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Abstract

Janos is an operating system for active network nodes
whose primary focus is strong resource management and
control of untrusted active applications written in Java.
Janos includes the three major components of a Java-
based active network operating system: the low-level
NodeOS, a resource-aware Java Virtual Machine, and an
active network protocol execution environment. Each of
these components is separately usable. This article lays
out the Janos design and its rationale.

1 Introduction

An active network is akin to a regular network: packets of
data are routed through the network from a source node
to one or more destination nodes. In an active network,
the “routers” are programmable devices. The logic for
manipulating a packet while at intermediate nodes can be
much more flexible than simple, hard-coded destination
routing. Packets in an active network can be manipulated,
copied, and modified by dynamically installed code.

The software at an endpoint (host) or intermediate
(router) node in an active network can be described in
terms of a model that divides the system into three log-
ical layers [2]: the NodeOS, the execution environment,
and active application layers. The NodeOS layer [1]
abstracts the hardware and provides low-level resource
management facilities. An execution environment (EE)
sits atop the NodeOS and provides the basic application
programming interface (API) available to the active net-
work programmer. For example, an EE may be a virtual
machine or simply a set of rules for interpreting packet
headers. Conceptually, there may be several EEs running
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above the NodeOS, each providing a separate program-
ming environment. The third and topmost layer of the ar-
chitecture comprises the active applications (AAs), each
of which contains code injected into the network to sup-
port a network service. In this model, a domain—similar
to a process in a traditional operating system—is the unit
of resource control and termination. An active applica-
tion runs in the context of a domain, analogous to the
way an executable image runs in the context of a process
on a traditional operating system. The NodeOS and EE
software are generally installed by a node administrator.
An EE supports dynamic installation and removal of AAs
in response to administrator or user demands. The ac-
tive network node architecture and nomenclature are part
of the DARPA active network community’s architectural
framework and not a direct development of our research,
although we are participants in the community design pro-
cess.

Janos is our operating system for active nodes, im-
plementing both the NodeOS and EE layers of the ac-
tive node model, described above. Active applications
for Janos are written to our ANTS-based [43] ANTSR

runtime [39], which runs atop our modified, resource-
conscious Java virtual machine called the JANOSVM. To-
gether, these two components constitute the EE layer and
run on Moab, our implementation of the NodeOS. The
JANOSVM and ANTSR runtime support AAs with an en-
vironment quite similar to a Java runtime [20]—in fact,
the language syntax is identical—though ANTSR provides
a narrower set of standard libraries. The ANTSR API
provides the active application programmer with simple
mechanisms for dynamic, on-demand code loading, im-
plicit registration of packet-matching keys, and dispatch
of packets. Additionally, simple facilities for maintain-
ing soft state and logging are also provided. Figure 1
shows the relationship between the components of Janos
and how they align with the DARPA active node model.

Janos is designed to prevent separate active applica-
tions from interfering with one another and to provide
node administrators with strong controls over active ap-
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Figure 1: The Janos Architecture and the corresponding
DARPA Active Network Node Architecture. Moab is our
NodeOS layer. It is built on our OS component library,
the OSKit. The EE layer is comprised of the JANOSVM,
the Janos Java NodeOS, and ANTSR. AAs are hosted on
this foundation.

plications’ resource usage. To this end, the ANTSR run-
time is carefully designed to constrain unauthorized, ma-
licious, or buggy code by hiding interfaces for security-
and resource-critical operations such as thread termina-
tion, packet spoofing, incoming packet matchers, resource
limit changes, or shutting down a node. Operations along
the lines of those just mentioned are made available only
to authorized users, i.e., a node administrator. The admin-
istrator of a Janos node, in addition to initiating the boot-
strap process, must be able to control access to the node,
assign resources, and query the node about its state. In
Janos, an administrator is given a control interface to the
ANTSR runtime. From there, the administrator can start
and terminate domains, gather statistics about the node,
change resource limits, and modify access privileges.

A critical challenge in building Janos from separate
components (Moab, the JANOSVM and ANTSR) is to en-
sure that features are provided at the appropriate level and
that there is no redundancy among the components. For
example, our design provides for per-domain memory ac-
counting in the JANOSVM—where the garbage collector
already tracks memory usage—while Moab provides only
coarse accounting services. In addition to supporting ac-
tive network users and administrators, Janos was designed
to support research and development of other active net-
work systems. The three components of Janos and their
subcomponents are designed to be separately reusable.
The utility of these separate components is enhanced by
the existence and adherence to community standards such
as the NodeOS API.

The rest of this article describes the components of
Janos in greater detail, with particular emphasis on those
aspects of the design that allow Janos to provide strong
resource control over active applications within an active
network node. Section 2 lays out the goals of the Janos

architecture while Section 3 presents the system’s design.
Section 4 follows with a list of open issues and areas un-
addressed by Janos. The current status of the Janos im-
plementation is described in Section 5. Finally, Section 6
summarizes work related to Janos.

2 Goals

The major research focus of Janos is to provide compre-
hensive, precise resource control over the execution of un-
trusted Java bytecode. To adequately meet this demand
Janos is obliged to provide sufficient security—or the re-
source limits will just be circumvented—and sufficient
performance—or there will be little that can be accom-
plished under a limit. This section presents the goals for
Janos; the details of how these goals are met are presented
in the Section 3.

We want Janos to track the existing, relevant commu-
nity standards for active networks to improve its useful-
ness to other researchers. In addition to providing con-
crete targets and leveraging the designs of previous sys-
tems, adherence to standards makes comparisons between
different implementations easier to perform [31].

