
1

An OS Interface for Active Routers

Larry Peterson, Yitzchak Gottlieb, Mike Hibler, Patrick Tullmann, Jay Lepreau, Stephen Schwab,

Hrishikesh Dandekar, Andrew Purtell, and John Hartman

Abstract| This paper describes an operating system in-

terface for active routers. This interface allows code loaded
into active routers to access the router's memory, commu-
nication, and computational resources on behalf of di�erent

packet
ows. In addition to motivating and describing the
interface, the paper also reports our experiences implement-

ing the interface in three di�erent OS environments: Scout,
the OSKit, and the exokernel.

Keywords|Active networks, programmable networks, op-
erating systems.

I. Introduction

Active networks o�er the promise of being able to cus-
tomize the network on an application-by-application ba-
sis [26]. This is accomplished by allowing packet
ows to
inject code into the routers they traverse. One of the cen-
tral challenges in designing an active network is to de�ne
the interface that this code is written to. This interface
speci�es the services and resources the active code is able
to access on every node (router) in the network.
The design space for customizing networks is large, and

includes approaches commonly referred to as \active net-
works" (the focus of this paper) and \programmable net-
works" (an approach being pursued in industry). The lat-
ter approach|as exempli�ed by the IEEE P1520 working
group [12] and Nortel's Open IP [16]|involves a more re-
strictive programming environment, in which the network's
signalling and control functions are programmable, but the
data transfer functions are �xed. In contrast, active net-
works permit applications to customize both the control
plane and the data plane.
A general architecture for active networks has evolved

over the last few years [24]. This architecture identi�es
three layers of code running on each active node (Fig-
ure 1). At the lowest level, an underlying operating system
(NodeOS) multiplexes the node's communication, mem-
ory, and computational resources among the various packet

ows that traverse the node. At the next level, one or more
execution environments (EE) de�ne a particular program-
ming model for writing active applications. To date, several
EEs have been de�ned, including ANTS [30], [29], PLAN

Authors' current addresses: L. Peterson and Y. Gottlieb,
Department of Computer Science, 35 Olden Street, Prince-
ton, NJ 08544 (fllp,zukig@cs.princeton.edu); M. Hibler, P. Tull-
mann and J. Lepreau, University of Utah School of Comput-
ing, 50 S. Central Campus Drive Rm. 3190, Salt Lake City,
UT 84112 (fmike,tullmann,lepreaug@cs.utah.edu); S. Schwab and
H. Dandekar and A. Purtell, NAI Labs, Network Associates,
3415 S. Sepulveda Blvd., Suite 700, Los Angeles, CA 90034
(fsschwab,hdandeka,apurtellg@nai.com); and J. Hartman, Depart-
ment of Computer Science, University of Arizona, Tucson, AZ 85721
(jhh@cs.arizona.edu).
This work was supported in part by DARPA contracts N66001{96{

8518, N66001{97{C{8514, and DABT63{94{C{0058, and NSF grants
ANI{99{06704 and ANI{00{82493.

[3], [11], and CANES [5]. At the topmost level are the
active applications (AA) themselves.

Execution
Environments

NodeOS

Active
Applications

Fig. 1. Software layers running on an active router.

We were major contributors to developing and docu-
menting the interface [1] between the bottom two layers
in Figure 1. This paper focuses on that interface, making
two contributions. The �rst is to motivate and describe
the NodeOS interface. While similar in many respects to
a standard API such as POSIX, the emphasis of an active
router on forwarding packets makes this interface unique
in many ways. The second contribution is to report our
experiences implementing the interface in three di�erent
OS environments: within the Scout kernel [21], using the
OSKit component base [9], and above the exokernel [13].
Although none of these implementations is complete, each
exposes an interesting set of implementation issues for a
signi�cant subset of the NodeOS interface.

II. Design Rationale

The goal of active networks is to make the network as
programmable as possible, while retaining enough common
interfaces so that active applications injected into the net-
work can run on as many nodes as possible. In this context,
it is not obvious where to draw the line between the EEs
and the NodeOS. One answer is that there is no line: a sin-
gle layer implements all the services required by the active
applications. This is analogous to implementing a language
runtime system directly on the hardware, as some JavaOSs
have done. However, separating the OS from the runtime
system makes it easier for a single node to support mul-
tiple languages. It also makes it easier to port any single
language to many node types. This is exactly the rationale
for de�ning a common NodeOS interface.
Deciding to separate the NodeOS and the EEs is only

the �rst step; the second step is to decide where the
EE/NodeOS boundary should be drawn. Generally speak-
ing, the NodeOS is responsible for multiplexing the node's
resources among various packet
ows, while the EE's role is
to o�er AAs a suÆciently high-level programming environ-

2

ment. This is loosely analogous to the distinction between
an exokernel and an OS library [13]. Beyond this general
goal, the NodeOS interface is in
uenced by both a set of
high-level design goals, and our experiences implementing
the interface on a collection of OS platforms. The rest of
this section identi�es the high-level design decisions that
gave the interface its general shape, while Sections IV{VI
discuss how various implementation factors in
uenced par-
ticular details of the interface.
The �rst, and most important design decision was that

the interface's primary role is to support packet forward-
ing, as opposed to running arbitrary computations. As
a consequence, the interface is designed around the idea
of network packet
ows [6]: packet processing, account-
ing for resource usage, and admission control are all done
on a per-
ow basis. Also, because network
ows can be
de�ned at di�erent granularities|e.g., port-to-port, host-
to-host, per-application|the interface cannot prescribe a
single de�nition of a
ow.
Second, we do not assume that all implementations of

