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Abstract

In this paper we argue that content distribution in the
face of censorship is a compelling and feasible applica-
tion of active networking. In the face of a determined
and powerful adversary, every fixed protocol can become
known and subsequently monitored, blocked, or its mem-
ber nodes identified and attacked. Frequent and diverse
protocol change is key to allowing information to continue
to flow. Typically, decentralized and locally-customized
protocol evolution is also an important aspect in provid-
ing censor-resistance.

A programmable overlay network can provide this type
of manually-initiated protocol diversification. We have
prototyped such an extension to Freenet, a peer-to-peer
storage and retrieval system whose goals include censor
resistance and anonymity for information publishers and
consumers.

1. Introduction
The ability to communicate effectively—even in the

face of censorship attempts by a hostile party, such as a
repressive government—is important to maintaining the
values held by many societies. As The New York Times
reported [16] in January 2001, a corrupt head of state was
toppled from power, “due in no small part” to 100,000 peo-
ple responding to a “blizzard” of wireless text messages
summoning them to demonstrations. But what if the gov-
ernment had deployed a powerful jamming signal, or sim-
ply taken over the cell phone company?

The fundamental rationale for active networking [19]—
allowing the network itself to be programmable or exten-
sible by less than completely trusted users—is to ease the
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deployment of new protocols throughout the network in-
frastructure. Active networking’s flexibility is its only real
virtue, since any one protocol can be more efficient, more
robust, and have fewer troubling side effects if it is part of
the fixed network infrastructure. Thus it has proven diffi-
cult to demonstrate even a single compelling application of
active networking, as it is really thespaceof applications
that is compelling.

Many active networking publications discuss the bene-
fits of facilitating deployment of new protocols over ex-
isting networking infrastructure. Overlay peer-to-peer
networks such as Freenet [6, 7] that aim to provide
a censorship-resistant document publishing mechanism
seem a good fit for such a protocol update system: once
in place, it is possible that hostile governments, ISPs, or
network administrators might attempt to monitor or block
the links that make up such a network, effectively cen-
soring the network itself. Indeed, as reported recently by
Reuters [17], ISPs, which are typically the last and most
vulnerable network hop for users, are coming under pres-
sure from corporations to terminate the subscriptions of
customers who participate in, among other things, censor–
resistant networks.

One way to make monitoring and blocking more dif-
ficult is to hamper an attacker’s ability to identify such
connections by diversifying the hop-by-hop protocols by
which two peer nodes can communicate. Ideally, rather
than expanding the set of protocols spoken from one to a
small finite set (which could be done by including multi-
ple protocols in software releases), the size of the protocol
set should be theoretically unbounded, to prevent attackers
from learning every member of the set—or even knowing
what percentage of the set they have learned. The protocol
set should exhibit a reasonable rate of change over time, to
present an adversary with a “moving target.”

The keys to making this strategy successful are to al-
low the deployment of new hop-by-hop protocols at any
time, even after the system is in wide use, and to allow any
user of the system manually to write and introduce new
protocols. The system should be able to evolve rapidly
to react to changes in its environment. There should be
no central source of new protocols that could become vul-



nerable. Any member of the network should be able to
decide upon a new protocol to use, and “teach” its neigh-
bors to use the new protocol. Thus, any node is able to
take action quickly if it deems a protocol change to be de-
sirable. In principle, these active protocols may function
at any communication layer. Such adaptive, evasive pro-
tocols may—and probably will—be inefficient, but above
some threshold, that is not a significant concern. Like other
contemporary projects, we explicitly choose to exploit the
ever-growing supply of network bandwidth and processing
power for benefits other than speed.

If the publishing system’s core is implemented in
Java [1] or a similar typesafe language, or if the core can
interface with such typesafe code, then such evolution can
be implemented by using mobile code that implements
a new node-to-node protocol. When a node wishes to
change the protocol with which it communicates to one
of its peers, either because of a suspected attack or as a
matter of course, it can send the peer the implementation
of the new protocol. We call this passed bytecode aproto-
col object, and a hop-by-hop protocol that can be replaced
with protocol objects anagile protocol.

2. Related Work
Outside of active networks, mobile code has often been

used to support heterogeneous environments and platforms
(pervasive computing [13] and Sun’s Jini), data transcod-
ing and proxies [12], moving computation to data (mobile
agents), or towards more abundant computational or I/O
resources (e.g., applets in Web browsers).