2.1 Untrusted Code Support

Janos, as an active network node operating system, must
support the execution of untrusted code near the lowest
levels of packet receipt and dispatch. Such support im-
plies several safety and security goals for Janos. First,
user code (i.e., an active application) must see only those
packets that it is allowed to see. For example, an unprivi-
leged AA cannot install a filter that matches all incoming
packets. Conversely, user code must send only packets
that it is allowed to send: it may not “spoof” packets. Sec-
ond, to preserve resource constraints and timely dispatch
of incoming packets, all user code must execute “quickly”
or be preemptible. Third, as in any operating system, user
code must not interfere with other user programs, access
data outside its scope, or interfere with the proper func-
tioning of the operating system itself. Finally, Janos must
always have the ability to terminate user code.

2.2 Resource Management Goals

Janos must be able to limit the use of resources by running
AAs, and be able to reclaim resources from terminated
AAs. Janos does not attempt to address the problem of re-
source management on a network-wide basis; Janos pro-
vides resource management only on a single node. Janos’
goal, however, is to provide a sufficiently strong founda-
tion for others to implement network-wide resource man-
agement schemes. Specifically, resource control in Janos

2



encompasses three independent resources: memory, CPU
usage, and outgoing network bandwidth.

For memory, Janos has three management goals: first,
to be able to guarantee and enforce a limit on each do-
main’s memory usage; second, to be able to reclaim mem-
ory from terminated domains; and third, to provide active
applications with sufficient infrastructure to allow them to
manage their memory internally. The first two goals are
important in maintaining the integrity and availability of a
Janos-based node as a whole. The third goal is important
to the authors of active applications. Specifically, for each
domain, an active application should be able to specify
how much memory is dedicated to buffering of its incom-
ing packet streams, versus storing code and program state.

Janos must also control the amount of CPU time used
by individual domains. This goal has two distinct sub-
goals: first, for each domain, to guarantee and limit ac-
cess to CPU time; and second, to reduce, amortize, or
eliminate CPU time that cannot properly be charged to
any domain. In regulating CPU resources of individual
domains, our initial goal for Janos is to support simple
relative-share CPU reservations. Support for scheduling
according to more complex service guarantees—such as
latency guarantees or real-time deadlines—is beyond the
scope of the current Janos implementation effort. Addi-
tionally, the Java components of Janos need to be able to
constrain time spent in the garbage collector, or charge
that time to the appropriate domain.

The third explicitly controlled resource is outgoing net-
work bandwidth. Clearly, as a network router, Janos must
manage and constrain each domain’s access to the net-
work. Similar to CPU scheduling, our initial goal for
Janos is to provide simple relative-share outgoing rate
guarantees to each domain. More complex scheduling pa-
rameters, such as latency requirements, are possible in the
design, but are beyond the scope of our current implemen-
tation. As with the other resources, domains should be
able to manage independent outgoing streams separately.
Specifically, information about the packet queues on links
must be provided so that intelligent packet drop decisions
can be made.

In contrast to outgoing network bandwidth, for incom-
ing bandwidth there is no direct way for a receiver to in-
fluence the schedule of incoming packets. Janos does not
artificially limit a domain’s incoming network usage. A
domain should, however, be able to control the buffering
for each input channel independently, and should be able
to specify how packets destined to a “full” input channel
are handled (by dropping them or by replacing older pack-
ets).

Given that Janos enforces limits on memory, CPU, and
network bandwidth, active applications must be able to
specify their resource requirements to Janos. Janos, in

turn, must be able to describe resource availability and al-
locations to users. The goal of presenting an appropriate
representation or “language” for resource descriptions is
challenging. In an active network, resource specifications
must be general enough to apply to a heterogenous set
of nodes with unique hardware in multiple administrative
domains, yet these descriptions must be precise enough
to allow accurate accounting and admission control on an
individual node. Our goal with Janos is to provide a sim-
ple and coarse system for reconciling high-level, abstract
resource specifications with the low-level physical prop-
erties of nodes.

2.3 Performance Goals

Janos must perform at the level of similar solutions on
a traditional operating system. While the prototype na-
ture of Janos, the immaturity of Java optimization tools,
and the inherent inefficiencies of stock PC hardware all
present significant performance challenges, Janos should
at least demonstrate that flexible active nodes can be fast
and efficient for appropriate uses.

In fact, there is considerable reason to believe that Janos
will offer good performance to active applications. Be-
cause Janos is designed specifically to service active net-
work applications, it can expose domain-specific opti-
mizations to applications—optimizations that would not
generally be possible in a conventional operating system.
For example, the nature of a network interface in a router
is much more constrained than in a general purpose oper-
ating system. We expect that the difference between con-
trol and data streams can be exploited for performance
gains. Additionally, in an active network router network
traffic will generally be manipulated as discrete, physical-
layer-sized objects. Abstracting network access behind
the stream-oriented, physical-layer-independent network
interfaces found in traditional operating systems prevents
active applications from making informed decisions about
the network around them.

2.4 Separable Components

A final goal of our Janos effort is that, although the major
components are optimized to work together, each should
also be useful independently. This maximizes the impact
of our research by providing infrastructure to other de-
signers and active network researchers. Java-based EEs
should be sufficiently portable to run on the JANOSVM,
while other EEs written to the NodeOS API should be
easy to port to Moab.

To this end, three major components of Janos provide or
implement well-defined programming interfaces oriented
around the NodeOS API. The ANTSR runtime relies on
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Java bindings to the NodeOS API, while the JANOSVM
relies on the C implementation and provides the Java bind-
ings. Moab provides an implementation in C. Figure 1
shows the relationships between the components of Janos.

