
Flexible IDL Compilation for Complex
Communication Patterns

Eric Eide James L. Simister Tim Stack Jay Lepreau

University of Utah Department of Computer Science
50 South Central Campus Drive, Room 3190

Salt Lake City, Utah 84112–9205

Phone: +1 (801) 585–3271; FAX: +1 (801) 585–3743
{eeide,simister,stack,lepreau}@cs.utah.edu

http://www.cs.utah.edu/flux/

Abstract

Distributed applications are complex by nature, so it is essential that there be
effective software development tools to aid in the construction of these programs.
Commonplace “middleware” tools, however, often impose a tradeoff between pro-
grammer productivity and application performance. For instance, manyCORBA

IDL compilers generate code that is too slow for high-performance systems. More
importantly, these compilers provide inadequate support for sophisticated patterns
of communication. We believe that these problems can be overcome, thus making
IDL compilers and similar middleware tools useful for a broader range of systems.

To this end we have implementedFlick, a flexible and optimizingIDL com-
piler, and are using it to produce specialized high-performance code for complex
distributed applications. Flick can produce specially “decomposed” stubs that en-
capsulate different aspects of communication in separate functions, thus providing
application programmers with fine-grain control over all messages. The design of
our decomposed stubs was inspired by the requirements of a particular distributed
application called Khazana, and in this paper we describe our experience to date
in refitting Khazana with Flick-generated stubs. We believe that the specialIDL

compilation techniques developed for Khazana will be useful in other applications
with similar communication requirements.

Keywords: Flick, IDL compiler, interface definition language, compilation, opti-
mization, communication patterns, middleware,CORBA

This research was supported in part by the Defense Advanced Research Projects Agency, monitored by
the Department of the Army under contract number DABT63–94–C–0058, and the Air Force Research Lab-
oratory, Rome Research Site, USAF, under agreement number F30602–96–2–0269. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation hereon.

To appear in a special issue ofScientific Programming, 1999.



1 Introduction

Distributed applications have inherently complex behaviors and requirements, and there-
fore, it is essential that there be software development tools — so-calledmiddleware—
to simplify the construction of distributed systems. Because there are many different
kinds of middleware, an application designer must be careful to choose the most appro-
priate middleware for the development of each particular system. The ideal middleware
for a particular programming task would be a tool (or set of tools) that simultaneously
satisfies three criteria. First, the tool would minimize the human effort required to
design, implement, and maintain the distributed application. Second, the tool would
result in efficient and fast application code. Third, the tool would strongly support the
application’s overall design and programming model.

Unfortunately, for many high-performance applications, typical middleware sys-
tems do not meet all of these requirements simultaneously. For instance, typical inter-
face definition language (IDL) compilers are often unsuitable for use in complex, high-
performance distributed applications because they generate code that is unacceptably
slow [18, 20, 23] and because they provide inadequate support for sophisticated pro-
gramming models and fast communication infrastructures. We believe, however, that
this need not be the case. We believe that the development of distributed applications
can be improved through the use of high-level tools such asIDL compilers and that such
middleware can be made to satisfy the demanding requirements of high-performance
distributed applications, not only in terms of performance, but also in terms of support
for complex programming models and communication patterns. To explore the design
and use of such middleware, we have implementedFlick, the FlexibleIDL Compiler
Kit [9].

Flick provides a unique framework for experimenting with newIDL compilation
techniques, and we are using Flick to develop new strategies for producingIDL-based
stubs that meet the needs of sophisticated distributed applications. As an initial ex-
periment in this area, we chose to generate specializedCORBA [24] stubs according to
the requirements of a particular application calledKhazana[5]. Khazana is an exist-
ing, complex, distributed application — a distributed memory system — that requires
fine-grain control over the processing and handling of messages. We analyzed the com-
munication patterns and implementation of Khazana and then created new Flick com-
piler components to generate specially “decomposed” stubs for use in this application.
These stubs are “decomposed” because they separate the different aspects of commu-
nication into separate functions that encode, decode, transmit, and receive messages.
(Normally, a single stub would encapsulate all of these functions.) We are currently
modifying Khazana in order to replace the previous hand-coded stubs with the special
stubs now being generated by Flick, and this paper details our experience to date in the
development and application of our decomposed stubs.

We believe that Flick’s ability to produce decomposed stubs will be useful not only
for Khazana, but also for a wide range of distributed applications that require fine
control over communication and asynchronous processing of messages by both clients
and servers — applications that are poorly served by traditionalIDL compilers. Flick’s
ability to produce optimized code for these applications demonstrates that high-level
middleware can be successfully used in the development of complex applications.

2



2 IDL Compilers

An interface definition language(IDL) compiler is a tool that generates code to imple-
ment communication between separate software components. Given a high-level de-
scription of a software component, anIDL compiler produces special functions called
stubs: functions that carry out communication between aclient that invokes an opera-
tion and aserverthat implements the operation. Often, the client and server are located
in separate processes, which may be running on separate machines. A stub encapsu-
lates the details of communication and allows the client and server to interact through a
procedural interface. TraditionalIDL-based stubs encapsulate all aspects of communi-
cation — the encoding and decoding of data, the transmission and receipt of messages,
and the handling of errors — and therefore, the stubs have the outward appearance of
ordinary procedure calls. When this is the case, we say that the stubs implementre-
mote procedure call(RPC) [3] semantics, or in an object-oriented language, that they
implementremote method invocation(RMI) semantics.

IDL specifications are generally small and simple, and therefore, the use ofIDL

compilers can greatly reduce the human effort required to produce the communication
code for a distributed application. This means thatIDL compilers generally meet the
first criterion for successful middleware. Unfortunately, for many high-performance
applications, they often fail to meet the second and third.

