tk is assigned.

__AssignedTaskList
TaskAndProcessorSet
assigned_tasks_head : PROCESSOR_SET - TASK
next_assigned_task : TASK - TASK

have_assigned_tasks = Gen_set(assigned_tasks_head, next_assigned_task)

The expression assigned_threads_head(pset) denotes the first THREAD, if one exists, in the
sequence of threads belonging to processor set pset. The expression next_assigned_thread(ih)
denotes the successor THRFEAD of th, if one exists, in the sequence of threads belonging to the
processor set to which ¢ is assigned.

__ Assigned ThreadList
ThreadAndProcessorSet
assigned_threads_head : PROCESSOR_SET - THREAD
next_assigned_thread : THREAD - THREAD

have_assigned_threads = Gen_set(assigned_threads_head, next_assigned_thread)

The expression messages_head (port) denotes the first MESSAGE, if one exists, in the sequence of
messages waiting in port. The expression nexzt_message(msg) denotes the successor MESSAGE
of msg, if one exists, in the sequence of messages waiting in the port in which msg is waiting.

Editorial Note:

This says nothing about the messages in a queue of a port set. This queue is not currently modeled,
so there is nothing to refine. If we add port set message queues, the refinement would appear nearly
identical to the following refinement.

— MessagelnPortList
MessageQueues
messages_head : PORT - MESSAGE
next_message : MESSAGE - MESSAGE

message_in_port_rel = Gen_seq(messages_head, nert_message)

Secure Computing Corporation 83-0902024A001 Rev A
CAGE Code OHDC7 1.21, 4 December 1996

362

CDRL A005
Index

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
Abort_thread 67
Abort_thread_depress 67
Access_machine_attribute 66
actiwve_thread 55
Add_name 65
AddressSpace 39
Add_thread 68
Add_thread_secure 68
Add_value 318
AID 59
Allocate_vm_region, 66
allocated 38
Alter_pns_info 65
Anti_symmetric e 317
ASSIGN_Processor 70
Assign_processor_to_set 69
Assign_task 70
Assign_task_to_pset 68
Assign_thread, 70
Assign_thread_to_pset 67
Audit_ads 46
audit_server_port e 76
authentication_server_port 76
backing_chain L. 40
backing_memory 40
backing_offset 40
backing_rel 40
BASE_MSG_ELEMENT 48
Base_user_priority 13
cache_allows 73
Cached_ruling_allows 73
Cached_ruling_allows 73
cached_ruling_avasl 73
Can_recetve 65
Can_send i 65
Can_swtch 67
Can_swtch_pri 67
Capabilaty 20
Change_page_locks 66
Chg_pset_max_pri, 70
Chg_vm_region_prot 66
Change_sid i 68
Chg_task_priority 68
Close_device 71
CO_CArTieS_MemoTY . . . oo v v v e e e 43

Co_carries_rights 43
COMPLEX_OPTION_BOOLFEAN 45
COMPLEX_OPTION 43
containing_port 25
containing_sel 22
control_memory 29
Control_pager, 71
controlled_proc_set 31
COPY_Strategy 35
COopy_um . .o 66
CPU_LIME . . o e 18
Create_pset 68
Create_task 68
Create_task_secure 68
Cross_context_create 68
Cross_context_anherit 68
crypto_server_port 76
dead_namep 23
dead_right_ref _count 23
dead_right_rel 23
DeadRights 24
Deallocate_vm_region 66
default_mem_manager 36
Default_port_sid 61
Default_vm_port_sid 61
Define_new_scheduling_policy 70
depressed_threads 13
Depress_pri e 67
priority_before_depression 13
Derive_kernel_as 62
Destroy_object 66
Destroy_pset 70
DeviceData 57
DeviceFxist 9
device_exists e 9
device_filter_info 57
DeviceFilterInfo 57
DEVICE_FILTER_INFO 57
DEVICE_FILTER 57
AEVICE_IN + o v e 56
device_open_count 55
DeviceOpenCount 55
device_out 56
Device_permissions 71
device_port 31
device_port_rel 31