3 Design

Janos takes advantage of a wealth of existing infrastruc-
ture and simultaneously provides new facilities and fea-
tures. Most of the existing infrastructure in Janos is ob-
tained from two software projects: the OSKit [19] com-
ponent libraries and Kaffe [45], a freely available Java vir-
tual machine. The OSKit is a collection of components
such as device drivers, POSIX APIs, filesystems, and net-
work protocols, culled from existing systems and made in-
teroperable. Kaffe is a complete, open source Java virtual
machine. Kaffe running on the OSKit provides a basic
Java implementation on raw hardware: the infrastructure
upon which we architect Janos.

Janos is one of a new wave [6, 7, 21, 40] of hybrid lan-
guage/OS systems. As with these systems, Janos lever-
ages the type-safety of Java to provide memory safety and
to allow safe, fine-grained sharing across the user/kernel
boundary. Unlike traditional operating systems, Java op-
erating systems do not use separate virtual address spaces
or system call traps to separate applications and the ker-
nel, instead using type-safety to enforce protection and
separation [8]. All untrusted code to be run on Janos must
be written in Java; C is used only for implementing trusted
portions of the system. Janos differs from previous Java
operating systems in its customization for the active net-
work domain, and in its emphasis on resource manage-
ment.

We divide the description of Janos’s design among
the three major components: Moab, the JANOSVM, and
ANTSR. For each component, we describe the architec-
ture and explain its contribution to Janos.

3.1 Moab

Moab is compliant with the DARPA Active Network Pro-
gram’s NodeOS specification [1]. As such, Moab’s imple-
mentation is somewhat determined by the major features
defined in the specification. Our initial work on Moab
helped to inform and shape the NodeOS API specifica-
tion.

Moab is built upon the OSKit, from which Moab gets a
full complement of device drivers (originally from Linux),
several complete filesystems, a threading implementation,
the FreeBSD networking stack, and many support mod-
ules such as boot loaders and remote debugging support.
One benefit of building on the OSKit is that POSIX-reliant
systems will work almost immediately on the OSKit, and

can be incrementally migrated to Moab. The NodeOS API
is implemented as a library layered on top of the OSKit’s
libraries. Moab is not implemented as a traditional oper-
ating system; invocations of NodeOS functions are direct
function calls and do not “trap” into the OS. (Janos pro-
tects itself from untrusted code at the JANOSVM layer,
not in the NodeOS.) Moab, like the OSKit, is written in
C.

We do not fully address the motivation or design of the
NodeOS API in this article, and will only cover those ar-
eas where Moab departs from the specification, or pro-
vides services beyond the scope of the specification. A
treatment of the issues involved where Moab follows the
NodeOS specification are covered by another article in
this journal [31].

Before explaining how Moab differs from the specifi-
cation, we present a (very) short review of the NodeOS
API. The domain is the unit of resource control. Each do-
main is associated with a memory pool of physical mem-
ory pages. A domain contains thread pools from which
thread objects are taken to handle packets dispatched out
of input channels, based on the demultiplex key specified
with the channel. Packets are sent on output channels. A
cut-through channel allows the NodeOS to optimize di-
rectly connected input and output channels.

Currently, Moab deviates from the NodeOS specifica-
tion (but, ideally, not from future specifications) in several
minor ways, including two incompletely implemented
NodeOS interfaces (memory pools and events). We plan
to fill out our implementation to satisfy the NodeOS API
in these areas. There are several areas, however, where
we have deliberately diverged from the specification for
reasons described in the following sections. Specifically,
our changes concern: our single trusted-EE assumption,
hardware-specific resource specifications, a constrained
packet buffer interface, and threadpool associations. Fur-
ther, Moab compatibly extends the NodeOS API with a
new type of cut-through channel based on Click [28].

3.1.1 Single, Trusted Execution Environment

Where the NodeOS specification leaves open the ability of
a NodeOS to host multiple execution environments, Moab
assumes it will play host to a single EE. This design deci-
sion is based on the assumption that a “production” active
network node will contain a single EE tailored to its envi-
ronment. Our single-EE focus means that Moab does not
need to mediate between EEs (for example, with respect
to demultiplexing incoming packets).

Additionally, the NodeOS specification leaves open the
trust relationship between the NodeOS and an EE. In
Moab we chose to implicitly trust the EE to perform
many services correctly. We believe the boundary be-
tween trusted and untrusted code belongs at the AA/EE
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boundary and that duplicating safety and separation at the
EE/NodeOS boundary is wasteful. Specifically, many se-
curity and correctness checks are better accomplished by
the type-safety of the Java runtime than by explicit checks
in Moab.

3.1.2 Resource Specification

The current NodeOS specification calls for fairly impre-
cise, hardware-independent resource specifications. In
contrast, Moab resources are specified in a very precise
manner in terms of the local node’s hardware. For ex-
ample, physical memory limits are specified in terms of
memory pages, CPU rates are specified in units of proces-
sor cycles per second, and outgoing network bandwidth
is specified in bytes per millisecond. It is the job of the
EE (in our case, ANTSR and the JANOSVM) to present
these hardware-specific controls to application program-
mers and node administrators in a meaningful fashion.

This design puts the burden of developing hardware-
independent resource specifications at the more flexible
EE level. Also, with our design, EEs can make informed
decisions about the local node based on precise numbers
that map directly and clearly to local resources. Report-
ing the actual resource usage on a local node as hardware
independent values would reduce the confidence that ex-
ecution environments have in their resource allocations.
Thus, Moab is useful to a broader array of EEs, includ-
ing EEs that want to precisely distinguish “EE” resources
from “AA” resources.

