
Lock inference for systems software

John Regehr Alastair Reid
School of Computing, University of Utah

{regehr, reid}@flux.utah.edu

ABSTRACT
We have developed task scheduler logic (TSL) to automate reason-
ing about scheduling and concurrency in systems software. TSL
can detect race conditions and other errors as well as supporting
lock inference: the derivation of an appropriate lock implementa-
tion for each critical section in a system. Lock inference solves a
number of problems in creating flexible, reliable, and efficient sys-
tems software. TSL is based on a notion of asymmetrical preemp-
tion relations and it exploits the hierarchical inheritance of schedul-
ing properties that is common in systems software.

1. INTRODUCTION
Embedded systems, operating systems, and Internet servers are fun-
damentally concurrent because they must respond to external events
in real time. For people developing these systems, critical sections
can be considered to be a functional aspect of software: they are
used to maintain high-level program invariants. The implemen-
tation of critical sections, on the other hand, is a non-functional
aspect — it affects response time and throughput.

In this paper we take the position that locks in systems software,
which are usually named by referring to an instance of a partic-
ular lock implementation, should be specified at a higher level of
abstraction. At system build time a whole-program analysis should
be used to infer an appropriate lock implementation for each critical
section. This has a number of benefits that can lead to the creation
of robust, reusable systems software:

• Developers need not learn the complex rules that govern lock-
ing in systems software. For example, threads synchronize
with interrupts by disabling interrupts, interrupts must not
block, and non-preemptive event handlers are implicitly syn-
chronized.

• Code maintenance and modification is made easier and less
prone to bugs. For example, if an event handler is broken
out into a preemptive thread to ensure that its response-time
requirements can be met, resources that it shares with other
handlers, which previously did not need protection by a lock,
must now be protected. These resources can be automatically
detected be TSL.

• In many cases a generic component, which implements cor-
rect locking, is instantiated in such a way that its locks serve
no useful purpose, e.g., because it is accessed only by a sin-
gle thread or because a component higher in the call graph
provides sufficient serialization. In this case the locks can be
dropped as an optimization.

• When the analysis finds a critical section where no available
lock implementation works, a race condition has been de-
tected and this should be brought to a developer’s attention.

• Locks can be selected in such a way that their global side ef-
fects are desirable. For example, in a system where through-
put is important, it might be the case that all locks should be
implemented by disabling interrupts since this is very effi-
cient. In another system where real-time deadlines must be
met, it may be unacceptable to disable interrupts for more
than a few microseconds because this delays unrelated, time-
critical processing.

• Software components can be developed that are agnostic with
respect to the execution environments in which they are in-
stantiated. This is desirable because the environments in
which a component executes depend on the call graph for
a particular system. In effect, the execution environments in
a system cross-cut its traditional modular decomposition.

These benefits are provided by task scheduler logic (TSL), a novel
formalism for integrated reasoning about scheduling and concur-
rency in systems software. The key idea behind TSL is that the
hierarchical inheritance of scheduling properties, when combined
with modular specifications of schedulers and locks, can be used to
formalize the rules that govern locking in systems software. These
rules — previously informal and unchecked — are caused by com-
plex relationships between multipleexecution environments: soft-
ware contexts such as kernel-supported threads, user-level threads,
interrupts handlers, and event loops. Furthermore, as a side effect
of deriving and checking rules about synchronization, it becomes
possible to performlock inference: the derivation of an appropriate
lock implementation for each critical section.

Lock inference can be viewed as the top of a stack of useful ca-
pabilities for manipulating and analyzing concurrency aspects of
systems software. At the bottom of the stack is externally visible
and parameterizable locking — lock analysis and inference are dif-
ficult if locks are hard-wired into code. Many component systems,
such as our Knit [10], have this capability. In the middle of the
stack is the capacity to detect concurrency errors, which depends
on a model of resources and concurrency as well as a mechanism
for tracking the call graph. Many systems have done this, but TSL
is the first we are aware of that can find concurrency problems in
systems software where there are diverse execution environments.
Finally, at the top of the stack is the ability to automatically infer
an appropriate implementation for each critical section in a system.
This is the primary contribution of TSL.

disk_bh
CPU

IRQ

low

mouse
disk

high clock

process

high

low

network

p3
p2
p1

FIFO
net_bh

Figure 1: A generic UNIX scheduling hierarchy

2. BACKGROUND
This section describes the hierarchical scheduling concepts that un-
derlie TSL, the difficulties of creating component-based systems
that motivate our work, and the lightweight program analysis that
is a prerequisite for using TSL.