Many commonIDL compilers such asrpcgen [30] fail to meet the second criterion
because they generate inefficient code — code containing excessive function calls and
redundant runtime tests [23]. Gokhale and Schmidt [18] and others have quantified
this and similar types of overhead within severalCORBA implementations. If a dis-
tributed application makes frequentRPC calls and communicates across a sufficiently
fast network, then the overhead withinIDL-generated code can be a serious barrier to
performance [20]. For this reason, the designers of high-performance distributed and
parallel applications have been unwilling to make use of high-level tools such asIDL

compilers that ease the creation of communication code.
The architects of complex distributed applications are further dissuaded from using

IDL-based tools because typically, these tools fail to meet the third criterion for suc-
cessful middleware: strong support for the desired application programming models.
Many IDL compilers support only a single communication model — synchronousRPC

— and this model is simply inappropriate for many distributed applications. SomeIDL-
based middleware systems support additional communication models through the use
of runtime “services”: libraries of objects that act as communication proxies and which
implement new application-level communication models atop compiler-generated syn-
chronousRPCstubs. TheCORBA Event Service [25] is an example of this approach, as
is CORBA’s support for “deferred synchronous” communication through the Dynamic
Invocation Interface [24].1 These services, however, do not necessarily provide suffi-
ciently strong support to high-performance applications. The communication proxies
introduce new overheads [19] and applications must be specially written to commu-
nicate through these proxy interfaces. To avoid these problems, a middleware system
like CORBA must support a variety of communication models not as run-time services,
but as compile-time code generation options. The importance of compiler support has
recently been highlighted by the adoption of theCORBA Messaging Specification [26],

3



which defines a new standard for creating asynchronous stubs fromCORBA IDL in-
stead of the usual synchronous stubs.2 This new specification is a significant step
in broadening the usefulness ofCORBA middleware, but it still falls short for many
high-performance applications. Most notably, the Messaging Specification provides
asynchronous stubs only for clients; servers must still process requests as if they were
synchronous procedure calls.

3 Flick

CommonIDL compilers are designed specifically to support a singleIDL , a small,
hardwired set of target language bindings (e.g., the standard mapping fromCORBA IDL

to C), and generally, one or at most a few message formats and transport facilities. In
other words, these compilers are “rigid” and not easily adapted or enhanced. Flick, on
the other hand, was designed from the start to be an extremely flexible and extensible
IDL compilation framework.

Flick, the FlexibleIDL Compiler Kit, is a set of compiler components that may
be specialized to generate code for particularIDLs, stub styles, and transport systems.
The overall structure of Flick is shown in Figure 1. Flick incorporates design prin-
ciples from traditional language compilers and, like most modern compilers, divides
compilation into three separate stages: front end parsing, intermediate code genera-
tion, and back end code optimization. Each stage has several implementations: for
example, there are three separate front ends that parse theCORBA, ONC RPC(a.k.a.
SunRPC) [29], andMIG [27] IDLs. The different compiler stages communicate through
intermediary files. The clean separation between stages makes it easier for compiler
authors to implement new Flick components, for instance, in order to generate new
kinds of stubs or to support new transport systems. Flick further eases the implemen-
tation of new compiler components by providing a large base library for each stage of
compilation. For instance, because Flick’s back end library implements many common
stub optimization strategies, all of Flick’s specific back ends automatically inherit these
optimizations.

A front endreads anIDL specification and produces an Abstract Object Interface
(AOI) file containing the parsed interface description (i.e., a parse tree). As just de-
scribed, Flick has three separate front ends for parsing theCORBA, ONC RPC, andMIG

IDLs. Each of these front ends is a component, built upon a large library of code that
implements common functions — for example, functions to manipulateAOI parse trees
and other intermediate data structures. MostIDL compilers, including those based on
the SunSoftCORBA IDL compiler front end [31], are designed to produce code directly
from anIDL parse tree. These compilers therefore provide little infrastructure for com-
piler writers to reuse when designing new stub styles (i.e., language bindings) or when
implementing new code optimizations. Flick, on the other hand, provides reusable
infrastructure for both of these compilation steps.

An intermediate code generator — called apresentation generator— reads an
AOI file and then determines the application programmer’s interface to the stubs: i.e.,
everything that an application programmer must know in order to use the stubs that
will ultimately be produced by Flick. The programmer’s view of the stubs — called

4



a presentation— includes not only the names of the generated stubs and the types of
their arguments, but also such things as the purpose of each stub, the stubs’ calling
conventions, the stubs’ memory allocation conventions, and so on. Obviously, there
is more than one way to map anIDL specification onto functions and other constructs
in a programming language such as C; for example, anIDL compiler might produce
synchronous or asynchronous stubs (or both). Because there are multiple ways in
which one might present a singleIDL interface, Flick provides multiple presentation
generators for creating different kinds of stubs. As shown in Figure 1, Flick includes
presentation generators forCORBA-, rpcgen-, Fluke- [14], andMIG-style C language
stubs. Moreover, Flick provides the infrastructure for producing altogether new kinds
of stubs, either through the creation of new presentation generators or through ex-
tensions to Flick’s base presentation generator library. The output of a presentation
generator is another intermediate file, called a Presentation in C (PRES C) file.