3.1.3 Memory Accounting

To meet the goal of allowing applications on Janos to
manage their own memory usage, we have designed Moab
so that almost all memory management can be performed
by the EE. That is, all memory used by Moab on behalf
of the EE is provided explicitly by the EE. For exam-
ple, creating a thread requires the EE to provide memory
for the thread control block and memory for the thread’s
stack. This “zero-malloc” interface design, which has
been incorporated into the most recent NodeOS specifica-
tion, is also intended to improve performance by remov-
ing memory management operations from critical paths.
Dynamic memory allocation (plus the implied dealloca-
tion) in a multi-threaded system can be costly. While
there are many approaches to reduce the cost of alloca-
tion [24, 36], avoiding allocations removes this overhead
and results in code that is simpler to analyze, and that by
definition cannot throw out-of-memory exceptions.

Unfortunately, while all of the Moab code meets this
goal, we are reusing a large amount of existing code in
the OSKit that is not necessarily written in this style, such

as the device drivers, filesystem code, and primitive thread
library.

3.1.4 Packet Buffers

Packets are special in Moab. The design of packet buffers
is oriented around a single problem: the NodeOS must
receive an incoming packet into memory before deciding
which domain owns the packet. Moab is designed to im-
plement zero buffer copies in the common case of for-
warding a packet, even if untrusted user code makes the
forwarding decisions and manipulates the packet. Com-
pare this with a traditional operating system model in
which data must be copied in order to protect the kernel
from untrusted applications.

To avoid copies, we require that a packet be received
into a buffer that can be handed directly to the appropri-
ate domain. An EE associates buffers with each of its
input channels. To maintain resource limits, a buffer is
only handed off to a domain that has a free buffer avail-
able on its input channel. Moab swaps the “full” buffer
for the “empty” one. Thus Moab has a constant sup-
ply of buffers for incoming packets, and the domain nei-
ther gains nor loses buffers. Of course, this design re-
quires that all buffers be interchangeable. For example,
the system would quickly break down if an “empty” 10-
byte buffer were equivalent to a “full” 4096-byte buffer.
Buffers must be big enough to receive large packets, so
all buffers must be the maximum transmission size of the
local node’s physical layers.

In a traditional operating system, this design would
probably be overwhelming. In a router, however, we pos-
tulate that reassembly of disjoint packets is rare (i.e., that
contiguous, physical-layer packets are the most common
type of packet). This assumption provides an opportunity
for Moab to impose a reasonable restriction that results
in a simpler, zero-copy dispatch of packets to domains.
Additionally, by fixing the size of packet buffers, man-
agement of packet buffer caches is greatly simplified.

We anticipate, however, that creating full-size buffers
for all packets will waste a significant amount of mem-
ory on the many small packets that can be expected. Be-
cause packet distributions tend to be bimodal [12], and
since copying small packets is cheap, an EE may choose
to immediately copy the packet into a smaller buffer and
immediately recycle the large buffer.

Moab provides no direct support for hierarchical packet
representations made from multiple buffers (such as
mbuf-chains [25] or x-kernel msgs [29]). The outgoing
channel send interface, however, supports a gather inter-
face similar to writev() that takes either a variable
length argument list of (buffer, offset, length) tuples or a
pointer to a list of such tuples. The exact structure and
maintenance of complex buffer representations is left to
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the higher levels of Janos. We justify this design with
three observations. First, the common case for packet
handling in a NodeOS should be physical layer packets
that, by definition, fit in a single buffer. Second, any com-
plex packet structure at the NodeOS level is imposed on
higher layers, regardless of their needs. Third, our design
supports the major performance optimization that comes
from more complicated hierarchical packet representa-
tions, namely the gather operation performed on packet
transmit.

3.1.5 CPU Accounting

Moab deviates from the NodeOS thread pool specifica-
tion to meet our goal of allowing users of the NodeOS to
manage CPU usage within a domain. Instead of a domain-
wide thread pool, in Moab thread pools can be bound to
specific input channels. This allows the domain to intelli-
gently subdivide its CPU resources among its input chan-
nels. This can be useful in prioritizing control and data
packets, or for giving priority to one physical interface
over another.

Another aspect of precise CPU accounting in a router
is the difficulty in charging for the time spent processing
incoming packets. Specifically, resources are required to
calculate that an incoming packet belongs to no domain
in the system. Moab does all it can to minimize this
cost by implementing the simple packet dispatch mech-
anism described earlier and additional, well-known tech-
niques [16, 37]. But in the end, Moab charges such CPU
usage to the system.

3.1.6 Memory Pools

Memory management in the NodeOS is not performed at
domain granularity, but instead over groups of domains.
Each domain belongs to exactly one memory pool, from
which all the memory for that domain is allocated. The
limit associated with a memory pool is the sum of the
limits of all the domains associated with that pool. Thus,
when a domain is terminated, the overall memory pool
loses one domain’s worth of memory.

This design matches the memory management require-
ments of the JANOSVM and leverages its existing in-
frastructure. To enable the sharing of code and data be-
tween AAs within the JANOSVM, the VM needs to be
able to charge memory to a set of domains. To that end,
the VM creates a single NodeOS memory pool for it-
self and all Java-based domains. The JANOSVM already
must do memory accounting within its garbage collec-
tor, so putting per-domain memory management at that
level avoids redundancy. Memory management in the
JANOSVM is further described in Section 3.2.

The current memory management interfaces (at all lev-
els) deal with memory as a guaranteed, strictly accounted
resource. Opportunistic and revocable uses of memory
(e.g., a domain using available memory for caching) are
not covered in the current APIs.

3.1.7 Click Channels

The Click Modular Router [28] is a software package
from MIT that enables administrators to dynamically cre-
ate Linux-based packet routers by wiring together small,
simple, well-defined components that perform such func-
tions as Ethernet receive, IP checksum, and so on. Click
router graphs match the semantics of NodeOS cut-through
channels.