the NodeOS interface will export exactly the same feature
set|some implementations will have special capabilities
that EEs (and AAs) may want to take advantage of. The
interface should allow access to these advanced features.
One important feature is the hardware's ability to forward
certain kinds of packets (e.g., non-active IP) at very high
speeds. Said another way, packets that require minimal
processing should incur minimal overhead. A second fea-
ture is the ability to extend the underlying OS itself, i.e.,
extensibility is not reserved for the EEs that run on top
of the interface. The NodeOS interface must allow EEs
to exploit these extensions, but for reasons of simplicity,
eÆciency, and breadth of acceptable implementations, the
NodeOS need not provide a means for an EE to extend the
NodeOS directly. Exactly how a particular OS is extended
is an OS-speci�c issue.
Our �nal design decision was a pragmatic one: whenever

the NodeOS requires a mechanism that is not particularly
unique to active networks, the NodeOS interface should
borrow from established interfaces, such as POSIX.

III. Architecture

The NodeOS interface de�nes �ve primary abstractions:
thread pools, memory pools, channels, �les, and domains

[1]. The �rst four encapsulate a system's four types of re-
sources: computation, memory, communication, and per-
sistent storage. The �fth abstraction, the domain, is used
to aggregate control and scheduling of the other four ab-
stractions. This section motivates and describes these �ve
abstractions, and explains the relationships among them.
Of the �ve abstractions, domains and channels are the most
novel (NodeOS-speci�c), threads and memory are varia-
tions on traditional designs, and �les are mostly standard.

A. Domains

The domain is the primary abstraction for accounting,
admission control, and scheduling in the system. Domains
directly follow from our �rst design decision: each domain

contains the resources needed to carry a particular packet

ow. A domain typically contains the following resources
(Figure 2): a set of channels on which messages are re-
ceived and sent, a memory pool, and a thread pool. Active
packets arrive on an input channel (inChan), are processed
by the EE using threads and memory allocated to the do-
main (dotted arc), and are then transmitted on an output
channel (outChan).

Note that a channel consumes not only network band-
width, but also CPU cycles and memory bu�ers. The
threads that shepherd messages across the domain's chan-
nels come from the domain's thread pool and the cycles
they consume are charged to that pool. Similarly, the I/O
bu�ers used to queue messages on a domain's channels are
allocated from (and charged to) the domain's memory pool.
In other words, one can think of a domain as encapsulat-
ing resources used across both the NodeOS and an EE on
behalf of a packet
ow, similar to resource containers [4]
and Scout paths [25].

Domain

in
C

h
an

o
u

tC
h

an

NodeOS

EE

Fig. 2. A domain consists of channels, memory, and threads needed
for EE-speci�c processing.

A given domain is created in the context of an existing
domain, making it natural to organize domains in a hier-
archy, with the root domain corresponding to the NodeOS
itself. Figure 3 shows a representative domain hierarchy,
where the second level of the hierarchy corresponds to EEs
and domains at lower levels are EE-speci�c. In this ex-
ample, the EE implemented in Domain A has chosen to
implement independent packet
ows in their own domains
(Domain C through Z), while the EE running in Domain
B aggregates all packets on a single set of channel, mem-
ory, and thread resources. The advantage of using domains
that correspond to �ne-grained packet
ows|as is the case
with the EE contained in Domain A|is that the NodeOS is
able to allocate and schedule resources on a per-
ow basis.
(Domain A also has its own channels, which might carry
EE control packets that belong to no speci�c sub-
ow.)

The domain hierarchy is used solely to constrain domain
termination. A domain can be terminated by the domain
itself, by the parent domain that created it, or by the
NodeOS because the domain has violated some resource
usage policy. Domain termination causes the domain and
all its children to terminate, the domain's parent to be noti-

3

...

Domain A

Domain Z

Domain B

outChan

inChan

outChan

inChan
outChan

Domain C

inChan

inChan
outChan

NodeOS

Fig. 3. Domain hierarchy.

�ed, and all resources belonging to the terminated domains
are returned to the NodeOS.
Each parent domain contains a handler that is invoked

just before a child domain is terminated by the NodeOS.
This \imminent termination" handler allows the parent do-
main (generally running the EE) to reconcile any state it
may have associated with the dying domain and free any re-
sources it may have allocated on the child domain's behalf.
The handler is invoked in the context of a thread in the
parent domain; thus the parent domain pays for cleaning
up an errant child domain. The handler is given a small,
�xed amount of time to complete its cleanup. If the thread
exceeds this limit, it, and the domain in which it runs, are
terminated.
In contrast to many hierarchical resource systems (e.g.,

stride CPU schedulers [28]), the domain hierarchy is in-
dependent of resource allocation. That is, each domain is
allocated resources according to credentials presented to
the NodeOS at domain creation; resources given a child
domain are not deducted from the parent's allocation, and
resources belonging to a child domain are not returned to
the parent domain when the child terminates. This design
was based on the observation that requiring resources to
be allocated in the same hierarchical manner as domains
results is an overly restrictive resource model. For exam-
ple, suppose an ANTS EE runs in a domain and creates
new (sub)domains in response to incoming code capsules.
These new domains should be given resources based solely
on their credentials (identity). They should not be re-
stricted to some subset of the ANTS EE's resources, which
they would be if resources followed the domain hierarchy.

