
1

1

Flexlab: A Realistic, Controlled, and

Friendly Environment for Evaluating

Networked Systems

Jonathon Duerig, Robert Ricci, Junxing Zhang,
Daniel Gebhardt, Sneha Kasera, Jay Lepreau

University of Utah

HotNets-V

November 30, 2006
2

Emulators (Emulab Sucks)

• Examples: Modelnet & Emulab

• The Good: Control, repeatability, wide variety
of network conditions

• The Bad: Artificial network conditions

3

Overlay Testbeds

(PlanetLab Sucks)

• Examples: RON & PlanetLab

• The Good: Real network conditions

• The Bad: Overloaded, No privileged operations, Poor

repeatability, Hard to develop/debug

4

Goal: Best of Both Worlds

(Don’t Suck)

5

Model-driven Emulation

(How not to suck)

6

Key Points

• Flexlab is an emulation framework into which

different network models may be plugged

• Exploit an overlay testbed to generate

measurements for some example models

– Models make different fidelity, overhead, and
repeatability trade-offs

• Application-Centric Internet Modeling

2

7

Flexlab: Application

8

Flexlab: Application Monitor

9

Flexlab: Network Model

10

Flexlab: Measurement

Repository

11

Flexlab: Path Emulator

12

Flexlab: Feedback

3

13

ACIM:

Application-Centric

Internet Modeling

14

Imagine Ideal Fidelity

15

ACIM Architecture

16

ACIM Challenges

• Hardening implementation to deal with

PlanetLab unreliability

• CPU starvation on PlanetLab

– Host artifacts in throughput

– Packet loss from libpcap

• Reverse path congestion

• Measuring bottleneck queue size in time

• Discovering when bottleneck link is saturated

17

ACIM Network Conditions

18

ACIM Available Bandwidth

• Throughput == available bandwidth

 iff agent is saturating

 && bottleneck link is saturated

• Agent saturating ! socket buffer full

• Bottleneck queue saturated
 ! queue filling up

 ! RTT increasing recently

4

19

Sample Experiment

20

Sample Results

21

Sample Results

22

Sample Results

23

Sample Results

24

Network Model Trade-offs

5

25

Sample Real Application: BitTorrent.

with Static Model

26

BitTorrent w/ ACIM Model

27

BitTorrent w/ PlanetLab

What is “correct”? Challenging to determine; work-in-progress.

28

Conclusions

• Contribution: Modeling Framework for Emulation

– Models can allow the experimenter to trade-off fidelity,

repeatability, and overhead

• Contribution: Application-Centric Internet Modeling

• Contribution: Running on Emulab and PlanetLab in
alpha stage

29

Backup Slides

30

Why not just add more nodes to every

PlanetLab site? (cf. public review)

• Remaining problems:
– Poor repeatability

– Hard to develop/debug

– No privileged operations

• Malicious traffic cannot be tested

• Some Flexlab network models reduce network load

• Emulab node pool stat muxed and shared more
efficiently than per-site pools

• Overload can (will?) still happen with PL’s pure
shared-host model

• Major practical barriers: admin, cost

6

31

PlanetLab Overload (What)

32

PlanetLab Overload (Why)

• Only a few nodes per site
– Sites supply their own nodes

– No incentive to increase number of nodes

• No admission control

• No resource guarantees

• No incentive to minimize usage

• Typically tedious to set up experiments
(exceptions: Emulab portal, Plush, other?)

33

Network Model 1: Static

34

Static Trade-offs

• Low fidelity

• Fixed continuous overhead

• Complete repeatability

35

Network Model 2: Dynamic

36

Dynamic Trade-offs

• Moderate fidelity

• Overhead proportional to number of

paths used

• High repeatability

7

37

Low-Frequency Measurements Miss

Changes (Changepoint Analysis)

-00Internet2Internet2

15%131Internet2Commodity

39%202CommodityCommodity

Avg magnitude of
2 sec changes

CountCountDestSrc

2 Sec.
Period

20 Sec.
PeriodPath

38

Flexlab and VINI

Entirely different kinds of realism and control

• Flexlab: passes “experiment” traffic over shared path
– Real Internet conditions from other traffic on same path, but

app. traffic is not from real users

– Control: of all software

– Environment: friendly local dev. environ, dedicated hosts

• VINI: can pass “real traffic” over dedicated link
– Real routing, real neighbor ISPs, potentially traffic from real

users, but network resources are not realistic/representative

– Dedicated pipes with dedicated bandwidth, that insulate
experiment from normal Internet conditions

– Control: restricted to VINI’s APIs (Click, XORP, etc)
– Environment: distributed environ; shared host resources.

39

Dealing with PlanetLab

Unreliability

• Our initial design was optimistic

• Nodes fail

– There is no set of ‘good nodes’

– Agents must react robustly to node failure

• Most errors are transient

– Log everything

– Replay packet analysis

40

CPU Starvation on PlanetLab

• Host Artifacts

– Long period when agent can’t read or write

– Empty socket buffer or full receive window

– Solution: Detect and ignore

• Packet loss from libpcap

– Long period without reading libpcap buffer

– Many packets are dropped at once

– Solution: Detect and ignore

41

Handling Reverse Path

Congestion

• Can cause ack compression

• Throughput Measurement

– Throughput numbers become much noisier

– We abuse the TCP timestamp option

– PlanetLab: homogenous OS environment

– Extending it would require hacking client

• RTT Measurement

– Future work

42

Measuring Bottleneck Queue

Size

• Important to emulate loss episodes due
to congestion

• No one knows how in terms of
bytes/packets

• Easier to measure in terms of time:

– full = RTT when queue is full

– empty = RTT when queue is empty

– queue_time = full - empty

8

43

Initial Conditions

• Needed to bootstrap ACIM

– ACIM uses traffic to generate conditions

– But conditions must exist for first traffic

• We created a measurement framework

– All pairs of sites are measured

– Put data into measurement repository

• Set initial conditions to latest
measurements

44

Path Emulator (detail)