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code OHDC7

CDRL A005

DTOS FTLS 363

DEVICE_RECORD 57 Get_thread_kernel_port 67
DEVICE . .. e e 9 Get_thread_state 67
Devices 57 Get_time 68
DevicesAndPorts 32 Get_vm_region_info 66
device_stalus e 57 Get_vm_statistics 66
DeviceStatus 57 Halted 11
DEVICE_STATUS 57 have_assigned_tasks 54
dirty_rel ... 37 have_assigned_threads 54
Dtos ..o 77 Have_executecuuiueiein... 66
DtosAdditions 77 Have_read 66
DtosMessages 74 Have_write 66
emulation_vector 15 Higher_priority 12
EmulationVector 15 Highest_possible_priority 12
enabled_sp 54 Hold_receive 65
Environment_slot 34 Hold_send00.ciiuiuiieo... 65
event_count 56 Hold_send_once 65
EVENT_COUNTER 56 host_control_port 30
Events 56 host_name_port 30
Fxception_ids 46 Host_control_port_permissions 69
Exist ... 10 HOST o e 9
Extract_right 65 HostsAndPortsc..... 30
FILTER_PRIORITY 57 HostsAndProcessorscuouuuu.. 53
Fizedpri A4 host_time 55
Flush_permission 68 HostTime e 55
Jorcibly_queved 21 Host_name_port_permissions 68
Get_attributesouuunnen . 66 idle_threads 12
Get_audit_port 68 inheritance o 40
Get_authentication_port 68 Inheritance 40
Get_boot_info 69 Inheritance_option_copy 40
Get_crypto_port . .. i e 68 Inheritance_option_none 40
Get_default_pset_name 68 INHERITANCE_OPTION 40
Get_device_status 71 Inheritance_option_share 40
Get_emulation 68 initialized 35
Get_host_control_port 68 Initiate_secure 67
Get_host_info 68 In_line 47
Get_host_name 68 instruction_pointer 15
Get_host_processorsco.u... 69 INTERNAL_BODY 49
Get_host_version 68 Internal_element 49
Get_negotiation_portc.ouui... 68 InternalMessage 51
Get_network_ss_port 68 Interpose i 65
Get_processor_assignment 69 Invalidate_scheduling_policy 70
Get_processor_info 69 [Invoke_lock_request 66
Get_pset_info 70 Ipc_permissions, 65
Get_security_master_port 68 Ip_dead 9
Get_security_client_port 68 Ip_null 9
Get_special_port 68 kermel 10
Get_task_assignment 68 Kermel 10
Get_task_boot_port 68 kermel_as 62
Get_task_exception_port 68 KernelAs 63
Get_task—info 68 KernelCache 73
Get_task_kernel_port 68 Kernel_permission 64
Get_task_threads 68 KernelPortSid 61
Get_thread_assignment 67 Kernel_reply_permissions 71
Get_thread_exception_port 67 kernel_reply_ports 76
Get_thread_info 67 KernelReplyPorts 76

Secure Computing Corporation
CAGE Code OHDC7

83-0902024A001 Rev A
1.21, 4 December 1996

CDRL A005

364 Index

Kernel_service_reply_ids 46 Memory_copy_none, 35
local_namep 24 MEMORY_COPY_STRATEGY 35
Lock e 38 Memory_copy_temporary 35
Lookup_ports 65 name_port 29
Lower_priority 12 name_port_rel 29
Lowest_possible_priority 12 MEMORY ... 9
Mach 58 MemoriesAndPorts 30
Mach_exceptionad A6 Memory ... 36
MachlinternalHeader A5 MemoryExist 9
MachMsgHeader A5 memory_exisls 9
MACH_MSG_OPTION 42 Mem_obj_confirmation_sds 46
MACH_MSG_TYPE 43 Memory_object_permissions 66
Mach_notify_eds 46 MemorySystem 42
Mach_port_dead 19 Message 50
Mach_port_null 19 Msg_element 48
Mach_port_q_limit _default 25 MessageFxist 9
Mach_port_q_limit_mazx 25 message_exisls 9
mach_protection 39 message_in_port_rel 25
MachProtection 39 MessageQueues 26
Mach_rcv_large 42 MESSAGE ... 9
Mach_rco_msg i 42 Messages ... e 53
Mach_rcvo_notify 42 MID e 59
Mach_rcv_timeout 42 Lowest_priority 13
Mach_send_cancel 42 Mmi_copy_send 43
Mach_send_msg 42 Mmi_make_send, 43
Mach_send_notify 42 Mmit_make_send_once 43
Mach_send_timeout 42 Mmit_move_receive 43
Make_page_precious 66 Mmi_move_send 43
make_send_count 24 Mmt_move_send_once 43
Make_sid 68 Mach_msg_type_port_receive 44
managed ... e 35 Mach_msg_type_port_rights 44
TRATAGET o v v it vt e et e e e e e 35 Mach_msg_type_port_send 44
Manipulate_port_set 65 Mach_msg_type_port_send_once 44
map_rel ... 38 MESSAGE_BODY 48
Map_device 71 msg_contents 52
mapped .. e 39 MSG_DATA 48
mapped_devices e 56 Msg_deallocate 47
MappedDevices 56 Msg_dont_deallocate 47
mapped_memory 39 Msg_error—_invalid_memory 50
mapped_offset 39 Msg_error—_invalid_right 50
Map_vm_region, 65 Msg_error_invalid_type 50
master_device_port 32 Msg_error_msg_too_small 50
MasterDevicePort 32 Msg_error—_notify_in_progress 50
TRASEET_PTOC « v v i e e e 53 MSG_ERROR 50
Highest_priority 13 Msg_error_timed_out 50
MaAr_protectiont 39 msg_operation 52
Mazx_right_refs 20 Operations 52
Maz_samples 16 msg_recetving_std 74
may_cache 35 Msg_region 49
May_control_processor 69 msg_ruling 74
member_rel 53 msg_sending_sid 73
control_port 29 msg_specified_sid 74
control_port_rel 29 msg_specified_vector 74
Memory_copy_call 35 Msg_stat_pseudo 50
Memory_copy_delay 35 Msg_stat_rcv 50