B. Thread Pool

The thread pool is the primary abstraction for compu-
tation. Each domain contains a single thread pool that is
initialized when the domain is created. Several parame-
ters are speci�ed when creating a thread pool, including
the maximum number of threads in the pool, the scheduler
to be used, the cycle rate at which the pool is allowed to
consume the CPU, the maximum length of time a thread
can execute between yields, the stack size for each thread,
and so on.
Because of our decision to tailor the interface to support

packet forwarding, threads execute \end-to-end"; that is,
to forward a packet they typically execute input channel
code, EE-speci�c code, and output channel code. Since a
given domain cuts across the NodeOS and an EE, threads
must also cut across the NodeOS/EE boundary (at least
logically). This makes it possible to do end-to-end account-
ing for resource usage. Note that from the perspective of
the NodeOS interface, this means that the thread pool pri-
marily exists for accounting purposes. Whether or not a
given NodeOS pre-allocates the speci�ed number of threads
is an implementation issue. Moreover, even if the NodeOS
does pre-allocate threads, these threads may not be able
to handle all computation that takes place on behalf of the
thread pool; for example, they may not be allowed to run
in supervisor mode. Any thread running on behalf of the
thread pool, no matter how its implemented, is charged to
the pool.
The fact that a thread pool is initialized when a do-

main is created, and threads run end-to-end, has two im-
plications. First, there is no explicit operation for creating
threads. Instead, threads in the pool are implicitly acti-
vated, and scheduled to run, in response to certain events,
such as message arrival, timers �ring, and kernel excep-
tions. Second, there is no explicit operation for terminating
a thread. Should a thread misbehave|e.g., run beyond its
CPU limit|the entire domain is terminated. This is nec-
essary since it is likely that a thread running in an EE
has already executed channel-speci�c code, and killing the
thread might leave the channel in an inconsistent state.
As just described, threads are short-lived, \data driven"

entities with no need for explicit identities. While this
is suÆcient for many environments, our experience with
Janos, detailed in Section V, indicates that some EEs re-
quire \system" threads that are long-lived and not associ-
ated with any particular packet
ow. For example, a JVM-
based EE might have a global garbage collection thread
that, when it runs, needs to �rst stop all other threads until
it is done. To support these environments, the API de�nes
a small set of pthread-inspired operations for explicit thread
manipulation: sending an interrupt, blocking and unblock-
ing interrupts, changing a scheduler-interpreted priority
value, and attaching thread-speci�c data.

C. Memory Pool

The memory pool is the primary abstraction for memory.
It is used to implement packet bu�ers (see Section III-D)
and hold EE-speci�c state. A memory pool combines the
memory resources for one or more domains, making those
resources available to all threads associated with the do-
mains. Adding domains to a pool increases the available
resources while removing domains decreases the resources.
The amount of resources that an individual domain can
contribute to a pool is either embodied directly in the do-
main's credentials or explicitly associated with the domain
at creation time. The many-to-one mapping of domains
to memory pools accommodates EEs that want or need
to manage memory resources themselves. For example, as
illustrated in Section V-A, this mapping is needed by a

4

JVM-based EE that shares objects and JIT'ed code be-
tween domains.
Memory pools have an associated callback function that

is invoked by the NodeOS whenever the resource limits of
the pool have been exceeded (either by a new allocation
or by removing a domain from the pool). The callback
function is registered when a memory pool is created by an
EE. The NodeOS relies on the EE to release memory when
asked; i.e., the NodeOS detects when a pool is over limit
and performs a callback to the EE to remedy the situation.
If the EE does not free memory in a timely manner, the
NodeOS terminates all the domains associated with the
pool. The rationale for these semantics is similar to that for
domain termination give above: the EE is given a chance to
clean up gracefully, but the NodeOS has fallback authority.
Memory pools can be arranged hierarchically to allow

constrained sharing between pools. The hierarchy of mem-
pools is not used to control the propagation of resources;
rather, it is intended as an access control mechanism.
Speci�cally, a \child" mempool does not inherit its memory
resources from its \parent"; those resources come from do-
mains that are attached to the pool. Instead, the mempool
hierarchy allows for sharing of memory between pools: a
parent may see all of a child's memory while limiting what
the child may see of its own. The semantics of the mempool
hierarchy are motivated by the desire to support multiple
address spaces.

D. Channels

Domains create channels to send, receive, and forward
packets. Some channels are anchored in an EE; anchored
channels are used to send packets between the execution
environment and the underlying communication substrate.
Anchored channels are further characterized as being ei-
ther incoming (inChan) or outgoing (outChan). Other chan-
nels are cut-through (cutChan), meaning that they forward
packets through the active node|from an input device to
an output device|without being intercepted and processed
by an EE. Clearly, channels play a central role in support-
ing our
ow-oriented design. We crystallize this role at the
end of this subsection; �rst we describe the various types
of channels in more detail.
When creating an inChan, a domain must specify several

things: (1) which arriving packets are to be delivered on
this channel; (2) a bu�er pool that queues packets wait-
ing to be processed by the channel; and (3) a function to
handle the packets. Packets to be delivered are described
by a protocol speci�cation string, an address speci�cation
string, and a demultiplexing (demux) key. The bu�er pool
is created out of the domain's memory pool. The packet
handler is passed the packet being delivered, and is exe-
cuted in the context of the owning domain's thread pool.
When creating an outChan, the domain must specify (1)

where the packets are to be delivered and (2) how much link
bandwidth the channel is allowed to consume (guaranteed
to get). Packet delivery is speci�ed through a protocol
speci�cation string coupled with an address speci�cation
string. The link bandwidth is described with an RSVP-

like QoS spec [34].
Cut-through channels both receive and transmit pack-

ets. A cutChan can be created by concatenating an exist-
ing inChan to an existing outChan. A convenience function
allows an EE to create a cutChan from scratch by giving
all the arguments required to create an inChan/outChan
pair. Cut-through channels, like input and output chan-
nels, are contained within some domain, that is, the cycles
and memory used by a cutChan are charged to the contain-
ing domain's thread and memory pool. Figure 4 illustrates
an example use of cut-through channels, in which \data"
packets might forwarded though the cut-through channel
inside the NodeOS, while \control" packets continue to be
delivered to the EE on an input channel, processed by the
EE, and sent on an output channel.