A back endreads the stub descriptions contained in aPRES C file and produces
the optimized (C language) source code for the stubs. Because aPRES C file de-
scribesonly the programmer-visible appearance and behavior of the stubs, different
back ends may be used to implement thePRES C-described stubs atop different un-
derlying transport systems and message formats. A singlePRES C description can be
implemented using any suitable transport, and Flick currently provides back ends that
implement client/server communication usingCORBA IIOP, ONC/TCP, Mach [1] mes-
sages, Trapeze [2] messages, and Fluke kernelIPC. Each back end is specialized for a
particular transport facility and message format, but they all incorporate the numerous
optimization techniques provided by Flick’s back end library. For instance, the library
allows each back end to analyze the overall storage requirements of every message in
order to produce efficient message buffer management code that is free from superflu-
ous run-time checks and other typical run-time overheads. The library also analyzes
the representations of message data in order to produce efficient marshaling and unmar-
shaling code. For example, a Flick-generated stub may usememcpy to copy an object if
Flick is able to determine that no byte-swapping or other presentation layer data trans-
formations are required. Previously reported experiments [9] demonstrate that Flick-
generated stubs can marshal data between 2 and 17 times as fast as equivalent stubs
generated by otherIDL compilers. The reduction in presentation layer overhead results
in significant end-to-end throughput improvements for communicating applications.

Because Flick is both flexible and optimizing, it provides an excellent basis for ex-
perimenting with newIDL compilation techniques: newIDLs, new presentations (stub
styles), and new transport facilities. We are now leveraging Flick’s infrastructure to de-
velop newIDL compilation techniques to support applications with complex commu-
nication requirements, and as an initial experiment in this domain, we have extended
Flick to create specialized stubs according to the needs of a particular distributed ap-
plication called Khazana.

4 Khazana

Khazana is a distributed “global memory service” in development by Carter et al. at the
University of Utah [5]. The Khazana system provides a single, globally shared, per-

5



sistent storage space for distributed applications. The primary goals of Khazana are to
provide robust, scalable, and efficient storage while also providing flexibility through
“hooks” that allow higher-level services and applications to tailor Khazana’s behavior
to their needs. For instance, an application can specify the degree of replication re-
quired for its data and can specify how its distributed data should be kept consistent.
The Khazana system provides only the base operations for managing distributed stor-
age, leaving higher-level semantics to other middleware layers or to the applications
themselves.

Khazana is implemented as a collection of peer processes that collectively maintain
a single, flat, global memory space. The processes exchange messages in order to
implement the Khazana protocol, which provides operations to:

� reserve andunreserve a contiguous region of the global address space;

� allocate andfree physical storage for a previously reserved region of the
global address space;

� lock andunlock parts of a region in various modes (e.g., read-write or read-
only);

� read andwrite parts of a region; and

� get and set the attributes of a region, which specify such properties as the
required consistency model and level of replication.

Although there are conceptual request and reply messages in a Khazana system,
there are no specially designated “server” or “client” nodes. Rather, the Khazana pro-
tocols require every process to act as both client and server — i.e., every node must
be able to transmit and receive both requests and replies as necessary. Further, the
Khazana protocol requires that each process be able to participate in several operations
at the same time. A node that transmits a request must be able to handle incoming
messages before the reply to the original request is received. In processing a request, a
Khazana node may discover that it must forward the request to another node (e.g., the
home node of some requested memory page). Alternately, a node may discover that
it can only partially service a request because some needed resource (e.g., a memory
page) is not currently available. In that case, the request must be “pushed back” onto
the queue of incoming requests along with the partial results that have so far been com-
puted. Not all Khazana messages can be described in terms of isolated request/reply
pairs. For instance, a singleallocate request may result in multiple reply messages,
each satisfying a portion of the original request. Similarly, a clientwrite request will
cause the server to issue requests back to the client for segments of the data. Only after
all the data has been collected does the server reply to the originalwrite request.

Khazana was originally implemented using hand-coded functions to process the
system’s protocols viaTCP. Every node maintained a work queue; every element in
the queue contained both a message and the contextual data representing the state of
the message’s processing (i.e., the protocol state of the Khazana operation that involves
the message contained in the work queue node). Because a single structure was used
to contain both stub-level message data and high-level application data, the protocol

6



processing functions were written to handle both levels of detail. This lack of abstrac-
tion between layers complicated the overall Khazana code, and ultimately, the use of
low-level abstractions led to code that was burdensome to create, debug, and maintain.

The Khazana implementors expect that as development continues, the problems
associated with hand-coded messaging stubs will only become more severe. More
message types will be added to Khazana, and Khazana will be ported to new computer
and network architectures. Each of these developments will increase the burden of
maintaining all the messaging code by hand. Therefore, the Khazana system designers
are interested in using Flick to generate Khazana’s communication stubs, both to ease
future development and to simplify the existing Khazana implementation.

5 Decomposed IDL-Based Communication

Using Flick, we have designed and implemented a new compilation style forCORBA

IDL specifications that breaks apart traditionalRPC stubs in order to support applica-
tions like Khazana that require:

� the asynchronous handling of messages by both clients and servers;

� efficient message encoding and decoding, including the ability to cache fre-
quently used messages;

� message forwarding;

� the handling of multiple replies to a single request; and

� the ability to suspend and resume the processing of a message.

Whereas a traditionalRPC stub encapsulates many different aspects of communi-
cation — encoding and sending the request, then receiving and decoding the reply —
Flick generates code for Khazana in a style that encapsulates each aspect of commu-
nication within its own stub. This new “presentation style” forIDL-based interfaces is
illustrated in Figure 2 and consists of:

� marshaling stubs, to encode request and reply messages;

� unmarshaling stubs, to decode request and reply messages;

� send stubs, to transmit marshaled messages to other nodes;

� server work functions, to handle received requests;

� client work functions, to handle received replies; and

� continuation stubs, to postpone the processing of messages.

The stub and function prototypes generated by Flick for this new “decomposed”
presentation style are summarized in Table 1.