2.1 Hierarchical Scheduling
At a coarse granularity, the flow of control in a software system
is determined by its schedulers. In this paper a task is a schedu-
lable flow of control and a scheduler is any piece of software (or
hardware) that controls the order of execution of tasks. Proper-
ties are imparted to a task by each scheduler that it runs under.
For example, an interrupt handler cannot block and it is preemp-
tively scheduled at higher priority than any user-mode code. If an
event-processing loop is run in interrupt context, then event han-
dlers scheduled by the loop inherit event properties, such as non-
preemptive execution relative to other event handlers, in addition
to all interrupt properties. The schedulers in a system create a vari-
ety of execution environments, each of which has its own rules for
structuring code, sequencing operations, and interacting with other
environments.

Figure 1 depicts the scheduling hierarchy for a typical UNIX-like
operating system. The top-level scheduler, CPU, is implemented in
hardware; it runs interrupts whenever possible and user-mode code
otherwise. The IRQ scheduler preemptively schedules hardware
interrupt handlers based on their priorities, as well as a software
interrupt handler at the lowest priority. The software interrupt han-
dler runs a FIFO scheduler that runs deferred bottom-half handlers
disk bh and netbh with run-to-completion semantics. The process
scheduler is the standard preemptive UNIX timesharing scheduler;
it runs processes p1..p3.

We have found the hierarchical scheduling notation shown in Fig-
ure 1 to be quite useful and general for describing the execution
environments provided by systems. For example:

• Linux, Windows 2000 [12], and most real-time operating
systems are minor variations on the same theme.

• RTLinux [13] adds an additional level of scheduling above
the CPU scheduler by virtualizing the interrupt handling struc-
ture of Linux.

• TinyOS [6] has no thread or process scheduler: its scheduling
hierarchy includes only interrupts and an event loop.

HTTPD

Ethernet MemPool

MonitorTCP/IP

Figure 2: A simple component-based monitoring system

• Internet servers, Java virtual machines, and other application-
level systems software extend the scheduling hierarchy by
implementing event loops, thread pools, and user-level threads.

TSL provides a uniform notation for modeling these and other col-
lections of execution environments.

2.2 Component Based Systems Software
Figure 2 depicts the software for an embedded application that is
designed to (1) monitor a system such as a pumping station on a
remote section of an oil pipeline and (2) make information about
the system available to HTTP clients. Upon request theHTTPD
component retrieves data from theMonitor component and sends
it out on the network using theTCP/IP andEthernet compo-
nents. All components make use of a memory allocator.

Although TSL applies generally to systems software, and makes
no assumptions about the underlying component model, it is es-
pecially useful for analyzing component-based systems software.
First, component software tends to expose interfaces for locking,
making it easier to analyze and parameterize synchronization be-
havior. Second, component-based software is often hard to under-
stand due to its many indirect connections between software mod-
ules. This complexity interacts poorly with the multiple execution
environments that are created by a hierarchy of schedulers such
as the one in Figure 1. For example, assume that theMemPool
component in Figure 2 reports an out-of-memory condition using
a logging interface that is connected to a storage component (not
shown). The storage component uses a thread mutex to protect
its internal data structures. SinceMemPool can be called by the
Ethernet component while executing in interrupt context, the in-
terrupt handler can indirectly attempt to acquire the mutex, leading
to a system crash because interrupts are not permitted to acquire
mutexes. This bug will not be obvious to a developer who sim-
ply wants to reuse these components and who does not have a de-
tailed understanding of their internals. Furthermore, this bug will
be very difficult to expose through testing since the allocator rarely
runs out of storage. In our experience, creating correct systems us-
ing components like the ones in this example requires near-expert
knowledge about component internals. Clearly there is room for
improvement.