Domain

in
C

h
an

o
u

tC
h

an

cutChan

NodeOS

EE

Fig. 4. A domain with a cut-through channel.

The protocol and address speci�cations for inChans and
outChans are similar, and are largely adapted from Scout's
path abstraction (Section IV). The protocol speci�cation
is composed of modules built into the NodeOS. For exam-
ple, \ip", \udp", or \anep". Components are separated
in the speci�cation string by the '/' character. Included at
one end of a protocol speci�cation is the interface on which
packets arrive or depart. Thus, a minimal speci�cation is
\if" (for all interfaces) or \ifN" where N is the identi�er of
a speci�c interface. For example \if0/ip/udp/anep" spec-
i�es incoming ANEP packets tunneled through IP, while
\ip/if" speci�es outgoing IP packets. The address speci�-
cation de�nes destination addressing information (e.g., the
destination UDP port number). The format of the address
is speci�c to the highest level protocol in the protocol speci-
�cation (e.g., describing UDP addresses). cutChan protocol
speci�cations have an identical syntax with the addition of
a 'j' symbol to denote the transition from incoming packet
processing to outgoing packet processing; e.g., example,
\ip/udpjudp/ip".
Simply specifying the protocol and addressing informa-

tion is insuÆcient when an EE wants to demultiplex multi-
ple packet
ows out of a single protocol (e.g., from a single
UDP port). The demux key passed to the inChan speci�es
a set of (o�set, length, value, mask) 4-tuples. These tu-
ples are compared in the obvious way to the \payload" of
the protocol. The \payload" is de�ned as the non-header

5

portion of the packet for whatever protocol speci�cation
was given. For example, with a raw \if" speci�cation, the
payload is everything after the physical headers; with an
\if/ip/udp" speci�cation the payload is the UDP payload.
Convenience functions are provided for creating �lters that
match well-known headers.
Note that demux keys and protocol speci�cations logi-

cally overlap. The distinction is in the processing done on
the packets by the NodeOS. For example, an EE can re-
ceive UDP port 1973 packets by creating an inChan with a
protocol of \if0" and demux key that matches the appro-
priate IP and UDP header bits, or by creating an inChan
with a protocol of \if0/ip/udp". The important and critical
distinction is that the former case will not catch fragments
at all, while the latter will perform reassembly and deliver
complete UDP packets. Additionally, the former will pro-
vide the IP and UDP headers as part of the received packet
where the latter will not.
We conclude our description of channels by revisiting our

design goals. First, it is correct to view channels and do-
mains as collectively supporting a
ow-centric model: the
domain encapsulates the resources that are applied to a

ow, while the channel speci�es what packets belong to the

ow and what function is to be applied to the
ow. The
packets that belong to the
ow are speci�ed with a combi-
nation of addressing information and demux key, while the
function that is to be applied to the
ow is speci�ed with a
combination of module names (e.g., \if0/ip/udp") and the
handler function.
Second, cut-through channels are primarily motivated by

the desire to allow the NodeOS to forward packets without
EE or AA involvement. Notice that a cutChan might cor-
respond to a standard forwarding path that the NodeOS
implements very eÆciently (perhaps even in hardware), but
it might also correspond to a forwarding path that includes
an OS-speci�c extension. In the former case, the EE that
creates the cutChan is able to control the channel's be-
havior, similar to the control allowed by API de�ned for
programmable networks [12], [16]. In the latter case, the
EE that creates the cutChan is able to name the exten-
sion (e.g., \if0/ip/extension/if1") and specify parameters
according to a standard interface, but exactly how this ex-
tension gets loaded and its interface to the rest of the ker-
nel is an OS-speci�c issue; the NodeOS interface does not
prescribe how this happens. In other words, cut-through
channels allow EEs to exploit both performance and exten-
sibility capabilities of the NodeOS.

E. Files

Files provide persistent storage and coarse-grained shar-
ing of data. Because we did not view active networks as
requiring novel �le system support, we adopted an inter-
face that loosely follows POSIX 1003.1. Each EE sees a
distinct view of the persistent �lesystem, rooted at a direc-
tory chosen at con�guration time. In other words, \/" for
the ANTS EE is rooted at /ANTS. This insulates EEs from
each other with respect to the persistent �lesystem names-
pace. In order to accommodate environments in which EE

�le sharing is desirable, however, we expect to add an in-
terface that allows EEs to access the shared portion of the
namespace.
EEs may share information through the use of shared

memory regions, which are created with a combination of
shm open and mmap operations. A non-persistent �le ob-
ject is �rst created with shm open, which allows the speci�-
cation of a name, as well as access rights and other options.
Once the �le object is created, EEs may then mmap the ob-
ject to create a region of memory that is either private (not
shared), or shared among the EEs mapping that �le object.

IV. Implementation I: Scout

We have implemented the NodeOS in the Scout oper-
ating system, which encapsulates the
ow of I/O data
through the system|from input device to output device|
in an explicit path abstraction [21]. This similarity to the
NodeOS interface allows Scout to implement both the tra-
ditional and active forwarding services using exactly the
same mechanism. This makes it possible to integrate the
NodeOS interface into a Scout-based router in a way that
does not negatively impact our ability to forward non-
active packets.