In the wireless realm there is a long history of electronic
response to jamming, either accidental or purposeful, of-
ten using spread-spectrum techniques. Software radios [3]
and other more traditional approaches provide adaptive
physical-layer protocols. All of these wireless efforts em-
phasize improved performance by seeking less-used parts
of the spectrum, or by using spectrum in a more sophis-
ticated manner. Ad-hoc networks, whether mobile or not,
apply adaptive protocols in a more extensive manner [15],
and although they must sometimes consider issues of trust,
have so far also focused on efficiency and performance.

“Radioactive networks” [4], in which active networking
is proposed as a way to extend a software radio infrastruc-
ture, comes closest to the ideas in this paper. Their goals
are primarily the traditional goals of adaptive wireless pro-
tocols: better performance through better use of spectrum
and energy. However, they do mention security as a poten-
tial benefit, and suggest a software radio system that can
vary its spreading codes to avoid jamming.

It is interesting that the first known active network,
Linkoping Technical Institute’s Softnet [24], also involved
radio, though in a different manner. Softnet, in 1983, im-
plemented a programmable packet radio network, build-
ing upon a special Forth environment. It allowed users to

extend the network with their own services and protocols
above the physical layer.

In terms of censor-resistance, a user-programmable col-
lection of wireless nodes would have strengths that a wired
network does not possess. In the latter, typical users are al-
most entirely vulnerable to their sole ISP. Wireless nodes,
particularly if they have software-defined waveforms and
a multitude of accessible peer nodes, provide a large set of
diverse paths to the broader network.

In our content-distribution application area, there are an
increasing number of censor-resistant publishing efforts,
some of which are outlined in the next section. To our
knowledge, none of them uses active code.

3. Censor-Resistant Publishing Networks
Freenet is a censor-resistant publishing network that has

received much attention lately, and has been the basis for
our work on agile protocols so far. It employs a variety
of techniques aimed at creating a censorship-free, anony-
mous environment. Central to Freenet’s strategy is the dis-
tribution of data across a large number of independently-
administered nodes. Freenet is decentralized; requests are
propagated through a series of peer-to-peer links. When
a file is transferred, the file is cached by all nodes on the
route between the requesting node and the node where a
copy of the file is found (which may not be the original
publisher.) Frequently requested files are thus replicated at
many points on the network, making removal or censorship
of files infeasible. A nodeforwarding a Freenet message
from one of its peers is indistinguishable from a nodeorig-
inating the message, providing a degree of anonymity for
the suppliers and requesters of data. Freenet (and, indeed,
any censor–resistant overlay network) must send traffic
over an underlying network. Hostile networks can poten-
tially block or monitor its connections, preventing Freenet
from fulfilling its goals. Agile protocols, therefore, can
potentially provide many benefits.

Other systems incorporate similar ideas in different
contexts. Gnutella [11] provides a file sharing and search
system that is decentralized across dispersed nodes, but
does not maintain endpoint anonymity. Publius [21] of-
fers anonymity for publishers and plausible deniability for
servers. The FreeHaven [8] design—so far unimplemented
and known to be inefficient—has goals similar to Freenet,
but uses more techniques to offer stronger guarantees of
anonymity and document persistence.

In all of the above systems, monitoring can reveal infor-
mation, even if it cannot directly discover the contents of
a message, or identify its endpoints [5]. Large quantities
of cover traffic, many participating nodes, and widespread
routine use by others of end-to-end encryption are required
for many of the publishing networks to function effec-
tively. Recognizing that a given data stream belongs to one
of these networks is not necessarily difficult, and can give



an attacker information on the usage, behaviors or iden-
tities of network users. In addition, once such commu-
nications are recognized, they can be selectively blocked.
Using agile protocols for hop-by-hop communication can
make this task much more difficult for an attacker.

4. Agile Protocols

The Case for Agile Protocols

An agile protocol, as we define it, is a protocol that can
be changed frequently and more-or-less arbitrarily while
the system is running, using active networking techniques.
The most flexible way to do this is through mobile code.

If the goal of agile protocols were simply toobscure
the connections of censor-resistant networks, then it would
probably be sufficient simply to encrypt them. It is de-
sirable, however, to be able todisguisethese connections
as well, by communicating over a protocol that is simi-
lar to some well-known application-layer protocol, such as
HTTP, SMTP, etc. Furthermore, since the traffic generated
by a given protocol object may be recognizable (using a
known pattern of HTTP headers, for example,) it is also
desirable to have multiple implementations that mimic the
same application-layer protocol. Statically including some
set of these protocols in each release of the software would
be a solution, but does not meet the goals laid out in the in-
troduction. Additionally, this would create problems with
peer nodes running different versions of the software, as
they are not under unified administrative control. Instead,
by allowing nodes to exchange new protocol implemen-
tations, we make the set of protocols spoken on the net-
work dynamic, regardless of the version of the software
that nodes are running, and thus make an attacker’s job
very difficult.