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code OHDC7

CDRL A005

DTOS FTLS 365

Msg_stat_send 50 Pe_processor 33
MSG_STATUS i 50 Pc_ps_control 33
Msg_value A8 Pe_ps_name e 33
MSG_VALUE 49 Pe_task ... 33
named_port 20 Pe_thread 33
named_proc_set 31 PendingRecetve 51
NAME . .. e 19 pending_receives 52
Name_server_slot 34 PERMISSION 64
negotiation_server_port T8 port_aid 60
Network_packet_ids A6 port_class ... 33
network_ss_port e 76 PORT_CLASS .. . 33
Notifications 27 PortClasses oo oo 33
number_of _rights 24 POTt_AEVICE o 31
object_memory ... 29 PortEmist o 10
object_port 29 POTt_exists e 9
gb]fact_p'ort_rel """""""""""" 29]_)ort_mz'd 60
ObjectSid .. o 62 PortNameSpace 24
Observe—pns—info ... 55 port_notify_dead 27
g?;gzg%pset_processes """"""""" %23 port_notify_dead_rel 26
Orep L R oty destoyed 2
Open_device ..o 71 port_notify_destroyed_rel 26
OPERATION . . 45 port_notify_no_more_senders 26
OSI . "0 Pport_notify no_more_senders_rel 26
Osi_to_atd 60 Port_permissions 65
Osi_to_mid 60 port_pointer ... 9
Out_of _line . . oo 47 Port_rename 65
WORZ; 35 port_right_rel ... 19
threads 10 port_right_namep 21
owning_task 10 port_right_seq 33
PageAndMemory 38 PORT . 9
page_atd ... e 61 port_set 22
PageExist 9 port_set_namep 22
PaAge_eTists 9 portsetrel ... o 22
memory_fault 36 PortSets 23
PAGE_INDEX 39 port_sid 60
page_lock_rel ... 38 PortSid 61
page_locks 38 port_size 25
page_mid 61 PortSummary 26
PAGE_OFFSET 37 Poset ... 317
Pager_permissions 66 Pp_to_page_sid 61
Pager_request_ids A6 prectous 37
PAGE 9 Priovity_levels 12
gage_sz’d ---------------------------- 61 proc_assigned_procset 53
PageSid B2 Process ... 58
Page_vm_region 66 ProcessorFxist 9
page_word_rel 36 proc_exists 9
page_word_fun e 37 Processor_permissions, 69
SCHED_POLICY_DATA 14 processor_port_rel 30
parent_task 75 PROCESSOR oo oo 9
ParentTask 75 Pset_ctri_port 69
Pe_device 33 Pset_names 68
Pc_host_control 33 pProcessors e 53
Pc_host_name 33 ProcessorsAndPorts 31
Pec_memory e 33 ProcessorAndProcessorSet 54

Secure Computing Corporation
CAGE Code OHDC7

83-0902024A001 Rev A
1.21, 4 December 1996

CDRL A005

366 Index

proc_self 30 run_state 11
ProcessorSetFxist 9 RUN_STATES 11
Procset_emislts 9 sampled_tasks 17
procset_name_port i]_ §ampled_threads 16
Procset_control_port_permissions 70 Sample_periodic 16
PROCESSOR_SET 9 SAMPLE 16
procset_self 31 Sample_task 68
Procset_name_port_permissions 70 Sample_thread 67
Protection 76 SAMPLE_TYPES 16
Execute 38 Sample_vm_cow_faults 16
Read 38 SAMPLE_VM_FAULTS 16
PROTECTION ... i 38 Sample_vm_faults_any 16
Write . ..o 38 Sample_vm_pagein_faults 16
Provide_data 66 Sample_vm_reactivation_faults 16
Provide_permission 11 Sample_vm_zfill_faults 16
ps_control_port_rel 31 Save_page 66
PS_MAT_priorety e e 54 SCHED_POLICY 14
]_)s_name_port_rel _____________________ 31 securtty_server_client_port 76
E_limz’t ______________________________ o5 Security_server—ids 46
F%aise_exceptz’on 67 securily_server_master—_port 16
Read_device 71 selftask ... 28
Read_vm_regiono 66 self _thread, 28
Reboot_host 69 Send ...l 19
Recetve ... 19 sender ... 20
TECEIVET o v i it e et e e 20 Send_once ... 19
TECEIVET _TUATIE .+ o v ettt e e e e e e e e s 20 SendRightsCount 25
Recognized_sample_types 16 SCQUENCETNO .wvthve e 25
Recognized_transfer_options 43 Seqplus ..o 318
Reflexive 317 ServerPorts ... 16
registered_rights, 34 Service_check_deferred ... 87
RegisteredRights 35 Serviceslot . 34
Register_notification g5 oet-attributes ... 66
Register_ports 65 Set—audit_port ... 68
Remove_name . . .« oo oo 65 OSet_authentication_port 68
REMOVE_PAGE + o v o oo e e e 66 Set_crypto_port 68
FEPIY_POTE + o oo e e 52 Set_tbac_port 66
reply_port_rel 52 Set_default_memory_mgr 69
reply_port_right 52 Set_device_filter 71
ReplyPortso 52 Set_device_status 71
represented 37 Set_emulation L 68
represented_memory 37 Set_vm_region_inkherst 66
represented_offset 37 Set_maz_thread_priority 67
FEPreSEnting_PAGE . . o o v v v ee et e 37 Set_negoliation_port 68
represents_rel oo 37 Set_network_ss_port 68
repreSents_memory 37 Set_ras ... 68
Required_permission 87 Set_reply 65
Resume_task . .o o 68 Set_security_master_port 68
Resume_thread 67 Set_security_client_port 68
Revoke_tbac 66 Set_special_port 68
RIGHT i 19 Set_task_boot_port 68
Tright .« e 21 Set_task_exception_port 68
Ruling 72 Set_task_kernel_port 68
Ruling_allows 72 Set_thread_exception_port 67
Ruling_allows 72 Set_thread_kernel_port 67
Running e 11 Set_thread_policy 67