A. Overview

Scout is a con�gurable system, where an instance of
Scout is constructed from a set of modules. For exam-
ple, Figure 5 shows a portion of the module graph for an
active router. Modules TCP, UDP, IP, and ANEP each
implement a communication protocol. Modules JVM and
NodeOS each implement an API|the former implements
the Java Virtual Machine (see [10]) and the latter imple-
ments the NodeOS.

IP

TCP

JVM

UDP

ANEP

NodeOS

. . .

Fig. 5. Module Graph for an Active Router

Scout paths support data
ows through the module
graph between any pair of devices. When con�gured to
implement a router, Scout supports network-to-network
paths, which we call forwarding paths. For example, Fig-
ure 6 depicts a forwarding path that implements an FTP
proxy.
The entity that creates a forwarding path speci�es three

pieces of information: (1) the sequence of modules that de-
�ne how the path processes messages, (2) a demultiplexing
key that identi�es what packets will be processed by the

6

if ip tcp
proxy

tcp
ip if

Fig. 6. Example Forwarding Path

path, and (3) the resource limits placed on the path, includ-
ing how many packets can be bu�ered in its input queue,
the rate at which it is allowed to consume CPU cycles, and
the share of the link's bandwidth it may consume. This
same information is required by the NodeOS: a domain is
a container for the necessary resources (channels, threads,
and memory), while a channel is speci�ed by giving the
desired processing modules and demultiplexing keys. As
a consequence, the NodeOS module is able to implement
domain, channel, thread, and memory operations as simple
wrappers around Scout's path operations.

if ip udp
anep

nodeos

anep
udp

ip if

Fig. 7. In and Out Channels Connecting the NodeOS to the Network

More interestingly, a cut-through channel is simply im-
plemented by a Scout forwarding path that does not pass
through the NodeOS module (similar to the one shown in
Figure 6), while in and out channels map onto a Scout
path that does include the NodeOS module (as shown in
Figure 7). In the latter case, the inChan corresponds the
portion of the forwarding path to the left of the NodeOS
module, while the outChan corresponds to the portion of
the forwarding path to the right of the NodeOS module.

The only issue is how to implement demultiplexing. In
Scout, each module implements two functions: one that
processes packets as they
ow along a path, and one that
demultiplexes incoming packets to select which path should
process the packet. Packet classi�cation is accomplished
incrementally, with each module's demux function making
a partial classi�cation decision using module-speci�c infor-
mation. This approach to classifying packets causes two
complications.

First, the NodeOS module's demux function must im-
plement a programmable pattern matcher that recognizes
application-speci�ed keys. (Its processing function sim-
ply implements the wrappers described above.) Thus, to
match a packet to an inChan that delivers \if/ip/udp/anep"
packets for a speci�c ANTS protocol (e.g., protocol `8'),
the interface's demux looks for type=IP, IP's demux would
look for protnum=UDP, UDP's demux would look for the
well-known ANEP port, and ANEP's demux would look
for ANTS's well-known EE number. If we assume the
ANTS protocol and capsule type �elds are each four bytes,
the NodeOS's demux would then match the pattern (3, 5,
x08x00x00x00x02, xFFx00x00x00x02) to select the path that
delivers packets to this speci�c ANTS protocol (i.e., to a
speci�c active application running in the ANTS execution

environment).
Second, the NodeOS does not tightly couple the demul-

tiplex keys with the processing modules. Thus, it is possi-
ble to say that packets matching a certain IP address and
TCP port numbers should be processed by just the IP mod-
ule. This happens, for example, with transparent proxies.
Scout, however, couples the two: creating a path with mod-
ules \if/ip/tcp" implies that both the demultiplexing and
processing functions of all three modules are involved. Our
experience implementing the NodeOS interface has caused
us to change Scout so that processing and demultiplexing
are not so tightly coupled. That is, path creation now takes
two sets of module lists, one that identi�es how the path
processes packets and one that speci�es how packets are
classi�ed.

B. Integrated Perspective

The goal of the Scout-based router is to provide a single
framework for vanilla IP forwarding, kernel extensions to
IP forwarding, and active forwarding [14]. From Scout's
perspective, we can view a forwarding path as being con-
structed from a combination of system modules and user

modules. Systems modules correspond to native Scout
modules, which have two important attributes: (1) they
are trusted and can be safely loaded by verifying a digital
signiture, and (2) they assume the same programming envi-
ronment (they are written in C and depend on Scout inter-
faces). In contrast, user modules are untrusted and can be
implemented in any programming environment. For exam-
ple, an application that wants to establish a virtual private
network might create a forwarding path that includes a
VPN module running over IP tunnels: \if/ip/[vpn]/ip/if",
where we bracket VPN to denote that it is a user module.
Of course, the key to being able to run such user modules

is to execute them in a wrapper environment, which in our
case is provided by the NodeOS interface. The NodeOS,
in turn, allows user-provided modules to de�ne their own
internal paradigm for extending router functionality. For
example, the VPN module might be implemented in the
ANTS execution environment. ANTS happens to depend
on Java, which is an execution environment in its own right.
In e�ect, if one were to \open" the user-provided VPN in
this example, one might see the components shown in Fig-
ure 8, where VPN is one of possibly many active applica-
tions that ANTS might support at any given time. The
only restriction on such nested environments is that the
NodeOS is at the outermost level.
Given this perspective, we comment on several attributes

of our design. First, some forwarding paths consist en-
tirely of Scout modules; the vanilla IP forwarding path is a
prime example. This makes it possible to implement high-
performance paths that are not encumbered by the over-
heads of the NodeOS or Java wrapper environments. In
fact, we expect that popular user-provided modules will be
re-written as system modules, and migrate into the kernel
over time. More generally, being able to run both system
and user modules gives us a two-tier security model, al-
lowing both trusted system adminsitrators and untrusted

7

if ip [vpn]

ip if

NodeOS

JVM

ANTS

VPN

. . .
. . .