New protocol objects could implement steganogra-
phy [14], proxying through third parties, tunneling through
firewalls and proxy servers, and other techniques, to make
them difficult to monitor and block. Most importantly, us-
ing agile protocols allows us to take advantage of such
technologies and others yet to be discoveredas soonas
they are developed. Users can write protocol objects cus-
tomized to their own network situation (for example, when
they are behind a firewall that allows only certain ports
through, or wish to tunnel their connections through some
unusual proxy service) and easily distribute it to their
Freenet peers and other users without having to go through
any central or even local authority. In response to a deter-
mined adversary, new protocols might be written and de-
ployed daily or hourly, all on a decentralized and demand-
driven basis. A “metaprotocol” that leverages the agile
framework by itself generating agile protocols is obviously
possible, as well. However, since such a protocol still
presents but one target to an attacker, manual generation
of new protocols remains our model’s key feature.

Degree and Level of Programmability
Allowing any user to introduce new protocols into a

censor-resistant network presents clear threats. The cen-
sors themselves will certainly have the means and moti-
vation to introduce malicious protocol objects. We can-
not, therefore, allow arbitrary programmability, but must
restrict the API available to the active code. There is an
obvious and permanent tension between constraining the
active code and allowing it space to diversify.

In addition, it is useful to draw a distinction between the
overall architecture of an overlay network, i.e., its global
invariants and central algorithms, and the details of its
hop-by-hop communication protocol. It is clearly safer
to allow programmability of the latter than the former, al-
though very recent work does offer some hope of protect-
ing the overall network [23]. Wetherall’s retrospective on
active networking [22] reaches an analogous conclusion:
under complete programmability, it is feasible to assure
the safety of individual nodes, but not of the overall net-
work. By constraining the active aspects of the network to
the hop-by-hop protocol, we side-step the very difficult—if
not intractable—global security and correctness problems
posed by the classic active networking model.

Similarly, operating at the overlay layer entirely avoids
a heretofore unsolved problem posed by active network-
ing as it was originally conceived: performance. By “ac-
tivating” an overlay network instead of a lower protocol
layer such as the network layer, we avoid the stringent per-
formance requirements and constrained execution environ-
ment found at low level operating system layers.

Comparison to Traditional Active Networking
The issues that confront agile protocols in general, and

Agile Freenet in particular, differ in some ways from the
problems that traditionally have been the target of active
networking research.

First, new protocols need not be spoken along an en-
tire data path, only on individual point-to-point links. In
fact, it is desirable to have a very diverse set of differ-
ent protocols spoken, in order to make the system as dy-
namic as possible. A given file transfer could be accom-
plished with as many different protocol objects as there
are links in the route it takes. This eliminates the necessity
for a more complicated “capsule” system like ANTS [22],
which must ensure that each hop on a given route has the
proper (and identical) code to run a given protocol.

Second, file sharing overlay networks such as Freenet
tend to be systems where requested data is extremely likely
to be available from many sources. Indeed, these net-
works are designed to tolerate a significant number of non-
functioning or malicious nodes. This lessens the impor-
tance of a single point-to-point link, as, even if an indi-
vidual link goes down or misbehaves, data is likely to be
available through some other route. Additionally, such
networks involve some user interaction, so some classes



of problems can be addressed by the users. Thus, we do
not require strong guarantees about the correctness or effi-
ciency of each protocol object, as long as the overall sys-
tem continues to function.

5. Agile Freenet
Our work thus far has concentrated on Freenet, because

it clearly displays the properties that interest us, has seen
wide deployment, and is implemented in a language (Java)
well-suited to mobile code. We believe that the principles
that have guided our work on Freenet are equally applica-
ble to other censor-resistant publishing networks.

5.1. Basics
Increased flexibility: Because the Freenet model as-

sumes unrestricted communication between peers, there
are many scenarios in which nodes cannot participate, even
though there may be roundabout ways for them to by-
pass local restrictions on network traffic. The best exam-
ple of this is nodes that are behind proxy servers, such as
Web proxies, which may still be able to tunnel connec-
tions through these proxies.1 Extensions to provide this
type of communication could be added directly to Freenet,
but this does not give users the ability to write protocols
that serve their own needs. Strategies for getting messages
through interference are not likely to be perfectly known
when the system is first deployed, and the types of inter-
ference present are likely to change, requiring new tactics.
Using agile protocols allows these tactics to be updated
as conditions change and to be refined as their real-world
success rates are observed.