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code OHDC7

CDRL A005

DTOS FTLS 367

Set_thread_priority 67 TasksAndRights 22
Set_thread_state 67 TasksAndThreads 11
Set_time 69 task_self 28
shadow_memories 40 task_self_rel 27
ShadowMemories 41 Task_self_sid 63
sleep_time A8 task_sid 60
so_right 21 task_sself 28
Spectal PurposePorts 32 task_sself_rel 27
SpectalTaskPorts 28 task_suspend_count 12
Spectal ThreadPorts 29 TaskSuspendCount 12
Spectfy . . e 65 task_target 63
s_raght .. e 21 Task_task_permissions 68
s_right_ref _count 20 task_thread_rel 10
s_r_right ... 21 Tes_task_empty 74
ST 59 Tes_task_ready 75
Ssi_to_atd 59 Tes_thread_created 74
Ssi_to_med 59 Tes_thread_state_set 75
State_info_avasl 18 temporary_rel 35
Stopped e 11 Terminate_task, 68
SubjectSid 60 Terminate_thread 67
Supply_tbac 66 the_processor e 30
supplying_device 56 ThreadAndProcessorSet 55
SUPP_MACHINE_ARCH 18 thread_assigned_to 54
Supported_sSp ... e 14 thread_assignment_rel, 54
Suspend_task 68 thread_eport 28
Suspend_thread L. 67 thread_eport_rel 28
swapped_threads 11 ThreadFxecStatus 12
Switch_thread 67 ThreadFxist 9
system_time 17 thread_exists, 9
TargetSids 63 Threadlnstruction 15
task_atd ... 60 ThreadMachineState 18
TaskAndProcessorSet 54 thread_maz_priority 13
task_assigned_to 54 Thread_permissions0... 67
task_assignment_rel L. 54 Thread_port_sid 61
task_bport 28 ThreadPri 14
task_bport_rel 28 thread_priority 13
task_creation_state 75 THREAD i 9
TaskCreationState 75 Threads 19
TASK_CREATION_STATE T4 thread_samples 17
task_eport 28 thread_sample_sequence_number 16
task_eport_rel 28 thread_sample_types 16
TaskFxist 9 ThreadSampling 17
task_exists 9 ThreadsAndProcessors 55
task_mad 60 thread_sched_policy 14
Task_port_register_max 34 ThreadSchedPolicy 15
Task_port_sid 61 thread_sched_policy_data 14
task_priority 14 thread_sched_priority 13
TaskPriority 14 thread_self 28
task_recerved_msgs L. 52 thread_self _vel, 28
TASK e 9 Thread_self _sid 63
task_samples 17 thread_sid 60
task_sample_sequence_number A7 thread_sself 28
task_sample_types 17 thread_sself_rel 28
TaskSampling 17 thread_state, 18
TasksAndPorts 20 THREAD_STATE_INFO 18

