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Emulators (Emulab Sucks)

• Examples: Modelnet & Emulab

• The Good: Control, repeatability, wide variety
of network conditions

• The Bad: Artificial network conditions
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Overlay Testbeds

(PlanetLab Sucks)

• Examples: RON & PlanetLab

• The Good: Real network conditions

• The Bad: Overloaded, No privileged operations, Poor

repeatability, Hard to develop/debug
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Goal: Best of Both Worlds

(Don’t Suck)
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Model-driven Emulation

(How not to suck)
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Key Points

• Flexlab is an emulation framework into which

different network models may be plugged

• Exploit an overlay testbed to generate

measurements for some example models

– Models make different fidelity, overhead, and
repeatability trade-offs

• Application-Centric Internet Modeling
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Flexlab: Application
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Flexlab: Application Monitor
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Flexlab: Network Model
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Flexlab: Measurement

Repository
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Flexlab: Path Emulator
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Flexlab: Feedback
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ACIM:

Application-Centric

Internet Modeling
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Imagine Ideal Fidelity
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ACIM Architecture
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ACIM Challenges

• Hardening implementation to deal with

PlanetLab unreliability

• CPU starvation on PlanetLab

– Host artifacts in throughput

– Packet loss from libpcap

• Reverse path congestion

• Measuring bottleneck queue size in time

• Discovering when bottleneck link is saturated
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ACIM Network Conditions
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ACIM Available Bandwidth

• Throughput == available bandwidth

    iff agent is saturating

        && bottleneck link is saturated

• Agent saturating ! socket buffer full

• Bottleneck queue saturated
     ! queue filling up

     ! RTT increasing recently
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Sample Experiment
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Sample Results
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Sample Results
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Sample Results
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Sample Results

24

Network Model Trade-offs
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Sample Real Application: BitTorrent.

with Static Model
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BitTorrent w/ ACIM Model
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BitTorrent w/ PlanetLab

What is “correct”?  Challenging to determine; work-in-progress.
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Conclusions

• Contribution: Modeling Framework for Emulation

– Models can allow the experimenter to trade-off fidelity,

repeatability, and overhead

• Contribution: Application-Centric Internet Modeling

• Contribution: Running on Emulab and PlanetLab in
alpha stage
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Backup Slides
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Why not just add more nodes to every

PlanetLab site? (cf. public review)

• Remaining problems:
– Poor repeatability

– Hard to develop/debug

– No privileged operations

• Malicious traffic cannot be tested

• Some Flexlab network models reduce network load

• Emulab node pool stat muxed and shared more
efficiently than per-site pools

• Overload can (will?) still happen with PL’s pure
shared-host model

• Major practical barriers: admin, cost
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PlanetLab Overload (What)
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PlanetLab Overload (Why)

• Only a few nodes per site
– Sites supply their own nodes

– No incentive to increase number of nodes

• No admission control

• No resource guarantees

• No incentive to minimize usage

• Typically tedious to set up experiments
(exceptions: Emulab portal, Plush, other?)
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Network Model 1: Static
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Static Trade-offs

• Low fidelity

• Fixed continuous overhead

• Complete repeatability
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Network Model 2: Dynamic
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Dynamic Trade-offs

• Moderate fidelity

• Overhead proportional to number of

paths used

• High repeatability
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Low-Frequency Measurements Miss

Changes (Changepoint Analysis)
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Flexlab and VINI

Entirely different kinds of realism and control

• Flexlab: passes “experiment” traffic over shared path
– Real Internet conditions from other traffic on same path, but

app. traffic is not from real users

– Control: of all software

– Environment: friendly local dev. environ, dedicated hosts

• VINI: can pass “real traffic” over dedicated link
– Real routing, real neighbor ISPs, potentially traffic from real

users, but network resources are not realistic/representative

– Dedicated pipes with dedicated bandwidth, that insulate
experiment from normal Internet conditions

– Control: restricted to VINI’s APIs (Click, XORP, etc)
– Environment: distributed environ; shared host resources.
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Dealing with PlanetLab

Unreliability

• Our initial design was optimistic

• Nodes fail

– There is no set of ‘good nodes’

– Agents must react robustly to node failure

• Most errors are transient

– Log everything

– Replay packet analysis

40

CPU Starvation on PlanetLab

• Host Artifacts

– Long period when agent can’t read or write

– Empty socket buffer or full receive window

– Solution: Detect and ignore

• Packet loss from libpcap

– Long period without reading libpcap buffer

– Many packets are dropped at once

– Solution: Detect and ignore
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Handling Reverse Path

Congestion

• Can cause ack compression

• Throughput Measurement

– Throughput numbers become much noisier

– We abuse the TCP timestamp option

– PlanetLab: homogenous OS environment

– Extending it would require hacking client

• RTT Measurement

– Future work
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Measuring Bottleneck Queue

Size

• Important to emulate loss episodes due
to congestion

• No one knows how in terms of
bytes/packets

• Easier to measure in terms of time:

– full = RTT when queue is full

– empty = RTT when queue is empty

– queue_time = full - empty
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Initial Conditions

• Needed to bootstrap ACIM

– ACIM uses traffic to generate conditions

– But conditions must exist for first traffic

• We created a measurement framework

– All pairs of sites are measured

– Put data into measurement repository

• Set initial conditions to latest
measurements
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Path Emulator (detail)