Identification: Identifying protocol objects can be
done simply by computing a cryptographic hash of the pro-
tocol bytecode—this eliminates any need for a centralized
naming scheme, and allows hosts to distinguish between
protocol objects, independent of any identifier they may be
handed. Identification in such a manner also prevents one
protocol object from masquerading as another (a source of
potential attacks), because the identifier for a protocol ob-
ject is tied inextricably to its bytecode.

Bootstrapping: Bootstrapping an agile protocol can be
problematic—when a node wishes to contact a new poten-
tial peer, it must be assured that there is a common protocol
that both it and its peer speak. This problem, however, is a
fundamental one, shared by the base Freenet system itself:
joining the network requires learning the IP addresses and
ports of potential peers, through some out-of-band mecha-
nism. The sole change that Agile Freenet brings is in the
amountof data required for bootstrapping. Instead of a

1Due to their solely client-initiated connection nature, HTTP proxies
present challenges to tunneling in peer-to-peer networks. It should work
reasonably well for clients to both poll and hold connections open for
varied times, thereby allowing callbacks to be accepted. This is an area
for future research, especially in the face of traffic and timing analysis.

small set of numbers that can be written on a slip of pa-
per or even memorized, prospective peers will need to ex-
change a modest amount of bytecode or source code. That
code could, for example, be passed on a floppy disk, down-
loaded through the Web, sent as an email attachment, or be
transported as a Java applet. The question is whether this
quantitativechange represents aqualitativechange in the
fundamental bootstrapping issue. We believe that it does
not. Evidence to support or refute this belief will need to
be gained through experience.

5.2. Potential Dangers
Agile protocols help to thwart listeners or attackers in

some ways, but also have the potential to be a tool for at-
tackers. Here, we outline potential dangers; the next sec-
tion addresses solutions.

Compromise of local information: A malicious pro-
tocol object inserted into Agile Freenet could attempt to
discover information about nodes that it is spread to, such
as the files in their cache and their list of peer nodes. Dis-
covery of such information could lead to the compromise
of some of Freenet’s core goals, such as anonymity.

Disclosure to an outside source:A malicious protocol
object could contact a third party and disclose addresses of
nodes, keys being searched for, data being transferred, etc.

Failure: Protocol objects could fail, either maliciously
or through poor programming. This failure could be total
or intermittent.

Selective failure: This is a more specialized instance
of failure, in which a protocol object fails only for certain
requests or data transfers, to censor specific content.

Corruption: Protocol objects could corrupt the data
passing through them to disrupt the integrity of the infor-
mation stored in the censor-resistant network, or to some-
how “tag” transfers for tracing.

Resource Usage:A malicious or poorly written proto-
col object could consume excessive system resources, de-
grading its performance.

5.3. Combating the Dangers
Given the dangers outlined above, it is easy to see that

some precautions will be necessary when adopting agile
protocols. Here, we outline ways of protecting the core
system from malicious or poorly written protocol objects.

Namespace isolation:With current Java Virtual Ma-
chines, it is possible, through ClassLoader objects, to limit
the classes which a given object can resolve. This, or simi-
lar mechanisms in other typesafe languages, can be used to
restrict access to parts of the core software, system classes,
etc., that are not necessary for a protocol object to use, and
prevent compromise of local information.

Network isolation: Using the namespace isolation
technique discussed above, we can deny protocol objects
direct access to the network, forcing them to use a re-
stricted network API, which can perform checks to ensure



that a protocol object is not making unauthorized network
access or contacting a third party.

Rating of protocol objects: To combat protocol object
failure, each node can maintain a rating system for each
protocol object it uses, evaluating each one’s effectiveness
based on factors such as success rate for searches, dropped
connections, and detected corruption. It can then decide
not to use protocol objects whose rating is too low. Note
that this may make perfectly good protocol objects look
bad—the peers they are used with may not have much data
cached, may be unstable, etc. This is acceptable—the pri-
mary goal is to prevent the spread of “bad” protocol ob-
jects.