Secure Computing Corporation
CAGE Code OHDC7

83-0902024A001 Rev A
1.21, 4 December 1996

CDRL A005

368 Index
THREAD_STATE_INFO_TYPES 18 Cached_ruling_allows 73
ThreadStatistics 18 cached_ruling_avail 73
thread_suspend_count 11 crypto_server—_port 76
threads_wired 12 Default_port _sed 61
thread_target 63 Default_vm_port_sid 61
thread_waiting 56 kermel_as 62
Timeshare 14 kernel_reply_ports 76
total_naked_srights 33 msg_recetving_std 74
total_name_space_srights 33 msg_ruling 74
tOtal_STightS 33 ﬂsg_sending_sz'd ___________________ ls
TotalSendRzghts 34 ﬂsg_specz’ﬁed_sz’d ___________________ 74
Transfer_ool 65 msg_specified_vector 74
Transfer_recetve 65 negotiation_server_port 76
Transfer_rights 65 network_ss_port 76
Transfer_send 65 Osi_to_aid 60
Transfer_send_once 65 Osi_to_mid . .. o 60
Transition_sid 68 page_aid E]_
Transitive 317 Page_mid ... 61
Transit_memory 49 Page_sid ... 61
Transit_right 49]_)arent_task _______________________ 75
Unainterrupteble 11 - .
Usable_cached_ruling 72 port_azd """"""""""""" 60
Usable_ruling 72 port_mlzd """"""""""""" 60
UserReferenceCount 21 portsid ... oot 50
USET_LIME . . i e e e 17 Pp_to_page_sid 61
Values_disjoint 316 Rulmg_allows T 72
Values_partition 316 security server_client_port 16
V data . ..o " 48 security_server_master_port 76
Vo data_in 49 Ssito_aid ... 9
V_DATA_LOCATION 49 Ssitomid .. 59
V_data_outo 49 task—_aid 60
VIRTUAL_ADDRESS 15 ltask_creationstate 75
Vim_end ..o 15 taskomid ..o £0
Vm_permissions 66 Task_port_sid 61
Vm_start 15 Task_self _sid 63
V_port .. o ZQ task_sid ... 60
Wait_eve o 67 task_target 63
Waitingooooe e 11 Thread _port_sid 61
WIrE_COUNT . . o v i e e e e e e 41 Thread_self sid 63
WIrEd + o o 41 thread_sid 60
Wired .o 41 thread_target 63
Wire_thread 69 Usable_cached_ruling 12
Wire_thread_into_memory 67 Usable_ruling 12
Wire_vm 69 DTOS Types:
Wire_vm_for_task 66 AID oo 59
Wrap_value 318 MID ... 59
Write_device 71 OSI ... 60
Write_vm_region 66 PERMISSION 64
default 53 SSI o 59
Protection e 76 TASK_CREATION_STATE 74
D G

DTOS Structures: Global Identifiers:

audit_server_port 76 Abort_thread 67

authentication_server_port 76 Abort_thread_depress 67

cache_allows 73 Access_machine_attribute 66

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code OHDC7

CDRL A005

DTOS FTLS 369
Add_name 65 Get_host_control_port 68
Add_thread 68 Get_host_info 68
Add_thread_secure 68 Get_host_name 68
Add_value o 318 Get_host_processors 69
Allocate_vm_region 66 Get_host_verston 68
Alter_pns_info 65 Get_negotiation_port 68
Anti_symmetric 317 Get_network_ss_port 68
ASSIGN_processor 70 Get_processor_assignment 69
Assign_processor_to_set 69 Get_processor_info 69
Assign_task 70 Get_pset_info, 70
Assign_task_to_pset 68 Get_security_master_port 68
Assign_thread 70 Get_security_client_port 68
Assign_thread_to_pset 67 Get_special_port 68
Audit_dds 46 Get_task_assignment 68
Base_user_priority 13 Get_task_boot_port 68
Cached _ruling_allows 73 Get_task_exception_port 68
Can_recetve 65 Get_task_info 68
Can_send 65 Get_task_kernel_port 68
Can_swtch 67 Get_task_threads 68
Can_swtch_pri 67 Get_thread_assignment 67
Change_page_locks 66 Get_thread_exception_port 67
Chg_pset_max_prec.cco.... 70 Get_thread_info 67
Chg_vm_region_prot 66 Get_thread_kernel_port 67
Change_sid 68 Get_thread_state 67
Chg_task_priority 68 Get_time i 68
Close_device 71 Get_vm_region_info 66
Co_carries—_memory 43 Get_vm_statistics 66
Co_carries_rights 43 Halted 11
Control_pager 71 Have_execute 66
Copy_vm ... e 66 Have_read 66
Create_pset 68 Have_write 66
Create_task 68 Higher_priority 12
Create_task_secure 68 Highest_possible_priority 12
Cross_context_create 68 Hold_recetve 65
Cross_context_inherit 68 Hold_send 65
Deallocate_vm_region 66 Hold_send_once 65
Define_new_scheduling_policy 70 Host_control_port_permissions 69
Depress_pri e 67 Host_name_port_permissions 68
Derwve_kernel_as 62 Inheritance_option_copy 40
Destroy_object 66 Inheritance_option_none 40
Destroy_pset 70 Inheritance_option_share 40
Device_permissions 71 Initiate_secure 67
Environment_slot 34 In_line 47
FException_ids 46 Interpose 65
Extract_right 65 Invalidate_scheduling_policy 70
Fizedpri 14 Invoke_lock_request 66
Flush_permission 68 Ipc_permissions 65
Get_attributes 66 Ip_dead 9
Get_audit_port 68 Ip_null 9
Get_authentication_port 68 Kernel_permisston 64
Get_boot_info 69 Kernel_reply_permaissions 71
Get_crypto_port 68 Kernel_service_reply_ids 46
Get_default_pset_name 68 Lookup_ports, 65
Get_device_status 71 Lower_priority 12
Get_emulation 68 Lowest_possible_priority 12