7



5.1 Marshaling and Unmarshaling Stubs

Each operation in theIDL specification results in three marshaling stubs: one to mar-
shal operation requests, a second to marshal ordinary operation replies, and a third to
marshal exceptional (error-signaling) replies. A marshaling stub takes as parameters
the data to be encoded, followed by a standardCORBA environment parameter used
to communicate exceptions back to the caller (i.e., errors that occur as the message is
being encoded). The marshaled message is returned by the stub so that the application
can send the message at a later time; that is, the encoding and transmission events are
decoupled. Note that the type of the marshaled message is specific to a single interface
(object type); this helps prevent programming errors in which a request or reply is sent
to an object of an inappropriate type. Also note that the marshaled message is opaque.
This allows each of Flick’s back ends to choose a message format, data encoding, and
implementation that is best suited to the application’s requirements and the underlying
transport facility (e.g.,CORBA IIOP messages, or some more specialized system).

EachIDL-defined operation also results in two unmarshaling stubs: one to unmar-
shal requests and one to unmarshal replies (ordinary or exceptional). An unmarshaling
stub takes a message, parameters into which the message data will be decoded, and a
CORBA environment parameter that allows the unmarshaling stub to report errors to the
application.

Marshaling and unmarshaling stubs provide applications with greater control over
the handling of messages and enable certain application-specific optimizations that are
not possible within a traditionalRPC model. For example, a message can be encoded
once and then sent to multiple targets; also, common replies can be premarshaled and
cached, thus reducing response times. An especially useful optimization for Khazana
is that a message can be redirected to another node without the overhead of decoding
and re-encoding the message (assuming that the message data is not needed in order to
make the forwarding decision).

5.2 Send Stubs

Once a request or reply message has been marshaled, an application transmits the mes-
sage by invoking the appropriate send stub. Two send stubs are defined for eachCORBA

interface (object type): one for requests and another for replies. Unlike a traditional
RPCstub, a send stub returns immediately after the message has been sent; it does not
wait for a reply.

Also unlike a traditionalRPCstub, the send stubs produced by Flick take two spe-
cial parameters as shown in Table 1: aninvocation identifierand aclient reference.
These parameters are unique to Flick’s “decomposed” stub presentation style and are
not standardCORBA stub parameters. An invocation identifier (Invocation id) cor-
responds to a single message transmission event and is used to connect a reply with its
associated request. The application is responsible for providing invocation identifiers
to the send stubs; this allows for application-specific optimizations in the generation
and management of the identifiers. A client reference (Client) is a CORBA pseudo-
object [24], managed by the communications runtime layer, that provides additional
contextual information for handling requests and replies. A client reference serves two

8



primary functions. First, it locates the entity that will receive the reply for a given re-
quest. Keeping explicit client references makes it possible, for instance, for one node
to forward a request message to another node and direct the eventual reply back to
the original requester. Second, the client reference allows the application to save state
from the time a request is sent until the corresponding reply is received. (This extra
application data is not transmitted as part of a request or reply; it is simply stored by
our CORBA runtime as a convenience to the application.) A process can allocate as
many client references as it needs and associate them with request transmission events
as it sees fit. Then, whenever a reply message is received, the runtime locates the client
reference that was provided with the original request, and gives that reference to the
function that will process the newly received reply.

TheInvocation id andClient parameters in Flick’s decomposed presentation
style are similar in purpose to theReplyHandler objects defined by the recently
adoptedCORBA Messaging Specification [26]. Both aClient and aReplyHandler
can be used to hold application state. The primary difference between aClient and a
ReplyHandler is in the set of operations that they support. Within theCORBA Mes-
saging presentation, a reply to an asynchronous request is treated as a request on a
ReplyHandler object; among other things, this means that the reply data will be
unmarshaled before theReplyHandler is invoked. Flick’s decomposed presentation
style, however, separates the receipt and decoding phases of reply processing, thus en-
abling additional flexibility. For example, a work function can forward a reply message
from oneClient to another without any intervening unmarshaling.

5.3 Work Functions

The server and client work functions are the functions that ultimately receive and
service request and reply messages, respectively. TraditionalRPC presentations con-
tain server work functions only; traditional clients process requests and replies syn-
chronously. In contrast, Flick’s decomposed stub presentation allows replies to be han-
dled asynchronously, and therefore, clients must contain explicit functions to receive
and handle incoming replies. A server work function receives the marshaled represen-
tation of the request that it is to service. This makes it straightforward and efficient for
a Khazana node to forward the request to another node, or to delay local processing.
If the request is to be handled immediately, the server work function will invoke the
unmarshaling stub to extract the request data. Similarly, a client work function receives
a marshaled reply message so that it may choose to handle the reply immediately, for-
ward the reply (to another client), or delay processing by invoking a continuation stub.

5.4 Continuation Stubs and Functions

While handling a request or reply, a client or server work function may need to post-
pone processing — for instance, a server handling a request may find that it needs data
from another server before it can continue. To allow applications to handle these situ-
ations gracefully, Flick produces two “continuation” stubs for each operation: one for
the request and another for the reply. These are essentially normal send stubs, except

9



that they direct the message back into the node’s own message queue. Each continua-
tion stub accepts a message, a pointer to the function that will be invoked to service the
continued message (i.e., a special work function), and an opaque pointer that allows
the application to pass arbitrary state information along to the function that will re-
sume processing. A separate runtime library function is provided to allow applications
to “wake up” a continued message, thus allowing the message to be dispatched to the
continuation work function.

6 Evaluation

In this section we describe our experience to date in refitting Khazana with Flick-
generated, decomposed communication stubs. Although our extensions to Flick are
complete, our modifications to Khazana are currently in progress.

6.1 Implementation Issues

Khazana’s original communication substrate was entirely hand-coded and very specific
to the Khazana application. The original routines used a single data structure to store
both low-level and high-level information such as encoded message data (both input
and output), message queue links, operation context data (e.g., locks), and application
state (e.g., ajmp buf so that Khazana could suspend message processing by executing
a longjmp back to its message dispatch loop). This design was chosen for its initial
ease of implementation, and these message structures were routinely passed from func-
tion to function during message processing. Both high-level and low-level processing
occurred at many points in the code.