Rating of a protocol object can be done passively by
noting the behavior of traffic that flows through it while
in service, without incurring much overhead. Protocol ob-
jects can also be actively rated by testing them locally: the
node can loop data back to itself, through a matched pair
of protocol objects in a test harness. The active method is
more straightforward and provides more confidence, as the
node can directly compare the data sent to the protocol ob-
ject with that received from it. It is not foolproof, however,
as a protocol object may be able to use timing informa-
tion to distinguish between the real and test environments.
Finally, some sophisticated information hiding techniques
that buffer and reorder messages [5] may falsely appear to
the test harness as functioning incorrectly.

It is important to note that ratings are heuristic, and
do not provide absolute guarantees of correctness. This
should be acceptable because, as noted above, censor-
resistant networks are already designed to tolerate a certain
fraction of malicious nodes. It may be that heuristic rating
of network entities is a feature that would be worthwhile
to extend to nodes themselves.

Selective failure: A protocol object may look “good”
to the rating system if it only fails for a restricted set of
messages. Selective failure and corruption can be tackled
by sending every message twice: first through the loop-
back test harness, and if successful, to the peer node. It
could be solved by encrypting data before passing it to
the protocol object, using a key unknown to the proto-
col. Similarly, separately-encrypted checksums or digital
signatures would verify data integrity. However, securely
obtaining a shared key poses some problems due to po-
tential man-in-the middle attacks mounted by the suspect
protocol object. To cope, public keys of the peer nodes
would be required, or a separate channel must be used for
a Diffie-Hellman key exchange. The first requires a de-
ployed public-key infrastructure, while the second can be
achieved by using a more-trusted protocol (or at least a dif-
ferent one) to exchange keys.2

Resource management:The node software can be

2Space limitations preclude further details here. We refer readers to
the first author’s thesis [18].

run in a Java Virtual Machine that supports resource man-
agement between different Java “applications,” using fea-
tures such as those available in emerging OS-model JVMs
such as KaffeOS [2] or Janos [20]. However, just as in
Web browsers running untrusted Java code, simpler mech-
anisms should suffice for initial deployment. E.g., exist-
ing OS mechanisms can limit the JVM to a fixed share of
memory and the CPU, and the node user or administrator
can be notified if a limit is consistently reached.

5.4. Experience
We have implemented the basic framework described

in this paper by modifying the current Freenet implemen-
tation [10] to incorporate protocol objects. Conveniently,
this implementation is written in Java, facilitating the code
mobility and language safety features discussed in this pa-
per. Since our extensions to Freenet were different than
those envisioned by its developers, we found it moderately
difficult to extend. However, once the framework was in
place, the resulting extensible system was workable.

Our prototype sends the bytecode for protocol objects
over the network and loads it into a restricted Java execu-
tion environment using standard Java ClassLoader mech-
anisms; sensitive Freenet and system APIs are hidden.
We provide a restricted network API that allows proto-
col objects to open network sockets to their peer node,
but prevents them from determining the network address
of the remote node. We implemented four different proto-
col objects. One implements the standard Freenet proto-
col, while another mimics HTTP syntax to facilitate tun-
neling through HTTP. The third implements TCP “port-
hopping” on a per-message basis, and the fourth uses a
simple spread-spectrum scheme, splitting individual mes-
sages across several TCP ports. Nodes can, at the behest of
their peers, change protocol objects at any Freenet “mes-
sage” (file) boundary. This diversity is on a per-peer basis,
allowing a node to speak an arbitrarily different protocol,
on a different port, at different times, to each of its peers.
Protocol objects can be used asymmetrically—messages
passing in different directions along the same peer-to-peer
link can use different protocols.

The prototype was developed and tested onemu-
lab.net , our scalable network emulation testbed [9]. We
plan to continue development of our prototype as a test
platform for research on agile protocols.

6. Conclusion
We believe that censor-resistant content distribution

networks provide a compelling application of active net-
working technology, since many such networks inherently
need diverse protocols more than they need any partic-
ular protocol. Through frequent, diverse, decentralized,
and locally-adapted protocol change, agile protocols seem
likely to improve such networks’ resistance to monitoring



and blocking, without an undue increase in the potential
damage from malicious protocols. We have demonstrated,
in the Freenet system, that such an extension is feasible,
although there are enough potential issues that it is still
unclear whether it will be practically useful.

Among the work remaining is to implement protocol
ratings, increase the range of protocol variants, evaluate
the extent of improvement through simulation and in the
laboratory, and deploy and evaluate the system in the live
Freenet. It would be valuable to experiment with censor-
resistant networks other than Freenet, to help identify any
artifacts due to the base system. Finally, we point out that
it should be easy to interest students and others in active
contests between publishers and censors, aiding evaluation
in both artificial and live environments.
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