Secure Computing Corporation
CAGE Code OHDC7

83-0902024A001 Rev A
1.21, 4 December 1996

CDRL A005

370 Index
Mach_exception_ad 46 Network_packet_ads 46
Mach_notify_ads 46 Observe_pns_info 65
Mach_port_dead 19 Observe_pset_processes 70
Mach_port_null 19 Open_device 71
Mach_port_q_limit _default 25 Out_of _line 47
Mach_port_q_limit_maz 25 Pager_permissions 66
Mach_rcv_large 42 Pager_request_ids 46
Mach_rco_msg 42 Page_vm_region, 66
Mach_rcv_notify 42 Pe_device 33
Mach_rcv_timeout 42 Pc_host_control 33
Mach_send_cancel 42 Pc_host_name, 33
Mach_send_msg 42 Pe_memory 33
Mach_send_notefy 42 Pc_processor 33
Mach_send_timeout 42 Pe_ps_control 33
Make_page_precious 66 Pe_ps_mame 33
Make_sid, 68 Pe_task 33
Manipulate_port_set 65 Pe_thread 33
Map_device 71 Port_permissions 65
Map_vm_region 65 Port_rename 65
Highest_priority 13 Poset 317
Max_right_refs 20 Priority_levels, 12
Mazx_samples 16 Processor_permissions 69
May_control_processor 69 Pset_ctrli_port 69
Memory_copy_call 35 Pset_names 68
Memory_copy_delay 35 Procset_control_port_permissions 70
Memory_copy_none 35 Procset_name_port_permissions 70
Memory_copy—_temporary 35 Execute 38
Mem_obj_confirmation_ids 46 Read 38
Memory_object_permissions 66 Write 38
Msg_element 48 Provide_data 66
Lowest_priority 13 Provide_permassion 71
Mmt_copy_send 43 Raise_exception 67
Mmit_make_send 43 Read_device 71
Mmit_make_send_once 43 Read_vm_region 66
Mmt_move_recetve 43 Reboot_host 69
Mmit_move_send 43 Recetve 19
Mmit_move_send_once 43 Recognized_sample_types 16
Mach_msg_type_port_recetve 44 Recognized_transfer_options 43
Mach_msg_type_port_rights 44 Reflexive 317
Mach_msg_type_port_send 44 Reguster _notification 65
Mach_msg_type_port_send_once 44 Reguster_ports 65
Msg_deallocate 47 Remove_name 65
Msg_dont_deallocate 47 Remove_page 66
Msg_error_invalid_memory 50 Required_permission 87
Msg_error_invalid_right 50 Resume_task 68
Msg_error_invalid_type 50 Resume_thread 67
Msg_error_msg_too_small 50 Revoke_ibac 66
Msg_error_notify_in_progress 50 Ruling_allows 72
Msg_error_timed_out 50 Running 11
Msg_region 49 Sample_pertodic 16
Msg_stat_pseudo 50 Sample_task 68
Msg_stat_rcv e 50 Sample_thread 67
Msg_stat_send 50 Sample_vm_cow_faults 16
Msg_value 48 SAMPLE_VM_FAULTS 16
Name_server_slot 34 Sample_vm_faults_any 16

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code OHDC7

CDRL A005

DTOS FTLS 371
Sample_vm_pagein_faults 16 Transfer_recetve 65
Sample_vm_reactivation_faults 16 Transfer_rights 65
Sample_vm_zfilll_faults 16 Transfer_send 65
Save_page 66 Transfer_send_once 65
Security_server_ids 46 Transition_sid 68
Send .. . 19 Transitive 317
Send_once 19 Transit_memory, 49
Seqeplus o 318 Transit_right 49
Service_check_deferred 87 Uninterruptible 11
Service_slot 34 Values_disjoint 316
Set_attributes EG Values_partition 316
Set_audit_port 68 Vodata ..o 48
Set_authentication_port 68 Vidata_in ... 49
Set_crypto_port ..o 68 V_data_out 49
Set_thac_port 66 Vim_end ... oo 5
Set_default_memory_mgr 69 Vm_permissions 66
Set_device_filter 71 Vm_start ... A5
Set_device_status 71 V_port """""""""""""" 49
Set_emulation 68 Waz't'_evc """"""""""""" 67
Set_vm_region_inhertt 66 qutmg """"""""""""" 11
Set_maz_thread_priority 67 Wz're_thread T 59
Set_negotiation_port 68 Wz're_thread_mto_memory """""" &7
Set_network_ss_port 68 Wz're_vm """"""""""""" 59
Set_ras 68 Wire_vm_for_task 66
Set_reply 65 Wrc'zp_valu'e """"""""""" 318
Set_security_master_port 68 Write_device ... ua

y P cle . .