Fig. 8. Internal Structure of a User-Provided Module

users to extend a router's functionality.

Second, a Scout forwarding path contains at most one
user module, but by being able to name the system mod-
ules that make up the rest of path, the user module is able
to exploit legacy network modules. For example, in con-
trast to the overlay extension illustrated in Figure 8 that
logically runs on top of the fully-connected Internet, one
could implement an extensible IP user module|think of
this module as implementing IP version n|that depends
only on the ability to send and receive packets over the
raw interface. The important point is that user-provided
functionality can be inserted at any level of the network
stack.

Third, there are two reasons for deciding to create a new
forwarding path. One is that you want to bind a particu-
lar packet
ow to a unique set of modules. For example,
our router typically runs two vanilla IP forwarding paths:
one that implements the fast path that consists of a single
module that is optimized for moving option-free datagrams
between a pair of similar devices, and a general forward-
ing path that deals with exceptional cases such as IP op-
tions and arbitrary interfaces. The second reason is that
you want to treat a particular
ow specially with respect
to resource allocation. For example, there might be two
forwarding paths consisting of the modules \if/ip/if" with
one given best e�ort service and the other given some QoS
reservation.

Fourth, forwarding paths exist in both the control and
data plane, with control paths typically creating and con-
trolling data paths. For example, a path constructed
from modules \if/ip/udp/[rsvp]/udp/ip/if" might create
the \if/ip/if" path described in the previous paragraph,
and in doing so, set the amount of link and CPU resources
that the
ow is allowed to consume.

C. Performance

We have implemented several forwarding paths, includ-
ing ones that span the NodeOS. Table I reports the perfor-
mance of these paths on a 450MHz Pentium-II processor
with three Tulip 100Mbps ethernet interfaces. For each
type of forwarding path, we give the aggregate rate, mea-
sured in packets-per-second (pps) at which the router can

forward minimim-sized packets over that path.

Forwarding Path Rate (Kpps)

IP Fast Path 290.0
General IP 104.5
Active IP 92.5
Transparent Kernel Proxy 85.5
Transparent Active Proxy 84.9
Classical Kernel Proxy 77.1
Classical Active Proxy 75.5

TABLE I

Packet forwarding rates for various paths, measured in

thousands of packets-per-second (Kpps).

The �rst three forwarding paths implement the standard
IP forwarding function under three di�erent scenarios. The
IP Fast Path represents the minimal work a Scout-based
router can do to forward IP packets. It is implemented
by a single Scout module that is optimized for a speci�c
source/sink device pair. The General IP path includes
option processing and handling other exceptional cases.
This path is constructed from three separate Scout mod-
ules: the input device driver, IP and the output device
driver. Finally, the Active IP path implements IP as a
user module, wrapped in the NodeOS environment. The
di�erence between this and the previous path measures the
overhead of the NodeOS module.

The next pair of paths implement a transparent UDP
proxy. The �rst (Transparent Kernel Proxy) includes
a null Scout proxy module, while the second (Transpar-
ent Active Proxy) includes a null proxy running on top
of the NodeOS interface. In practice, such proxies might
apply some transformation to a packet
ow without the
knowledge of the end points. Since the numbers reported
are for null proxies, they are independent of any particular
transformation.

The �nal two paths are for classical proxies, such as an
FTP proxy that establishes an external TCP connection,
receives a �le name, and then establishes a internal TCP
connection to the appropriate server. As before, we mea-
sure a null classical proxy running in both the kernel (Clas-
sical Kernel Proxy) and on top of the NodeOS interface
(Classical Active Proxy)

Note that all of the numbers reported for the NodeOS
assume the active code (user module) is written in C and
compiled to the native architecture. It does not include the
overhead of Java or some execution environment. We are
currently porting the JVM and ANTS to the latest NodeOS
interface, but based an implementation of the JVM and
ANTS running on an earlier version of the interface, we
expect an active Java module to add 3.5 �sec of process-
ing time to each packet, and ANTS to add an additional
37.5 �sec to each packet. This would reduce the active IP
forwarding rates, for example, to approximately 60.7k and
18.5k pps, respectively.

8

V. Implementation II: Janos

Our second example implementation is Janos, a \Java-
oriented Active Network Operating System." Janos has
two primary research emphases: (1) resource management
and control, and (2) �rst class support for untrusted active
applications written in Java. Toward these goals, Janos
necessarily encompasses both the EE and NodeOS layers
of the canonical active network architecture [2]. As Fig-
ure 9 shows, Janos is a layered architecture with three com-
ponents: ANTSR, the Janos Virtual Machine (JanosVM),
and Moab. Though this section is primarily concerned with
Moab, the Janos NodeOS, we introduce the other layers to
provide a bit of context. A complete discussion of the Janos
architecture, focusing on other issues, appears elsewhere in
this journal [27].

AA3 AA4AA1

OSKit
Moab

Execution
Environment
(EE)

Active

(AAs)
Applications

NodeOS

}
}

}

AA2

Janos Virtual Machine

ANTSR

Janos Java NodeOS Bindings

Fig. 9. The Janos Architecture and the corresponding DARPA Ac-
tive Network Architecture.