2.3 Analyzing Systems
TSL requires static identification of tasks, schedulers, resources,
critical sections, and the call graph for a program or system. There

are well-known techniques for obtaining this information; in prac-
tice we expect that a combination of annotations and language-
based program analysis will be used. For example, in our proto-
type implementation (see Section 6) we learn about resources us-
ing annotations and obtain an approximation of the call graph by
analyzing the component linking graph.

3. TASK SCHEDULER LOGIC
This section provides an overview of TSL.

3.1 Tasks and Schedulers
Tasks are sequential flows of control through a system; they are the
fundamental unit of reasoning in TSL. Each task has a well-defined
entry point and many tasks also finish by returning control to the
scheduler that invoked them. Other tasks encapsulate an infinite
loop and these never finish — control only returns to their scheduler
through preemption. Throughout this paper the variablest, t1, etc.
range over tasks.

Schedulers are modeled in a modular way by specifying the pre-
emption relations that the scheduler induces between tasks that it
schedules. Preemption relations are represented asymmetrically:
we writet1 t2 when taskt2 can preempt taskt1. That is, ift2 can
start to run aftert1 begins to execute but beforet1 finishes.

The simplest scheduler, a non-preemptive event scheduler, does not
permit any child to preempt any other child. For any two children
t1 andt2 of such a scheduler,¬(t1 t2) ∧ ¬(t2 t1).

On the other hand, a preemptive scheduler, such as a UNIX time-
sharing scheduler, potentially permits each child task to preempt
each other child task. That is, for any two children of such a sched-
uler, t1 t2 ∧ t2 t1.

A third type of scheduler commonly found in systems software is a
strict priority scheduler such as the interrupt controller in a typical
PC. It schedules a number of taskst1..tn and it is the case that
tj ti wheni < j.

3.2 Resources, Races, and Locks
At each program point a task is accessing some (possibly empty) set
of resources. The variablesr, r1, etc. range over resources, and we
write t → r if a taskt uses a resourcer. Resources represent data
structures or hardware devices that must be accessed atomically.

A race condition may occur if taskt1 can be preempted byt2 at
a point where both tasks are accessing a common resource. Prob-
lematic preemption relations can be eliminated using locks; at each
program point a task holds a (possibly empty) set of locks. We write
t1 L t2 if parts of a taskt2 that hold a set of locksL can start to
run while a taskt1 holdsL. For example, consider two threads that
can usually preempt each other. If holding a thread locklk blocks
a taskt2 from entering critical sections int1 protected bylk, then
(t1 ∅ t2) ∧ ¬(t1 lk t2).

Every lock is provided by some scheduler; the kinds of locks pro-
vided by a scheduler are part of its specification. We writet (l if
a schedulert provides a lockl, and require that each lock be pro-
vided by exactly one scheduler. There are two common kinds of
locks. First, locks that resemble disabling interrupts: they prevent
any task run by a particular scheduler from preempting a task that
holds the lock. Second, locks that resemble thread mutexes: they

only prevent preemption by tasks the hold the same instance of the
type of lock.

Locks satisfy three important properties. First, ift1 can be pre-
empted while holding a set of locks, thent1 can be preempted while
holding fewer locks:

t1 L1 t2 ∧ L1 ⊇ L2 ⇒ t1 L2 t2

Second, ift1 can be preempted byt2 while holding either a set of
locksL1 or a set of locksL2, thent1 can be preempted byt2 while
holding both sets of locks.

t1 L1 t2 ∧ t1 L2 t2 ⇒ t1 L1∪L2 t2

Finally, preemption is a transitive relation: ift1 can be preempted
by t2 andt2 can be preempted byt3, thent1 can be preempted by
t3.

t1 L1 t2 ∧ t2 L2 t3 ⇒ t1 L1∩L2 t3

The definition of a race condition is as follows:

race(t1, t2, r)
def
= t1 →L1 r
∧ t2 →L2 r
∧ t1 6= t2
∧ t1 L1∩L2 t2

That is, a race can occur if two taskst1 andt2 use a common re-
sourcer with some common set of locksL1 ∩ L2, and if t2 can
preemptt1 even whent1 holds those locks. For example, if some
taskt1 uses a resourcer with locks{l1, l2, l3} and another taskt2
usesr with locks{l2, l3, l4} then they hold locks{l2, l3} in com-
mon and a race occurs ifft1 {l2,l3}t2.