Moab supports Click-channels, in addition to the stan-
dard NodeOS API channels. Click-channels use Click
router graphs in place of the simplistic protocol specifi-
cations defined by the NodeOS specification. For exam-
ple, a Click cut-through channel contains a Click router
graph description in place of a protocol specification.
The instantiated Click router elements run inside Moab.
The Click channel specifications are more complex, but
features such as reassembly, timeouts, and buffering are
specifiable.

3.2 JanosVM

The JANOSVM is the most critical part of a Janos node.
This is where we map the C-based Moab interfaces into
Java and provide ANTSR with support for managing un-
trusted, potentially malicious, user applications.

The JANOSVM is a virtual machine that accepts Java
bytecodes and executes them on Moab. Both the VM and
the Java code running within it use the facilities provided
by Moab. The JANOSVM provides access to the under-
lying NodeOS interfaces through the Janos Java NodeOS
bindings, which wrap simple Java classes around the C-
based API. In terms of resource controls, the CPU and
network controls available in Moab are unchanged by the
JANOSVM. Per-domain memory limits, however, are en-
forced by the garbage collection mechanism outlined be-
low.

The design of the JANOSVM followed directly from
our prior experience in Java operating systems with the
Alta Operating System [40] and KaffeOS [6]. Foremost,
the JANOSVM is based directly on the KaffeOS imple-
mentation. KaffeOS is a Java virtual machine that pro-
vides the ability to isolate applications from each other
and to limit their resource consumption. The KaffeOS
architecture supports the OS abstraction of a process—a
domain—in a Java virtual machine. Each process exe-
cutes as if it were run in its own virtual machine, includ-
ing separate garbage collection of its own heap. KaffeOS
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uses write-barriers—compiler-inserted checks on certain
object field writes—to prevent a process from writing out-
side its own heap. Through this architecture and careful
engineering, CPU and memory resources, including indi-
rect usage such as for JIT’ed code blocks, can be con-
trolled on a per-process basis. We have demonstrated
that KaffeOS achieves effective resource control with low
overhead [6].

KaffeOS implements a general OS architecture. In
Janos, we have simplified the KaffeOS design to lever-
age the constraints of our active network target. In par-
ticular, we introduce a more restrictive process model.
The major difference is that the JANOSVM does not sup-
port KaffeOS shared heaps; thus the write barriers can
be somewhat simpler and less frequent in the JANOSVM.
Like KaffeOS, the JANOSVM supports multiple, separate
heaps, separate garbage collection threads for each heap,
per-heap memory limits, and all of the basic JVM features
(JIT compilation, reflection, etc.). The JANOSVM is im-
plemented in a mix of C and Java.

The JANOSVM by itself is not a complete EE; although
it supports a type-safe environment through Java, it also
exposes many interfaces that untrusted code cannot safely
be allowed to invoke. A Java-level runtime (ANTSR in
our case) is required to present AAs with restricted ac-
cess to the NodeOS abstractions and provide services such
as protocol loading. The importance of drawing a “red
line” [8] between trusted system code and untrusted code
in language-based operating systems was identified in our
prior work with Java operating systems.

As we cannot describe all of the JANOSVM in this short
article, we focus on four aspects: the strict separation of
domains enforced by the JANOSVM, the special handling
of packet buffers, the specification of resources, and the
thin wrappers of the NodeOS API.

3.2.1 Strict Separation of Flows

To meet our goal of hosting untrusted, potentially mali-
cious Java bytecode, the JANOSVM implements a strict
separation of domains. Each domain runs in its own
namespace and in its own heap. Namespace separation
is achieved by a ClassLoader, the standard Java names-
pace control mechanism. The separate heaps are provided
by our domain-aware garbage collector in the JANOSVM.
The only shared objects permitted between domains are
packet buffers.

The JANOSVM provides each domain with its own
heap and a separate garbage collection thread for clean-
ing that heap. In addition to separating the memory us-
age of each domain, separate heaps implicitly constrain
the garbage collection costs incurred by each domain. In-
ternally, the JANOSVM’s allocator groups similar-sized
objects together on each “page” (4096 bytes, currently),

which can cause fragmentation of memory. Thus, to elim-
inate inter-domain fragmentation attacks, the JANOSVM
charges whole pages to a domain. Maintaining memory
ownership on a per-page basis greatly simplifies memory
reclamation upon domain termination as the JANOSVM
can sweep whole pages into the free page list.

The strongly enforced separation between domains re-
solves the difficult problem of fine-grained sharing in a
type-safe system that supports termination. By disallow-
ing objects to be shared between domains (except for the
special case of packet buffer objects), we can avoid all
the overhead of write-barriers in user code (as in Kaf-
feOS [7]) or complex compiler and run-time support (as
in Luna [22]).

As noted in Section 3.1.6, the JANOSVM uses a sin-
gle Moab-managed memory pool for all domains. The
JANOSVM itself enforces per-domain memory limits.
When a domain is terminated, the JANOSVM has to re-
turn the same number of pages to Moab as it acquired
when the domain was created. The exact memory pages
that were provided, however, need not be the ones that are
returned.

While total separation of domains makes resource man-
agement and domain termination simpler, it also makes
the system less flexible. So, the JANOSVM provides for
limited inter-domain communication. We believe inter-
domain communication will be rare, and have provided
few concessions to it. To support inter-domain commu-
nication, the JANOSVM uses a mechanism similar to a
tuple-space. All objects (except for packet buffers) are
deeply copied through this interface, thus preserving the
separation of heaps. Because access to packet buffer
memory is already specially handled by the JANOSVM
(see Section 3.2.2), sharing packet buffers between do-
mains does not create additional complications in the
garbage collector.

Although Janos supports only a limited form of inter-
domain communication, active applications can effi-
ciently communicate across the user/kernel boundary to
the JANOSVM and Moab. For example, operations such
as sending packets, manipulating a thread, and receiving
a buffer are accomplished with a minimum of overhead
through a fairly rich interface.