Set_security_client_port 68 Write_vm_region 66
Set_special_port 68 M

Set_task_boot_port 68 Mach Structures:

Set_task_exception_port 68 active_thread 55
Set_task_kernel_port 68 allocated o 38
Set_thread_exception_port 67 backing_chaino 40
Set_thread_kernel_port 67 Backing_memory . ..o 40
Set_thread_policy 67 Backing_offSet « v 40
Set_thread_priority 67 backing_rel 40
Set_thread_state 67 CONEATNING_POTE . . o oo 25
Set_time 69 containing—set 22
Spectfy ... 65 control_memory 29
State_info_avarl L 18 controlled_proc_set 31
Stopped 11 copy_strategy 35
Supply_thac 66 CPULIME o oo 18
Suspend_task 68 dead_namep 23
Suspend_thread 67 dead_right_ref _count 23
Switch_thread 67 dead_right_rel 23
Task_port_register_mazx 34 default_mem_manager 36
Task_task_permaissions 68 depressed_threads 13
Tes_task_empty 74 priority_before_depression 13
Tes_task_ready 75 device_exists 9
Tes_thread_created 74 Eevz’ce_ﬁlter_info ___________________ i_7
Tcs_thread_state_set 75 device_tn 56
Terminate_task 68 device_open_count, 55
Terminate_thread 67 device_out 56
Thread_permissions 67 device_port 31
Temeshare 14 device_port_rel, 31
Transfer_ool 65 device_status 57

Secure Computing Corporation
CAGE Code OHDC7

83-0902024A001 Rev A
1.21, 4 December 1996

CDRL A005

372 Index
dirty_rel ... 37 port_device 31
emulation_vector, 15 port_emists 9
enabled spo o 54 port_notify_dead 27
event_count 56 port_notify_dead_rel 26
forcibly_queved 21 port_notify_destroyed 26
have_assigned _tasks, 54 port_notify_destroyed_rel 26
have_assigned_threads 54 port_notify_no_more_senders 26
host_control_port 30 port_notify_no_more_senders_rel 26
host_name_port 30 - .

) port_pointer 9
l?_ost_tzme """"""""""""" 55 port_right_rel 19
tdle_threads 12 = .

- . - port_right_namep 21
tnheritance L 40 ort_riaht_se 33
andttalized 35 POTETUGNESEG wvvvie e e -
; . . port_set 22
instruction_pointer 15
port_set_namep 22
kernel ... 10
port_set_rel 22
local_namep 24 =) 5
mach_protection 39 portfszze """"""""""""" 37
make_send_counto\ oo 24 PreCioust 37
MANAGed . .o 35 proc_assjz'gned_procset 53
IARAGET + + o o o e e e e 35 ProC_eTists ..o 9
map_rel ... 38 processor_port_rel L 30
mapped 39 PTOCESSOTS v v vt e et et e e 53
mapped_devices 56 proc_self 30
mapped_mMmemoryo 39 procsel_exists 9
mapped_offset L 39 procset_name_port 31
master_device_port 32 procset_self 31
master_proc oo 53 ps—control_port_rel 31
maz_protection 39 PS_MAT_PTIOTHY o e o e e 54
may_cache ... 35 ps_name_port_rel 31
member_rel 53 =
glimit ... 25
control_port 29 =
Py TECEIVET v v it it it i e 20
control_port_rel 29) =
- Py TECETVET_TVATME v v v v v vt e et e et e ee e s 20
RAME_POTE . o o 29) i riah 34
RAME_POrt_rel o\ 29 Leglzstere t_rzg 1S o €2
TMEMOTY_eTISES .« v o v v e e 9 rep ly_pOTt : .l """""""""""" 52
MESSAGE_eTISES .« v v i 9 Lepl y—port_re he =
message_in_port_rel 25 reply_port_right ... ==
represented e 37
msg_contents 52
. represented_memory 37
MEG_OPETALION . v v v v it it e 52 -
represented_offset 37
named_port 20 " 37
named_proc_set 31 represen mg_]lmge """""""""" 37
RURDETr—OF —FigRES « + v v e e e e e e 24 represents_rel 31
. represents_memory 37
object_memory 29 . -
. rright . 21
object_port 29 -
. FUn—_state 11
object_port_rel 29 - -
sampled_tasks, 17
threads 10
. sampled_threads 16
owning_task 10
age_egists 9 self _task 28
bage- Lo Ge Seli—thread o 28
ﬂemolryifault """"""""""" 38 sender ... 20
PAGELOCRTEL wvvee e e - BEQUENCE_NO v o v vttt e 25
pagelocks ... 38 shadow_memories 40
gage_word_rel """"""""""" 36 sleep_time 18
page_word_fun 37 so_right 21
pending_receives 52 S_right 21
port_class 33 s_right_ref _count 20

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code OHDC7

CDRL A005

DTOS FTLS 373
s_roright ..o 21 Mach Types:
supplying_device 56 BASE_MSG_ELEMENT 48
supported_sp 14 COMPLEX_OPTION_BOOLFEAN 45
swapped_threads 11 COMPLEX_OPTION 43
SYSEEM_TIME « oo oo e e 17 DEVICE_FILTER_INFO 57
task_assigned_to 54 DEVICE_FILTER 57
task_assignment_rel 54 DEVICE_RECORD 57
task_bport 28 DEVICE ... 9
task_bport_rel 28 DEVICE_STATUS ... 7
task—_eport 28 BVENT_COUNTER ... 56
task_eport_rel, 28 PILTER_PRIORITY =14
;ask_exz'sts _9 HOST oo 3
task_priority 14 INHERITANCE_OPTION 40
" . - INTERNAL_BODY 49
task_received_msgs 52