The use of decomposed stubs, however, mandated a much stricter application de-
sign. In keeping with theCORBA spirit, Flick-generated stubs require that nodes (rep-
resented asCORBA objects), client references, and messages all be opaque data struc-
tures, disallowing access from the application into low-level data such as socket file
descriptors and nodeIP addresses. To reverse-engineer theCORBA IDL description of
the Khazana protocols, we had to dissect the Khazana code and separate the different
levels of information contained in Khazana’s original message data structures. Data
that was previously passed implicitly as part of a message (e.g., operation state and
context) was now required to be handled explicitly in theIDL . Other state informa-
tion, not properly part of the protocol messages, was moved into separate structures
and managed throughClient references (as described in Section 5.2) or continuation
function data (Section 5.4). The introduction of explicit layers into Khazana’s code
has helped to clarify the application code and to document the Khazana communica-
tion protocols, which are now described inCORBA IDL. As a result of our application
restructuring, we found it necessary to replace Khazana’s originalIPC code with our
ownCORBA ORBruntime. Although we had planned to leverage as much of Khazana’s
original IPC code as possible, this approach ultimately proved to be impractical, and we
are now implementing a completely newCORBA runtime with support for both decom-
posed and traditionalCORBA stubs. This new runtime will be used not only by Khazana
but also by other applications that are written or modified to use Flick-generated stubs.

10



6.2 Communication Patterns

Although we have greatly modified Khazana in order to introduce structure, we have
not had to modify Khazana’s overall programming model. Our experience in applying
Flick’s decomposed stubs to Khazana has been positive, and we have been able to
reimplement most of Khazana’s communication patterns using our specially generated
stubs. One particularly interesting pattern, previously described in Section 4, occurs as
part of theallocate operation.

Theallocate operation allows one node to ask another to reserve physical stor-
age. If the receiver of theallocate message cannot satisfy the entire request, it will
satisfy what it can, send a reply back to the requesting node describing the partial allo-
cation, and then issue a new request message to another node on behalf of the original
requester, asking this new node to fulfill the remaining portion of the allocation. This
new node handles the request in a similar fashion, possibly sending new requests to
yet more Khazana nodes. Thus, from the perspective of the original requester, there
are many (partial) replies, coming from many different nodes, to its original allocation
request. This communication model is directly supported by Flick’s decomposed stubs.
The requesting client indicates to theCORBA runtime that it expects to receive multiple
replies to a particular request message. (The client must indicate this explicitly; other-
wise, theORB will release certain message-related data structures after the first reply
is received and processed.) The decomposed stubs allow the server to both reply to the
client’s request and to manufacture a new request message on behalf of the client, us-
ing the requester’sClient reference and messageInvocation id. The client’s reply
work function (Section 5.3) is invoked once for each partial reply and is responsible for
aggregating the results. Finally, when the client determines that all replies have been
received, it invokes anORB function to indicate that no more replies to the original
request are expected. In summary, although the notion of multiple replies to a single
request is not expressed inCORBA IDL, Flick’s decomposed stubs make it possible for
an application to use this communication pattern (given the necessary support from the
ORB runtime as described).

One Khazana idiom not directly supported by the decomposed stubs was the piece-
meal provision of message data to the underlyingIPC facility. The original hand-coded
IPC system allowed Khazana to send a message by providing a callback function:
whenever theIPC layer was ready, it would invoke the callback to acquire the next
block of message data. This feature allowed Khazana to send large messages without
requiring that all of the data be in memory at once. On the receiving node, special
code was used to process such large messages. Because theIPC system exposed the
underlying socket file descriptor, the Khazana application could read and process mes-
sage data in a similarly piecemeal fashion. Our decomposed stubs, however, do not
directly support this kind of incremental message processing. Instead, all message data
must be provided when a message is marshaled by a send stub (Section 5.2), and all
message data must be received before theORB will dispatch a message to the Khazana
application. Fortunately, it is straightforward to emulate the old communication idiom
with decomposed stubs, simply by breaking the previous single, large message into
multiple, smaller messages. On the sending node, message transmission can be paced
through the use of specialORB runtime functions that notify the Khazana application

11



that particular message instances have been sent.
Finally, the use of decomposed stubs had important implications for messages sent

to local objects — i.e., objects that are in the same address space as the client. Through
traditional synchronousRPCstubs, when a server and client are co-located, communi-
cation can transparently take place without expensive marshaling and unmarshaling of
message data. In Khazana, this is particularly important for theread andwrite oper-
ations, which normally involve multiple messages and may pass large amounts of data.
Much of this communication overhead can be avoided during local operations, and
Khazana’s original implementation contained special checks for optimizing communi-
cation with local objects. We found that we had to introduce similar special-purpose
code when refitting Khazana to use our decomposedCORBA stubs. Because our decom-
posed stubs separate message encoding from message transmission, a Flick-generated
marshal stub (Section 5.1) cannot know that a message will be dispatched to a local
object. Therefore, to optimize local communication, our new Khazana implementation
contains special checks and avoids using decomposed stubs for local objects. In future
work we expect to modify the implementation of Flick’s decomposed stubs to improve
support for local object invocations, e.g., by delaying actual message marshaling until
the first time a message is sent to a remote object.

6.3 Summary

Flick’s decomposed stubs provide an appropriate communication abstraction for Khaz-
ana. Due to Khazana’s initial implementation, we were forced to make significant mod-
ifications to the application in order to introduce our decomposed stubs andCORBA

ORB runtime. However, we were able to make these modifications without changing
Khazana’s overall programming model. Our modifications to Khazana have made the
application portable to new architectures and transport systems. Finally, our experience
with decomposed stubs has highlighted the importance ofORB support for certain as-
pects of decomposed communication including (1) multiple replies to a single request,
(2) notification of message transmission events, for application-level message pacing,
and (3) optimizations for local objects.