3.2.2 Packet Buffers

In the JANOSVM, packet buffers are wrappers around
Moab’s buffer abstraction. The JANOSVM does not fun-
damentally change the buffer abstraction provided by
Moab. Buffers are presented as simple contiguous chunks
of memory. No higher-level organization of buffer objects
is supplied; that is left to the ANTSR runtime and its active
applications.
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Access to buffers from Java is indirect through the
wrapper object, allowing the JANOSVM to revoke access
to buffer objects from AAs and to separately manage and
account for buffer memory. This design effectively moves
the user/kernel boundary across which packets are tradi-
tionally copied, all the way up to the AA’s buffer access
interface. Thus, for domains that just accept and send their
packets, there is no boundary crossing at all. Applications
that simply read and manipulate fields in a header pay
only for those operations. Sequential processing of large
contiguous chunks of the buffer, as would be the other
common case for active protocols, is amenable to com-
piler optimizations that amortize the indirection cost over
each contiguous buffer chunk. Using such techniques,
several Java projects [22, 41] have shown how to remove
most of the overhead introduced by wrapper objects such
as that introduced by the JANOSVM.

Buffers are sharable between domains, though the
memory cost is always borne entirely by a single domain
(the owner of the buffer). As described in [7], alternative
shared object cost models are not viable. A domain may
accept the cost of a buffer from another domain, effec-
tively transferring ownership. If the owner is terminated
or exits, all of its buffers are revoked and reclaimed. This
cleanup is made possible by the same layer of indirection
on buffers that protects the NodeOS.

3.2.3 Resource Specifications

As discussed in Section 3.1.2, Moab provides hardware-
specific resource information and leaves the job of map-
ping portable resource specifications to the EE. In Janos,
that task is performed by the JANOSVM which will pro-
vide a library for mapping platform independent resource
specifications into Moab’s hardware-specific specifica-
tions.

The actual API for the platform independent specifica-
tions is not yet complete, but will be expressed along the
lines of a multiple of “IP packet forwarding cost” for CPU
usage specifications and a multiple of “MTU packet size”
for memory resource specifications.

3.2.4 Thin Wrappers

For most NodeOS API features and interfaces provided by
Moab, the JANOSVM maps the NodeOS abstractions into
Java with minimum overhead. For example, the NodeOS
channel APIs are presented in Java as OutChannel,
InChannel, and CutThroughChannel classes with
the same operations that are available in Moab. In addi-
tion to mapping the API directly, the JANOSVM supports
the same memory accounting design as Moab, making
memory allocations as restricted as possible and keeping
the critical path free of memory management.

3.3 ANTSR

The ANTSR Java runtime is based on ANTS 1.1 [42, 43]
and provides the interfaces for untrusted, potentially ma-
licious, AAs to interact with the system. This is the layer
that is responsible for hiding critical JANOSVM inter-
faces and specifying per-domain resource limits. ANTSR

is written entirely in Java.

ANTSR supports active packet streams, where code is
dynamically loaded on demand when packets for a new
stream arrive. Demultiplexing of incoming packets is im-
plicitly defined by the signature (an MD5 hash) of the
bytecode making up the protocol. This elegantly solves
packet spoofing and snooping problems because the code
implicitly defines the type of packets that can be sent and
received.

ANTSR differs internally from ANTS, in that ANTSR

is designed to take advantage of the NodeOS abstrac-
tions and the support provided by the JANOSVM. Un-
der the hood, ANTSR adds many significant new features
including domain-specific threads, separate namespaces,
improved accounting over code loading, and a simple ad-
ministrator’s console. Despite these changes, ANTSR is
featurewise equivalent to ANTS, and the recent standard
ANTS 2.0 release is based on ANTSR.

Our experience with rewriting ANTS to use the
NodeOS APIs was very encouraging. The NodeOS ab-
stractions provide exactly the services that ANTS con-
tained ad-hoc implementations of. In many cases, the
NodeOS/EE distinction that we necessarily imposed on
ANTS cleared up internal abstractions that were confus-
ing. For example, the demultiplex key support in the
NodeOS is a perfect fit with the ANTS model of prefix-
ing all user packets with a 16-byte hash identifying the
protocol.

More difficult than simply using the available APIs was
the task of separating the resource usage of different do-
mains in ANTS. For example, one of our goals with
ANTSR was to correctly account for the cost of down-
loading code from a previous node. In ANTS this was
effectively a system-provided service: a global table kept
track of what code had been downloaded, and requests for
code were sent out based on that. Once all the code for
a new protocol had arrived, ANTS started the new proto-
col. To correctly account for the cost of code download-
ing in ANTSR, we create a new domain early and make
download and installing its code the first task of the new
domain. This design implicitly restricts code loading re-
sources to the new domain’s limits.

Overall, our problems in converting ANTS to ANTSR

arose from retroactively adding resource control to an ex-
isting system.
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3.4 Review

In summary, Janos is designed to provide services and
features in the appropriate layer, without overlap. Mem-
ory accounting is done at the domain level within the
JANOSVM, as is the mapping from abstract to concrete
resource specifications. Moab performs the management
of CPU and network resources. The containment of un-
trusted code is performed at the highest level, in ANTSR.
Together, these separate pieces implement a coherent
whole.

4 Open Issues

The current design and implementation of Janos leaves
some important topics unaddressed, such as the imple-
mentation of additional OS services that would be of use
to certain active applications. We briefly describe some of
these issues below and point out areas that we feel should
be explored in the future.