Internal_element 49

task_samples 17 MACH MSG_OPTION .. 22
task_sample_sequence_number 17 MACH_MSG_TYPE 43
Lask_sample_types 7 MEMORY_cOPY_STRATEGY 35
task_self 28 MEMORY . 9
task_self_rel 27 MESSAGE . 9
task_sself E MESSAGE_BODY ﬁg
task_sself rel 27 MSG_DATA . . . 48
task_suspend_count 12 MSG_ERROR .. E)
task_thread_rel 10 MSG_STATUS . . o\ o 50
temporary_rel 35 MSG_VALUE0....... 49
Lhe_processor 30 NAME 19
thread_assigned_to 54 OFFSET . . 35
thread_assignment_rel 54 OLSD ... 48
thread_eport, 28 OPERATION 45
thread_eport_rel 28 WORD 35
thread_exists 9 PAGE_INDEX 39
thread_maz_priority 13 PAGE_OFFSET 37
thread_priority 13 PAGE ... o 9
thread_samples, 17 SCHED_POLICY _DATA 14
thread_sample_sequence_number 16 PORT_CLASS 33
thread_sample_types 16 PORT ... 9
thread_sched_policy 14 PROCESSOR ... 9
thread_sched_policy_data 14 PROCESSOR_SET 9
thread_sched_priority 13 PROTECTION ... 38
thread_self 28 RIGHT ..o A9
thread_self_rel 28 ?gﬁ;‘;g‘q TES oo %
thread_sself 28 T oo ottt -
thread_ssel];‘_rel 53 SAMPLE_TYPES .o 16
thread_stateoorrri 18 SCHED_POLICY ..o 14
;hread_suspend count Pr SUPP_MACHINE_ARCH 18
- - SR = TASK 9
Lhreads_wz're'd 12 THREAD . . 9
Lhread_waztmg' 56 THREAD_STATE_INFO 18
total_naked_smghts ig THREAD_STATE_INFO_TYPES 1_8
total_name_space_srights 33 V_DATA_LOCATION 49
total _srights 33 VIRTUAL_ADDRESS 15
USEr_LIME . . o e e 17
WATE_COUNL + o v i i e e 41 S
WITEd o e e e 41 Schemas:
default 53 AddressSpace 39
protection e 76 Capabilaty 20

Secure Computing Corporation 83-0902024A001 Rev A

CAGE Code OHDC7 1.21, 4 December 1996

CDRL A005

374 Index
DeadRights 24 PortClasses 33
DeviceData 57 PortEzist 10
DeviceFExist 9 PortNameSpace 24
DeviceFilterInfo 57 PortSets 23
DeviceOpenCount 55 PortSid 61
Devices . . . e e 27 PortSummary ______________________ LG
DevicesAndPorts 32 Processo 58
DeviceStatus o 57 ProcessorExist 9
Dtos ... 1 ProcessorsAndPorts 31
DtosAdditions a7 ProcessorAndProcessorSet 54
DtosMessages e ProcessorSetFxist 9
EmulationVector 15 Protectiono 76
Bvents ... 56 RegusteredRights 35
Exist ... 10 ReplyPorts oo oo 52
HostsAndPorts 30 Ruling oo oo 72
i 8 oo L 2

; = ServerPorts 76
Inheritance 40 ShadowMemories 41
Iv)zternalMessage """""""""" o1 Spectal PurposePorts 32
ﬁ’::z:;A;’ """""""""""""" %; SpecialTaskPorts 28

T e e Special ThreadPorts 29
KernelCache 73 . .

- . SubjectSid 60
KernelPortSed 61 .
KernelReplyPorts 76 TargetSids oo 63
Lock oo 3y prAndBrocosorSet >
Mach 58 @ rgation fate -
MachiInternalHeader 45 TaskElest ey)
MachMsgHeader 45 TaskPrzorzl%y """""""""""" 14
MachProtection 39 TaskSampling A7
MappedDevices+ o oo 56 TasksAndPorts 20
MasterDevicePort 32 TasksAndRights 22
MemortesAndPorts 30 TasksAndThreads ... 11
MEmOry « v v oo 36 TaskSuspendCount 12
MemoryBrist ..o __9 ThreadAndProcessorSet 55
MemorySystem ... vvvu 42 ThreadEzecStatus 12
MESSAGE o v v oo 50 ThreadExist 9
MessageETist oo 9 Threadlnstruction 15
Message Queueso 26 ThreadMachineState 18
MesSages 53 ThreadPri 14
Operationscu . 52 Threads i 19
Notifications 27 ThreadSampling 17
ObjectSid ... 62 ThreadsAndProcessors 55
PageAndMemory 38 ThreadSchedPolicy 15
PageFExist e 9 ThreadStatistics 18
PageSid 62 TotalSendRights 34
ParentTask 75 UserReferenceCount 21
PendingRecetve 51 Wired 41

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code OHDC7