We expect that our new, decomposed presentation style forCORBA interfaces will
be useful not only to Khazana but also to other, similar distributed applications. Since
this new style is more like traditional message-passing, we believe that it will be useful
as a migration path for applications that wish to move away from hand-written com-
munication code and toward the use ofIDL-based middleware tools. This will reduce
the application writers’ burden and eliminate what is currently an error-prone process,
and we expect, without compromising application performance.

7 Related Work

TheCORBA Messaging Specification [26] is the Object Management Group’s recently
adopted standard for asynchronous messaging. That document describes the new stan-
dard method for mappingCORBA IDL onto asynchronous stubs, and the standard differs
from Flick’s decomposed stub presentation in several respects. For application writers,

12



the most important difference is that Flick enables asynchronous message processing
for both clients and servers, while the Messaging Specification defines asynchronous
processing for clients only. Additionally, Flick’s decomposed stubs allow applications
to separate message encoding and decoding from message transmission and receipt.
This allows applications to forward or cache messages for more efficient operation.
Beyond the details of the generated stubs, however, theCORBA Messaging Specifica-
tion is more broad than the work presented here. In addition to defining a standard
for asynchronous stubs, the Messaging Specification defines a new Quality of Service
(QoS) standard forCORBA-based applications, supported by a new message routing
infrastructure. These newCORBA facilities are runtime components, and therefore out-
side the domain controlled by anIDL compiler like Flick.

Flick and theCORBA Messaging Specification represent two different approaches
to flexible stub generation. The Messaging Specification increases flexibility by ex-
panding the set of standard ways in whichIDL may be translated into stubs. Flick,
however, increases flexibility by opening theIDL compiler itself to new components,
which may be developed rapidly and independently to target specific application do-
mains. In previous work [12, 13] we demonstrated the benefits that come from the
ability to create application-specific stubs. We showed that application-specific stubs,
customized according to a set of programmer-supplied interface annotations, could
provide up to an order of magnitude speedup inRPCperformance.

TheCORBA Event Service [25] is another Object Management Group standard for
decoupling requests and replies betweenCORBA objects. This specification defines an
event channelas an object that mediates communication between sets of suppliers and
consumers. Because an event channel is a heavyweight object, it can provide many
services — but these extra services may come at a price. To make use of any channel
services, including asynchronous messaging, clients and servers must be specially writ-
ten to communicate through event channels. This is in contrast to Flick’s decomposed
stubs which allow a client or server (or both) to use asynchronous messaging without
cooperation or knowledge from the other side.3 Also, because event channels inter-
pose on communication, they may introduce overheads that are not present in Flick’s
optimized stubs.

The importance of optimizing middleware will only increase as computers and net-
works become increasingly fast. Modern operating systems are now supporting ef-
ficient, lightweight communication mechanisms such as shared memory-based intra-
node communication channels [1], highly optimized kernelIPC paths [10, 21], and new
inter-node communication models such as active messages [33] and sender-based pro-
tocols [4, 32]. As Clark and Tennenhouse predicted in 1990 [7], these improvements
in low-level communication systems have moved the performance bottlenecks for dis-
tributed applications out of the network and operating system layers and into the appli-
cations themselves.

Recent work by Schmidt et al. [18, 28] has quantified the impact of presentation
layer overhead forrpcgen and two commercialCORBA implementations. On aver-
age, due to inefficiencies at the presentation and transport layers, compiler-generated
stubs achieved only 16–80% of the throughput of hand-coded stubs. To address these
and similar performance issues, several attempts have been made to improve the code
generated byIDL compilers. These are discussed in our earlier paper on Flick [9].

13



In summary, these otherIDL compilers are either not very flexible (e.g., Mach’sMIG

compiler [27]) or not able to produce very fast code.
Asynchronous communication and message forwarding are not new ideas. Ander-

son et al. [2] describe these same mechanisms for a Global Memory Service [11] built
on top of Trapeze. However, their work focuses on the transport layer rather than the
presentation and application layers. Further, they provide no support for automatically
generating stubs to exploit asynchronous communication and message forwarding. Our
work focuses on presenting these mechanisms to the application and automatically
generating the appropriate stubs. We believe that our work is complementary to that
of Anderson et al.; Flick can leverage the benefits of an efficient transport system to
produce optimized communication stubs.

For parallel applications, there are a large number of specialized programming lan-
guages such as CC++ [6], Fortran M [15], and Split-C [8]. In most of these cases the
language handles marshaling and unmarshaling of parameters. However, it is our be-
lief that the techniques used by Flick, and possibly even its code, could be incorporated
into the compilers for these languages to substantially reduce presentation layer costs,
e.g., by minimizing data copying. There are also a large number of parallel runtime
systems providing various levels of abstraction and functionality, such asMPI [22],
PVM [17], and Nexus [16]. Typically, these systems require the programmer to write
the marshaling code by hand, although they do abstract away byte-swapping in order
to accommodate heterogeneous machines. We believe these provide an attractive target
for optimizations provided by Flick.

8 Conclusion

High-level tools such asIDL compilers can greatly reduce the effort and time required
to implement distributed and parallel systems. Unfortunately, the limitations of tra-
ditional IDL compilers often prevent the use of such tools in applications that require
maximum performance. TraditionalIDL compilers may produce stubs that have ex-
cessive presentation layer overheads; furthermore, traditionalRPCstubs are not a good
match for the needs of many modern systems.

We have outlined Flick, a novel, modular, and flexibleIDL compiler that generates
optimized code for a variety of stub styles and transport mechanisms. We describe how
Flick has been extended to meet the needs of a particular distributed application, Khaz-
ana, and now provides a new style ofCORBA-based stubs appropriate for use in other
similar systems. We believe that the creation and maintenance of complex distributed
applications can be greatly improved through the use of middleware tools like Flick
that minimize programmer effort, produce optimized code, and provide support for a
flexible set of application programming models.