3.3 Hierarchical Scheduling
Each scheduler is itself a task from the point of view of a sched-
uler one level higher in the hierarchy. For example, when an OS
schedules a thread, the thread is considered to be a task regardless
of whether or not an event scheduler is provided by the thread. We
write t1 � t2 if a schedulert1 is directly above taskt2 in the hier-
archy;� is theparentrelation. Similarly, theancestorrelation�+

is the transitive closure of�.

TSL gains much of its power by exploiting the properties of hier-
archies of schedulers. First, the ability or lack of ability to preempt
is inherited down the scheduling hierarchy: if a taskt1 cannot pre-
empt a taskt2, thent1 cannot preempt any descendent oft2. A
consequence is that if thenearest common schedulerin the hierar-
chy to two tasks is a non-preemptive scheduler, then neither task
can preempt the other. This is a useful result when showing, for
example, that a lock is not necessary to protect a resource that is
accessed by a particular composition of components.

When a task that is the descendent of a particular scheduler requests
a lock, the scheduler may have to block the task. It does this not
by directly blocking the task, but by blocking its currently running
child, which must be transitively scheduling the task that requested
the lock. If a task attempts to acquire a lock that is not provided
by one of its ancestors in the scheduling hierarchy then there is
no child task for the scheduler to block — an illegal action has
occurred. Using TSL we can check for a generalized version of the
“blocking in interrupt” problem by ensuring that tasks only acquire
blocking locks provided by their (possibly transitive) parents in the

scheduling hierarchy. We formalize this generalization as follows:

illegal(t, l) def
= ∃ t1. t1 (l

∧ ¬(t1 �+ t)
∧ t →L r
∧ l ∈ L
∧ blocking(l)

3.4 Using TSL
Software developers, who compose systems using new and existing
components, do not need to directly interact with TSL. Rather,
they create software as usual, but in addition to protecting critical
sections with locks, they have the option of using avirtual lock
that is a cue for TSL to infer an appropriate lock implementation.
Developers who create new schedulers will need to specify their
properties in TSL, but we expect that these programmers will be in
the minority: most will reuse an existing scheduler and its attached
TSL specification.

4. LOCK INFERENCE
Many of the benefits of TSL are provided by its ability to infer
an appropriate lock implementation for each critical section. Re-
call that a lock assignment is legal if the lock is not a blocking
lock or if it is provided by an ancestor of the task that contains the
critical section. A brute-force algorithm for synchronization infer-
ence is to enumerate all legal assignments of locks to critical sec-
tions; the enumeration can stop once an assignment is found that
eliminates all race conditions. If no such assignment exists, then
there is a genuine race condition and the system cannot be built.
No special algorithmic support for the elimination of unnecessary
synchronization is required because synchronization inference sub-
sumes synchronization elimination. It suffices to ensure that one of
the locks available to each critical section is the “null lock” that has
no effect on preemption relations and is implemented as a NOP.

We currently use the brute-force algorithm to assign lock imple-
mentations to critical sections. Although it is tractable for systems
that we have analyzed, we expect that we will want to develop
improved algorithms. One avenue for improvement is to exploit
qualities of the domain. For example, the search space can be nar-
rowed by observing that it is probably not useful to attempt to use
a different kind of lock, or a different instance of the same kind of
lock, to protect different critical sections that access the same re-
source. In addition, for each resource the set of legal locks should
be tried in an intelligent order, probably starting with a “strong”
lock, like disabling interrupts, that eliminates many preemption re-
lations. Another way to improve performance might be to cast the
lock inference problem as an instance of the boolean satisfiability
problem, for which very fast solvers exist [8].