Active applications for Janos are written to use the
ANTSR Java runtime environment. ANTSR, or \ANTS
with Resource management," exports to active applications
essentially the same API as that exported by the standard
ANTS active network runtime [30]. However, ANTSR is
re-architected to take advantage of NodeOS and JanosVM
services, and to support precise resource control. ANTSR
runs atop the JanosVM, an extended Java Virtual Machine
(JVM). In addition to providing the standard JVM ser-
vices necessary for executing Java bytecode (e.g., thread-
ing, garbage collection, and JIT compilation), we have ex-
tended the JVM to support multiple namespaces and mul-
tiple heaps, providing independence between concurrently
executing Java applications. The JanosVM also exports
Java bindings for the NodeOS API, making it a potential
host platform for other Java-based EEs. Together, ANTSR
and the JanosVM form the EE layer of the active network
architecture.
Underneath the JanosVM is Moab, a multi-threaded,

fully-preemptible single-address-space operating system
implementing the NodeOS abstractions. Moab is built us-
ing the OSKit [9], a toolkit of components for building sys-
tems software. The OSKit includes suites of device drivers,
numerous �lesystems, a networking stack, and a thread im-
plementation, as well as a host of support code for boot-
ing, remote debugging, memory management, and enabling
hosted execution on UNIX systems.
The remainder of this section discusses our experiences

with the NodeOS interface in Janos. We start by describ-

ing the integration of the NodeOS interface into Janos from
two perspectives. First, we look at the part of Janos above
the interface boundary, discussing how the requirements
of the JanosVM in
uenced the design of the interface and
how we leverage the resulting design in the JanosVM im-
plementation. Second, we look below the boundary, brie
y
describing some of the issues involved with implementing
the NodeOS interface on top of the OSKit. We conclude
by presenting and brie
y discussing some preliminary per-
formance results for Moab.

A. NodeOS Design Issues

The JanosVM has two key properties that in
uenced the
design of the NodeOS speci�cation: its JVM heritage which
strongly in
uences memory management, and its tight cou-
pling with the NodeOS. In the following paragraphs we
explore these properties and how the NodeOS design sup-
ports them.
Memory management: Fundamentally, the JanosVM,

like typical high-level language runtimes, needs to do its
own memory management. Not only does the VM al-
low the sharing of code and data between domains, but
it also maintains separate per-domain garbage-collected
heaps. While it might be possible to use per-domain,
NodeOS-enforced memory limits, at best these would be
redundant mechanisms and at worst they would severely
restrict how the JanosVM can use memory. Thus, the
ability to aggregate memory from multiple domains into a
single memory pool is essential to the JanosVM. This abil-
ity is enabled in the NodeOS interface by decoupling the
domain and memory pool abstractions, allowing a memory
pool to be speci�ed explicitly at domain creation time. In
the JanosVM, a single memory pool is created and all do-
mains are associated with it. When a domain is created, its
resources are added to this global pool. The JanosVM is re-
sponsible for making per-domain allocation decisions from
this pool and enforcing per-domain memory limits. When
a domain terminates, the memory pool's callback function
is invoked, informing the JanosVM that it must return an
amount of memory equal to that domain's share. The key
point is that, with a single memory pool, the JanosVM is
free to decide which memory pages are to be taken from the
pool. Were there to be one memory pool per domain, the
JanosVM would be forced to return the speci�c memory
that was allocated to the terminated domain.
While the single memory pool enables the JanosVM to

account for explicit allocations, one issue remains. In or-
der for the JanosVM to accurately track all memory re-
sources, it must also have a way to account for memory
allocated within Moab on behalf of domains; that is, the
implicitly allocated memory used for the internal state
of NodeOS-provided objects. To accomplish this objec-
tive, the NodeOS interface was designed to provide \zero-
malloc" object creation API calls in which the caller sup-
plies pre-allocated memory for the NodeOS to use for the
object state. Another advantage to this approach is that it
allows the EE to embed actual NodeOS objects (as opposed
to object references) in EE-provided objects, thus simpli-

9

fying the code for managing these objects. The JanosVM
exploits this feature by embedding NodeOS objects in the
corresponding Java wrapper objects that are exposed to
the ANTSR runtime via the Java NodeOS bindings. A
�nal bene�t of pre-allocation of object memory is that
it makes object creation calls more predictable|they will
never block for memory allocation or throw a memory ex-
ception.
Tight coupling: Another aspect of the JanosVM that had

in
uence on the NodeOS interface is that the JanosVM and
Moab are tightly coupled, with NodeOS API calls being im-
plemented as direct function calls rather than as \system
calls." The ability to share memory between the NodeOS
and EE via direct pointers during object creation calls is
an example of how the NodeOS interface is designed to
eÆciently support this model; that is, in an implementa-
tion where the NodeOS \trusts" an EE. The interfaces are
designed to allow direct manipulation of all the NodeOS
objects by the EE, making it possible, for example, to ag-
gressively inline API calls in the EE code.
Another manifestation of the tight coupling of the EE

and NodeOS is the way in which NodeOS exception condi-
tions are handled. The NodeOS defers to the EE, via call-
backs, whenever a domain terminates, faults, or exhausts
some resource. The EE is expected to recover or clean up
and destroy any a�ected state. Only if the EE doesn't re-
spond in a timely manner will the NodeOS intervene, and
then only in a very direct, albeit heavy-handed, way: by
terminating the EE and reclaiming its resources. Grace-
ful exception handling is the responsibility of the EE. This
design is necessary because, as explained above under mem-
ory management, the EE has private knowledge of certain
per-domain information.
Finally, the conscious e�ort to borrow from interfaces

such as POSIX when designing the NodeOS interface is
leveraged to great e�ect in the JanosVM. As the JanosVM
is derived from Ka�e [31], a POSIX-hosted JVM, the sim-
ilarity of the NodeOS thread, synchronization, and �le in-
terfaces to those in POSIX made porting the JanosVM to
Moab much easier than it would otherwise have been.