Janos provides a relatively restricted model for the
composition of active applications and for data sharing
between applications. While we expect that the model
is suitable for a wide varitey of practical applications, it
remains to be seen how the model suits the needs of third-
party developers in practice. Our belief is that a proto-
col composed of many components will typically resem-
ble a composition of libraries rather than a composition
of server and client processes. Because we have provided
few concessions to inter-domain communication, building
a system based on communicating domains will be diffi-
cult. Assuming a clean system is devised for naming and
referencing libraries, Janos will be able to dynamically
compose protocols and reuse shared code.

Beyond the mechanisms for defining and distributing
active applications, Janos presents interesting issues in the
area of Java code optimizations. First, there are many gen-
eral optimizations for Java Virtual Machines that would be
applicable and useful to the JANOSVM—a list not limited
to dynamic recompilation [5], lock eliding [9, 10, 14, 44],
method inlining, stack allocation [34], and thread-local
heaps. More specific to Janos, however, are issues in-
volving compilation techniques for handling special data
structures such as packet buffers. Since an active appli-
cation may be untrusted, it cannot generally be given di-
rect (i.e., unmediated and unrevocable) access to any un-
protected system resource, including packet buffers (Sec-
tion 3.1.4). The JANOSVM must therefore interpose on
access to packets, though this adds overhead to a poten-
tially critical path in the system. One solution is to in-
corporate new analyses into the JANOSVM JIT compiler
to recognize when duplicate access checks can be elimi-
nated, and to produce appropriate code that optimizes ac-

cess checks. We intend to implement these JIT compiler
enhancements in future work.

Because the JANOSVM imposes strictly enforced
memory limits, and because memory cannot be cleanly
revoked from running applications, excess physical mem-
ory in a system goes unused. Ideally, however, applica-
tions should be able to take advantage of unreserved mem-
ory in the system for caching or other opportunistic uses.
We will be developing a new API for domains to main-
tain data in a weakly held store. The fundamental char-
acteristic of this memory is that the system can trivially
reclaim it without cooperation from the domain, similar
to the semantics of weak references in garbage collected
systems [24].

A final issue is in providing additional operating sys-
tem services that may be needed by some active applica-
tions. ANTSR currently provides facilities for storing non-
persistent state at a node, but some protocols may require
persistent state. Moab currently supports access to persis-
tent storage on a node, though the API presented is merely
the existing POSIX-derived file system APIs. Persistent
storage would be useful not only to active applications,
but also to Janos itself. For instance, Moab should be able
to store its configuration information and other state re-
quired for a quick, stand-alone reboot of the node, and the
JANOSVM/ANTSR execution environment should be able
to cache dynamic code, security policies, and other EE-
level state. Providing active applications with access to
persistent storage creates a new resource that needs to be
closely managed, but opens up opportunities for dynamic,
protocol-specific caching in the network.

5 Results

5.1 Janos Component Status

Each of the major components of Janos is currently avail-
able and usable. Initially developed as entirely separate
software components, many subsets now work together,
in multiple configurations, and the whole set will soon
be distributed as a complete system. There are six sep-
arate software components in a complete Janos node: the
ANTSR runtime, the Janos Java NodeOS bindings, the
JANOSVM, Moab, the Click modular router, and the OS-
Kit. All Janos components are fully open source and
available at the Janos Web site [18].

Moab supports threads, domains, the filesystem API,
events, proportional share scheduling of CPU and network
bandwidth, and raw Ethernet, UDP, TCP, and Click-based
channels. Moab can be configured to run on FreeBSD,
Linux, Solaris, or—when linked against the OSKit—can
run in kernel mode on bare hardware. Some Moab re-
source controls and features rely on OSKit features un-

9



available in stock Unix, so are only available in the OSKit
configuration.

The JANOSVM is running, and initial experience sup-
ports our design choices regarding packet buffers and the
restricted heap model. The Janos Java NodeOS is the
component of the JANOSVM that maps the NodeOS API
from C into Java. This component also works without
Moab, on standard JVMs, by mapping the NodeOS API
calls onto the standard Java APIs.

Our distribution of ANTSR includes a large regression
testing suite, six example protocols, DANTE support, and
a privileged routing table protocol. ANTSR currently runs
all of its example applications on the JDK-compatible
version of the Janos Java NodeOS. When run on the
JANOSVM with Moab and the OSKit, ANTSR runs many
of the applications.

5.2 Evaluation

5.2.1 Separable Components

Our goal of building separately usable components is
meeting with initial success as other active network re-
search projects have started using our components. As
mentioned above, ANTS 2.0 is based on ANTSR and the
standard JVM version of the Janos Java NodeOS. Addi-
tionally, Network Associates’ AMP project [35] is cur-
rently using the Janos Java NodeOS and plans to use
the JANOSVM, as does Princeton’s Scout-based NodeOS
project [31]. Finally, the University of Kentucky’s
CANEs EE [26] is actively being ported to Moab.

5.2.2 Metrics

Forwarding Path Rate (Kpps)

OSKit 75.7
Moab cut-channel 48.7
C-based EE on Moab 45.0
Java-based EE on Moab 19.5

Table 1: Packet forwarding rates at various levels in
Moab, in thousands of packets per second.

A more detailed description of the raw performance of
Moab is available in the NodeOS comparison article [31]
elsewhere in this journal. Table 1 summarizes the re-
sults of forwarding minimum-sized IP packets with a min-
imum of processing on each packet through the raw OS-
Kit, through a Moab cut-channel, through a Moab EE, and
through a Janos Java NodeOS-based EE, on a 600MHz In-
tel Pentium III with five Intel EtherExpress Pro/100+ PCI
Ethernet cards.

Share Measured throughput (Bps)

1 2,053,608
2 4,094,836
3 6,145,442

Table 2: Relative output bandwidth usage for resource
limited out-channels trying to independently saturate a
single physical link. The measured throughput is reported
in bytes per second.