Once a lock assignment that eliminates all races is found it may
be desirable to optimize the choice of locks. Such optimization is
outside the scope of TSL, which has no mechanism for preferring
one lock assignment over another as long as both of them produce
a system that is free of race conditions. In general, there is a ten-
sion between choosing an efficient lock for each critical section
and picking locks that avoid unnecessarily delaying the execution
of unrelated tasks.

5. REAL-TIME CONCERNS
Since lock choice has a pervasive effect on system performance,
we plan to integrate synchronization inference with SPAK, a real-
time scheduling tool that we have developed [9]. The negative ef-

fects that locks have on real-time tasks can be quantified by adding
blocking terms— periods of time during which certain scheduling
decisions cannot be made — to the schedulability analysis equa-
tions [11]. If a lock resembles disabling interrupts, it contributes
blocking terms to all tasks run by the scheduler providing the lock.
On the other hand, a lock that resembles a mutex contributes block-
ing terms only to tasks that may attempt to acquire the same lock.
Blocking terms, like preemption relations, are inherited down the
scheduling hierarchy.

Besides returning a binary result about overall system schedulabil-
ity, SPAK can perform several useful functions that interact well
with TSL. First, it can evaluate therobustnessof a software sys-
tem under timing faults: tasks that run for longer than their nomi-
nal worst-case execution times. This is useful because it can help
TSL avoid creating systems that are brittle in the sense that a small
perturbation in task execution will cause real-time deadlines to be
missed. Second, SPAK has the capability to map a large number
of design-time tasks onto a smaller number of run-time threads;
this is useful for resource-constrained embedded systems because
it reduces the amount of memory devoted to thread stacks and the
amount of CPU time spent performing context switches. Synchro-
nization inference and thread minimization interact favorably be-
cause strongly coupled collections of tasks, when aggregated into a
single thread, will enable many locks to be eliminated. These tasks
should be preferred targets for thread minimization when compared
to collections of tasks that permit few locks to be eliminated.

6. APPLYING TSL
We have implemented a prototype TSL checker based on a forward-
chaining evaluator: it takes a specification for a system and derives
all possible consequences of the TSL axioms. Systems specified in
TSL are finite; there are a limited number of tasks and preemption
relations between tasks.

Our test environment is based on the Knit [10] component language
and the OSKit [4], a library of systems software components. We
extended Knit slightly to accommodate annotations about resources
and locks, and we used Knit’s component linking graph to generate
a safe (though crude) approximation of the call graph.

Figure 3 provides a more detailed look at the embedded, web-based
monitoring system from Figure 2. The scheduling hierarchy for
the system is shown on the left side of the figure and application
components are shown on the right side. For simplicity we have
omitted many infrastructure components. The full system consists
of 190,000 lines of code, 116 components, 1059 functions, 5 tasks,
and 2 kinds of locks.

Before we can analyze the system with TSL we must label all the
tasks (we name themh1, h2, t, e, andm), label all the schedulers
(we name themCPU , thread, IRQ, andFIFO), and generate
a TSL specification for each scheduler (not shown). We must also
add resources (namedrh, rb, rt, re, rmon, andrmem) and add
their uses into the callgraph, add locks (namedcli andlk), attach
locks to the scheduler that provides them, and label edges in the
callgraph with locks acquired before the calls are made. Figure 3
shows these labels and relations. The example includes some errors
in the use of locks that we shall discover using TSL. The schedulers
are, of course, also components, but to keep the example to a rea-
sonable size we do not show their resources, locks used to protect
those resources, calls to the functions they export, etc.

low
cli

lk

TCP/IP

Ethernet

re

rb

rt

HTTPD

h2

h1

t

cli

cli

lk

e

lk lk

cli

MemPool

Monitor

rmon

cli
cli

rmem

cli

lk

cli

rh
lk

m

CPU

IRQ

FIFO

thread

high

low

high

Figure 3: A simple component-based monitoring system (right) and its scheduling hierarchy (left)