Availability

Complete Flick source code and documentation are available fromhttp://www.cs.

utah.edu/flux/flick/.

14



Acknowledgments

We wish to thank the Khazana implementors, especially John Carter, Sai Susarla, and
Anand Ranganathan, for their help in this work. Without their support, this work would
not have been possible. We also wish to thank the anonymous reviewers who made
many helpful comments on previous drafts of this paper. Finally, we owe special thanks
to Patrick Tullmann for providing extensive proofreading and suggestions for improve-
ment.

References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and
M. Young. Mach: A new kernel foundation for UNIX development. InPro-
ceedings of the Summer 1986 USENIX Conference, pages 93–112, June 1986.

[2] D. C. Anderson, J. S. Chase, S. Gadde, A. J. Gallatin, K. G. Yocum, and M. J.
Feeley. Cheating the I/O bottleneck: Network storage with Trapeze/Myrinet. In
Proceedings of the USENIX 1998 Annual Technical Conference, pages 143–154,
New Orleans, LA, July 1998.

[3] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls.ACM
Transactions on Computer Systems, 2(1), Feb. 1984.

[4] G. Buzzard, D. Jacobson, M. Mackey, S. Marovich, and J. Wilkes. An implemen-
tation of the Hamlyn sender-managed interface architecture. InProceedings of
the Second Symposium on Operating Systems Design and Implementation, pages
245–259, Seattle, WA, Oct. 1996. USENIX Association.

[5] J. Carter, A. Ranganathan, and S. Susarla. Khazana: An infrastructure for build-
ing distributed services. InProceedings of the 18th International Conference on
Distributed Computing Systems, pages 562–571, May 1998.

[6] K. M. Chandy and C. Kesselman. CC++: A declarative concurrent object oriented
programming notation. Technical Report CS-TR-92-01, California Institute of
Technology, Mar. 1993.

[7] D. D. Clark and D. L. Tennenhouse. Architectural considerations for a new gen-
eration of protocols. InProceedings of the SIGCOMM ’90 Symposium, pages
200–208, 1990.

[8] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von
Eicken, and K. Yelick. Parallel programming in Split-C. InProceedings of Su-
percomputing ’93, pages 262–273, Portland, OR, Nov. 1993.

[9] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom. Flick: A flexible, op-
timizing IDL compiler. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 44–56, Las Vegas,
NV, June 1997.

15



[10] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. Exokernel: An operating system
architecture for application-level resource management. InProceedings of the
15th ACM Symposium on Operating Systems Principles, pages 251–266, Copper
Mountain, CO, Dec. 1995.

[11] M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R. Karlin, and H. M. Levy. Im-
plementing global memory management in a workstation cluster. InProceedings
of the 15th ACM Symposium on Operating Systems Principles, pages 201–212,
Copper Mountain, CO, Dec. 1995.

[12] B. Ford, M. Hibler, and J. Lepreau. Using annotated interface definitions to op-
timize RPC. InProceedings of the 15th ACM Symposium on Operating Systems
Principles, page 232, 1995. Poster.

[13] B. Ford, M. Hibler, and J. Lepreau. Using annotated interface definitions to op-
timize RPC. Technical Report UUCS-95-014, University of Utah Department of
Computer Science, Mar. 1995.

[14] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and S. Clawson. Microker-
nels meet recursive virtual machines. InProceedings of the Second Symposium
on Operating Systems Design and Implementation, pages 137–151, Seattle, WA,
Oct. 1996. USENIX Assoc.

[15] I. T. Foster and K. M. Chandy. Fortran M: A language for modular parallel pro-
gramming.Journal of Parallel and Distributed Computing, 25(1), Feb. 1995.

[16] I. T. Foster, C. Kesselman, and S. Tuecke. The Nexus task-parallel runtime sys-
tem. In Proceedings of First International Workshop on Parallel Processing,
pages 457–462, 1994.

[17] G. Geist and V. Sunderam. The PVM system: Supercomputer level concur-
rent computation on a heterogenous network of workstations. InSixth Annual
Distributed-Memory Computer Conference, pages 258–261, 1991.

[18] A. Gokhale and D. C. Schmidt. Measuring the performance of communication
middleware on high-speed networks.Computer Communication Review, 26(4),
Oct. 1996.

[19] A. Gokhale and D. C. Schmidt. The performance of the CORBA Dynamic Invo-
cation Interface and Dynamic Skeleton Interface over high-speed ATM networks.
In Proceedings of GLOBECOM ’96, pages 50–56, London, England, Nov. 1996.

[20] A. Gokhale and D. C. Schmidt. Optimizing the performance of the CORBA Inter-
net Inter-ORB Protocol over ATM. Technical Report WUCS–97–09, Washington
University Department of Computer Science, St. Louis, MO, 1997.

[21] J. Liedtke. Improving IPC by kernel design. InProceedings of the 14th ACM
Symposium on Operating Systems Principles, Asheville, NC, Dec. 1993.

16



[22] Message Passing Interface Forum.MPI-2: Extensions to the Message-Passing
Interface, July 1997.http://www.mpi-forum.org/.

[23] G. Muller, R. Marlet, E.-N. Volanschi, C. Consel, C. Pu, and A. Goel. Fast,
optimized Sun RPC using automatic program specialization. InProceedings of
the 18th International Conference on Distributed Computing Systems, pages 240–
249, May 1998.

[24] Object Management Group.The Common Object Request Broker: Architecture
and Specification, 2.0 edition, July 1995.

[25] Object Management Group. Event service specification. InCORBAservices Spec-
ification, chapter 4. Object Management Group, Dec. 1997.