Table 2 shows the results for a test of relative share
scheduling on a single congested link. In this test, each
channel is sending 1024-byte packets as fast as it can
(slightly faster than the link can handle, in fact). The 1:2:3
relative share ratio corresponds to 1/6, 1/3, and 1/2, re-
spectively of the total resource. The measured throughput
closely matches the relative share assignments. Note that
12.3 MBps (the total of all shares) is the maximum phys-
ical bandwidth of the link.

In terms of memory controls, the JANOSVM controls
per-domain memory usage as effectively as KaffeOS [6],
and with less overhead due to the reduction in write barri-
ers. Due to the “zero-malloc” implementation of Moab,
the majority of a domain’s memory is allocated within
the scope of the JANOSVM. This greatly simplifies our
design because enforcement and accounting can be co-
located in the JANOSVM. However, for memory allocated
within the OSKit, Moab does not yet reconcile those allo-
cations with the per-domain limits. Since the OSKit-level
allocations are not directly accessible to the user, only a
strictly bounded amount of memory can be used this way.

Despite the additional layer of the Janos Java NodeOS,
ANTSR, when run on standard JDKs, performs compara-
bly to older versions of ANTS. This reinforces our ear-
lier claim that ANTS already contained ad-hoc implemen-
tations of NodeOS-like abstractions. Still, ANTSR has
many obvious optimizations that must be completed to
fully take advantage of the lower layers of Janos. Specifi-
cally, ANTSR alone contains at least four copy operations
per packet in the common case. First, a copy is made
to switch buffer object representations; this copy should
be relatively easy to remove. The second is more subtle,
because ANTSR (and ANTS before it) creates a new Java
object to represent the packet and de-serializes the buffer
into this object. This process is reversed when a packet
is sent. When run in user mode, there is of course the
additional copy of the data into and out of the process’s
address space. As noted in Section 3.3, changing ANTS

to accept resource controls, and do so efficiently, may re-
quire changes to its model.

These initial results give us confidence that we have
designed a system that supports resource management at
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the appropriate layer, and that the fully-assembled system
will function well.

6 Related Work

Research in active networks is ongoing and lively. We or-
ganize the work related to Janos into three groups. We
list other node operating systems, other execution envi-
ronments, and finally other Java operating systems.

6.1 Node Operating Systems

There are currently four major NodeOS implementations:
our Moab, Princeton’s Scout-based system, Network As-
sociates’ exokernel-based AMP system [17, 35], and the
Bowman NodeOS [27] from Georgia Tech and Kentucky.
While Moab focuses on resource control and domain
management, the Princeton system integrates NodeOS ab-
stractions in Scout’s paths [30], and AMP focuses on se-
curity. An in-depth comparison of the related aspects
of these three NodeOS implementations appears else-
where in this journal [31]. Bowman predates the DARPA
NodeOS specification, but contains many of the same ab-
stractions and features. Bowman relies on POSIX inter-
faces and runs in user mode on Solaris and Linux.

6.2 Execution Environments

As noted earlier, our ANTSR execution environment is di-
rectly derived from ANTS 1.1, and ANTS 2.0 is derived
from ANTSR.

The ASP EE [11] from USC-ISI is a Java-based EE tar-
geted to signaling applications in the network, giving it a
slightly different focus than ANTS and ANTSR. Also, the
ASP developers have provided a more concrete specifica-
tion of its programming API [32]. ISI’s ASP developers
are porting ASP to Janos’s Java NodeOS bindings.

There are several other EEs that focus on active net-
working issues such as security (e.g., AMP [35]), admin-
istration, or protocol development (e.g., CANEs [26]).
Ideally, the ideas and interfaces from those projects could
be folded into ANTSR.

SwitchWare [3] is a project that, like Janos, encom-
passes all aspects of a node between the active code and
the hardware. Unlike Janos, however, in SwitchWare’s
PLANet all packets contain their forwarding code in place
of traditional headers. PLAN [4, 23] is based on the
Caml [13] programming language. The SwitchWare de-
velopers have said they intend to port their PLAN execu-
tion environment to Moab.

6.3 Java Operating Systems

The JANOSVM is a Java operating system—a Java
language runtime that supports OS abstractions—and
builds upon several previous projects in this area. The
JANOSVM is the fourth in a line of Java OS’s we have
designed and implemented at Utah, each exploring a dif-
ferent part of the design space, especially in terms of the
class and memory sharing model. The JANOSVM di-
rectly uses the multiple Java heap implementation from
the K0 [7] and KaffeOS [6] systems, and as they do, builds
on the base Kaffe [45] Java virtual machine. We also
drew experience and insight from Cornell’s J-Kernel [21]
and our Alta [40] system. All except the J-kernel sup-
port a more general process model than Janos, allowing
direct sharing between processes, although they all sup-
port such sharing differently and with different restric-
tions. Janos, on the other hand, provides a more restricted
process model that is customized for the active network
domain.

All of these systems build on early work in language-
based operating systems [33, 38, 46]. Inferno [15] is such
a system that is unusual for its attention to efficient au-
tomatic memory management through a combination of
reference counting and a cycle-collecting garbage collec-
tor. None of these pioneering systems, however, provide
the domain separation and resource control, nor the ori-
entation to network protocol processing, that has been the
focus of our work.

7 Conclusion

We have described the architecture of the Janos active
node operating system and its rationale. Janos exploits
a custom JVM and resource-aware operating system and
runtime layers to provide strong resource controls and ac-
counting over all active applications on a single node in
an active network. In doing so, Janos provides both of the
major software layers currently defined as the canonical
active node’s infrastructure: the NodeOS and execution
environment.
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