6.1 Checking for illegal locking
To detect cases of illegal locking our implementation computes a
list of all the resources accessed by each task with a given set of
locks. For example, from the callgraph and locks shown in the
figure we generate the following table:

h1, h2 →lk {rh, rt, rb, rmem}
h1, h2 →lk,cli {re, rmem}
h1, h2 →cli {rmon, rmem}

m →cli {rmon, rmem}
t →lk {rb}
e →lk {rb}
e →cli {re, rmem}

Given this table and the knowledge thatlk is a blocking lock, it is
straightforward to apply the definition ofillegal to generate a list of
all the illegal lock uses:

illegal(t, lk)
illegal(e, lk)

Both problems are caused by using the locklk to protect the re-
sourcerb which is accessed by hardware and software interrupts.
They can be resolved by changing the lock tocli.

Although these errors can be easily found by inspecting Figure 3,
the real system has many more components and interconnections
and is difficult to debug by inspection.

6.2 Checking for races
A race occurs when two tasks may access a resource simultane-
ously. TSL provides a list of potential race conditions and can be
used to examine the scheduler hierarchy and call chain to diagnose
the cause of problems.

For example, from the scheduler hierarchy we can deduce that the
following preemption relations hold:

h1, h2, m ∅ h1, h2, m
h1, h2, m ∅ t

t ∅ e

Combining this with resource use and the definition ofrace, we
obtain the following race conditions.

race(h1, h2, rmem) race(h2, h1, rmem)
race(h1, m, rmem) race(h2, m, rmem)
race(h1, e, rmem) race(h2, e, rmem)

These can be fixed by acquiring thecli lock when calling from
TCP/IP to MemPool.

6.3 Synchronization elimination and inference
The system in Figure 3 does not contain any redundant locks. How-
ever, consider what would happen if, due to memory constraints,
the developer could only instantiate a single thread for theHTTPD
component. In this case the locks protectingrh could be safely
eliminated as could the thread lock providing atomic access to the
top half of theTCP/IP component.

All locks in our example refer to specific implementations. How-
ever, if thecli locks in theMonitor component in Figure 3 were
declared as virtual locks then TSL would inform us that acceptable
lock implementations arecli andlk.

7. APPLICABILITY AND LIMITATIONS
TSL applies to static systems where tasks, schedulers, critical sec-
tions, and the call graph are known in advance. Although this is
a good match for most embedded software we would like to ex-
tend TSL to handle systems with dynamic components. One way
to do this would be to use static analysis or dynamic checking to
bound the behavior of the dynamic part of the system. For example,
if we guarantee that a particular resource cannot be accessed by a
dynamic part of the system, then it is permissible to remove locks
protecting this resource provided that this is otherwise a valid opti-
mization. In general, tighter bounds on the behavior of the dynamic
part of a system permit more effective analysis and optimization of
the static part.

Although TSL cannot yet be used to check systems for risk of dead-
lock, we are exploring ways to permit this. If locks were rep-
resented as an ordered multiset, rather than as an unordered set,
then TSL could be used to enforce an ordering on lock acquisi-
tions, leading to a system that is guaranteed to be free of deadlock.

Furthermore, this would permit TSL to check for recursive lock ac-
quisition — this is legal for some lock implementations but not for
others.

8. RELATED WORK
Model checkers such as SPIN [7] and Bandera [1] represent a promis-
ing approach to bringing the benefits of concurrency theory to de-
velopers. Model checkers are more powerful than TSL in that they
can reason about deadlock and liveness. However, TSL adds value
over model checkers by specifically supporting the hierarchical in-
heritance of scheduling properties that occurs in systems software
— this permits effective reasoning across multiple execution envi-
ronments. Also, model checkers provide no support for lock infer-
ence.

The trend towards inclusion of concurrency in mainstream lan-
guage definitions such as Java and towards strong static checking
for errors is leading programming language research in the direc-
tion of providing annotations [2, 5] or extending type systems to
model locking protocols [3]. These efforts are complementary to
our work on reasoning about concurrency across execution envi-
ronments; we believe that TSL and extended type systems would
be a very powerful combination.