[26] Object Management Group.CORBA Messaging: Joint Revised Submission with
Errata, May 1998. OMG TC Document orbos/98–05–06.ftp://ftp.omg.

org/pub/docs/orbos/98-05-06.ps.

[27] Open Software Foundation and Carnegie Mellon University, Cambridge, MA.
Mach 3 Server Writer’s Guide, Jan. 1992.

[28] D. C. Schmidt, T. Harrison, and E. Al-Shaer. Object-oriented components for
high-speed network programming. InProceedings of the First Conference on
Object-Oriented Technologies and Systems, Monterey, CA, June 1995. USENIX
Assoc.

[29] R. Srinivasan. RPC: Remote procedure call protocol specification version 2.
Technical Report RFC 1831, Sun Microsystems, Inc., Aug. 1995.

[30] Sun Microsystems, Inc.ONC+ Developer’s Guide, Nov. 1995.

[31] SunSoft, Inc. SunSoft OMG Interface Definition Language Compiler Front End,
release 1.3, Mar. 1994.ftp://ftp.omg.org/pub/contrib/OMG_IDL_CFE_
1.3/.

[32] M. R. Swanson and L. B. Stoller. Direct Deposit: A basic user-level protocol for
carpet clusters. Technical Report UUCS-95-003, University of Utah Department
of Computer Science, Mar. 1995.

[33] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages:
A mechanism for integrated communication and computation. InProceedings
of the 19th International Symposium on Computer Architecture, pages 256–266,
May 1992.

17



Notes

1Using the “deferred synchronous” communication model, aCORBA client sends a
request message and later must poll for the corresponding reply. The server still han-
dles the request synchronously. InCORBA, deferred synchronous communication is
available only through the Dynamic Invocation Interface, which generally imposes sig-
nificant communication overhead [19] and requires application programmers to write a
significant amount of messaging code, thus significantly reducing the principal benefits
that come from using anIDL-based middleware system.

2TheCORBA Messaging Specification is not yet widely implemented.

3Some features of decomposed stubs, such as the ability to send multiple replies to
a single request, require cooperation between client and server and support from the
ORB.

18



List of Figures

1 Overview of the FlickIDL Compiler . . . . . . . . . . . . . . . . . . 20
2 Overview of Communication Through Decomposed Stubs .. . . . . 21

19



PRES_C File

AOI File

.c, .h Files

Presentation
rpcgen

Presentation
CORBA Fluke

Presentation

Presentation Generator

Back End
CORBA IIOP ONC RPC

Back End
Fluke

Back End
Mach 3

Back End
Trapeze

Back End

Back End

ONC RPC
Front End

MIG

MIG

Front End

Presentation

CORBA
Front End

Front End

CORBA IDL File ONC RPC IDL File MIG IDL File

Figure 1: Overview of the FlickIDL compiler. Flick dividesIDL compilation into
three stages that communicate through intermediate files. As represented by the shaded
boxes, each compilation stage is implemented primarily by a library of code that pro-
vides common functions and abstractions. Each particular front end, presentation gen-
erator, and back end is created by linking a relatively small amount of specialized code
with the appropriate base library. TheMIG front end and presentation generator are
conjoined due to the nature of theMIG IDL [9].

20



Other
Server

Client
Other

Send
Stub

Request
Demux

Server Work
Function

Queue

Forward

Reply

Continuation

Marshaling
Stub

Send Stub

Stub
Marshaling

Send Stub

Reply
Demux

Function
Client Work

Queue

Forward

Continuation

Client

Send

Server

Stub

Figure 2: Overview of client/server communication through “decomposed” stubs. Un-
like the standard (synchronousRPC) stubs produced by a normalCORBA IDL compiler,
Flick’s decomposed stubs allow for asynchronous requests and replies, efficient mes-
sage forwarding, reuse of marshaled messages, and saving intermediate results.

21



List of Tables

1 Summary of the DecomposedCORBA Presentation Style. . . . . . . . 23

22



Marshaling
Stubs

Interface _Request Interface _operation _encode_request(

in and inout parameters ,

CORBA_Environment *env);

Interface _Reply Interface _operation _encode_reply(

return and inout and out parameters ,

CORBA_Environment *env);

Interface _Reply Interface _operation _encode_exception(

CORBA_Environment *reply_env,

CORBA_Environment *env);

Unmarshaling
Stubs

void Interface _operation _decode_request(

Interface _Request msg,

in and inout parameters ,

CORBA_Environment *env);

void Interface _operation _decode_reply(

Interface _Reply msg,

return and inout and out parameters ,

CORBA_Environment *env);

Send
Stubs

void Interface _send_request(

Interface target, Interface _Request msg,

Invocation_id inv_id, Client client,

CORBA_Environment *env);

void Interface _send_reply(

Client client, Interface _Reply msg,

Invocation_id inv_id, Interface target,

CORBA_Environment *env);

Work
Functions

void Interface _operation _do_request(

Interface target, Interface _Request msg,

Invocation_id inv_id, Client client);

void Interface _operation _do_reply(

Client client, Interface _Reply msg,

Invocation_id inv_id, Interface target);

Continuation
Stubs

typedef void Interface _Request_Continuer(...);

typedef void Interface _Reply_Continuer(...);

void Interface _operation _continue_request(

Interface target, Interface _Request msg,

Invocation_id inv_id, Client client,

Interface _Request_Continuer func, void *data);

void Interface _operation _continue_reply(

Client client, Interface _Reply msg,

Invocation_id inv_id, Interface target,

Interface _Reply_Continuer func, void *data);

Table 1: Summary of the stubs and functions that are part of Flick’s “decomposed”
CORBA presentation style. The italicized elements (e.g.,Interface ) are replaced
with the appropriate names and elements from the inputIDL file.

23