Early versions of our Knit toolchain [10] had a primitive mecha-
nism for tracking top/bottom-half execution environments. It did
not model locks and locking, but could check for the “blocking
in interrupt” error that is particularly easy to make in component
based systems. In the earlier version of Knit we could move com-
ponents from one environment to another and check the resulting
systems, but we could not add new execution environments or even
model all of the environments in systems that we built.

9. CONCLUSION
TSL is a new logic that supports integrated reasoning about schedul-
ing and concurrency; it supports lock inference as well as the de-
tection of concurrency errors and elimination of redundant locking.
Binding critical sections to lock implementations too early is the
source of many problems in developing flexible, reliable, and ef-
ficient systems software. We believe that TSL, or something like
it, is necessary to create next-generation software systems where
components can be flexibly and correctly instantiated in a variety
of execution environments.

Acknowledgments
The authors would like to thank Eric Eide, Jay Lepreau, and the
reviewers for providing valuable feedback on drafts of this paper.

This work was supported, in part, by the National Science Foun-
dation under award CCR-0209185 and by the Defense Advanced
Research Projects Agency and the Air Force Research Laboratory
under agreements F30602-99-1-0503 and F33615-00-C-1696.

10. REFERENCES
[1] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn

Laubach, Corina S. Pasareanu, Robby, and Hongjun Zheng.
Bandera: Extracting finite-state models from Java source
code. InProc. of the 22nd Intl. Conf. on Software
Engineering, Limerick, Ireland, June 2000.

[2] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and
James B. Saxe. Extended static checking. Research Report
159, Compaq Systems Research Center, Palo Alto, CA,
December 1998.

[3] Cormac Flanagan and Martin Abadi. Types for safe locking.
In S.D. Swierstra, editor,ESOP’99 Programming Languages
and Systems, volume 1576 ofLecture Notes in Computer
Science, pages 91–108. Springer-Verlag, March 1999.

[4] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau,
Albert Lin, and Olin Shivers. The Flux OSKit: A substrate
for kernel and language research. InProc. of the 16th ACM
Symp. on Operating Systems Principles, pages 38–51,
Saint-Malô, France, October 1997.

[5] Aaron Greenhouse and William L. Scherlis. Assuring and
evolving concurrent programs: Annotations and policy. In
Proc. of the 24th Intl. Conf. on Software Engineering, pages
453–463, Orlando, FL, May 2002.

[6] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David
Culler, and Kristofer Pister. System architecture directions
for networked sensors. InProc. of the 9th ASPLOS, pages
93–104, Cambridge, MA, November 2000.

[7] Gerard J. Holzmann. The Spin model checker.IEEE Trans.
on Software Engineering, 23(5):279–295, May 1997.

[8] Matthew Moskewicz, Conor Madigan, Ying Zhao, Lintao
Zhang, and Sharad Malik. Chaff: Engineering an efficient
SAT solver. InProc. of the 39th Design Automation
Conference, Las Vegas, NV, June 2001.

[9] John Regehr. Scheduling tasks with mixed preemption
relations for robustness to timing faults. InProc. of the 23rd
IEEE Real-Time Systems Symp., Austin, TX, December
2002.

[10] Alastair Reid, Matthew Flatt, Leigh Stoller, Jay Lepreau, and
Eric Eide. Knit: Component composition for systems
software. InProc. of the 4th Symp. on Operating Systems
Design and Implementation, pages 347–360, San Diego, CA,
October 2000.

[11] Lui Sha, Ragunathan Rajkumar, and John Lehoczky. Priority
inheritance protocols: An approach to real-time
synchronization.IEEE Transactions on Computers,
39(9):1175–1185, September 1990.

[12] David A. Solomon and Mark E. Russinovich.Inside
Microsoft Windows 2000. Microsoft Press, third edition,
2000.

[13] Victor Yodaiken. The RTLinux manifesto. InProc. of The
5th Linux Expo, Raleigh, NC, March 1999.