B. NodeOS Implementation Issues

The OSKit was designed for building operating system
kernels, making it an obvious choice for constructing the
Moab NodeOS. The richness of the OSKit environment
gave us not only the ability to run directly on two di�erent
hardware platforms (x86 and StrongARM) and on top of
various UNIX-like OSes (Linux, FreeBSD and Solaris), but
also provided development tools for debugging, pro�ling,
and monitoring. Its support for standard interfaces such
as POSIX threads and �les made mapping the analogous
NodeOS interfaces straightforward. On the other hand,
not all OSKit interfaces were well suited to the task. The
base memory interface was too low-level, its generic nature
hindering precise control of memory resources. The net-
working interface was too high-level, its coarse granularity
limiting the options for channel composition. In the fol-
lowing paragraphs we describe the Moab implementation

of three NodeOS abstractions that best illustrate the good
and bad characteristics of the OSKit as a NodeOS base.

Threads: The implementation of thread pools and the
threading interface in Moab was, for the most part,
straightforward due to the similarity between the NodeOS
and POSIX (pthread) APIs. Just as this similarity helped
\above" when mapping the JanosVM onto the API, it
helps from \below" when implementing the API on top
of the OSKit pthreads component. Most of the thread and
synchronization primitives in the API mapped directly to
pthread operations. There was one obvious performance
problem caused by the direct mapping of NodeOS threads
to pthreads: the NodeOS thread-per-packet model of exe-
cution led to creation and destruction of a pthread for ev-
ery packet passing through the NodeOS. This was avoided
by creating and maintaining a cache of active pthreads in
every thread pool.

Memory: Memory pools represent one area where using
the OSKit has made the implementation diÆcult. Track-
ing memory allocated and freed within OSKit components
such as the network stack is easy, but identifying the correct
memory pool to charge or credit for that memory is not. In
particular, all allocations in OSKit components eventually
funnel down to a single interface. By providing the imple-
mentation of that interface within Moab, we have control
over all memory allocated anywhere in the system. How-
ever, that interface includes no speci�c information about
what the memory is being used for, nor any explicit indi-
cation as to the principal involved. We are left with the
choice of charging either the memory pool of the current
thread (charge the \current user") or the \root" memory
pool (charge \the system"). At the moment, Moab charges
all OSKit allocations to the root pool. The solution we are
pursuing is to evolve the OSKit memory interfaces, either
by exposing more domain speci�c allocation interfaces or
by passing down the necessary information to the generic
interfaces.

Channels: Channels were by far the most challenging
of the NodeOS abstractions to implement using current
OSKit components. Anchored channels in Moab are im-
plemented in one of two ways corresponding to the proto-
col speci�cation used: raw interface (\if") channels deliver
packets directly from the device driver to Moab (and on to
the JanosVM) while all others use a socket interface to de-
liver UDP or TCP packets from the device driver, through
the OSKit networking stack, and up to Moab. In both
cases, the OSKit's encapsulated legacy-code components
don't match well with the NodeOS networking model.

Raw interface channels are implemented directly above
the OSKit's encapsulated Linux device drivers using the
standard OSKit network device interface. We modi�ed the
OSKit device driver glue code to use specialized \packet
memory" allocation routines to avoid the previously de-
scribed problems caused by the low-level generic memory
interfaces. Our only remaining concern is the inherent per-
formance limitations caused by using stock Linux device
drivers. This is discussed further in Section V-C.

All other anchored channels are implemented directly

10

on a BSD socket-style OSKit interface, allowing UDP/IP
or TCP/IP protocol speci�cations. This provides only a
limited subset of what the NodeOS interface supports|in
particular, it does not support \IP-only" channels. To ad-
dress this drawback, we are reimplementing these channels
using Click [15] routers. Click, a router component toolkit
from MIT, provides a set of �ne-grained elements| small
components representing a unit of router processing| and
a con�guration language for combining these elements into
router con�gurations. By using Click, we will be able
to do the �ne-grained protocol composition allowed by
the NodeOS speci�cation. Currently, we have a proto-
type implementation of Click-based UDP/IP inChans and
outChans.
Cut-through channels are currently implemented as an

unoptimized concatenation of NodeOS inChan/outChan
pairs and can perform no additional protocol processing.
Again, the coarse granularity of the OSKit networking in-
terface does not allow access to individual protocols from
within Moab. As with anchored channels, we have done
preliminary work to make use of Click graphs to implement
a more
exible form of cut-through channel. currently as an
extension to the NodeOS interface. With Click cutChans,
the protocol speci�cation is a Click router description. The
Click router elements used to instantiate the graph run in-
side Moab with standard device driver elements replaced by
elements to read from an inChan and write to an outChan.

C. Performance

Our primary goals to date have been the implementa-
tion of the NodeOS abstractions and API in Moab and the
integration of Moab with the JanosVM. With those goals
largely met, we have now begun to look into measuring
and improving the performance of Moab. In the following
paragraphs we present the results of some simple packet-
forwarding tests to characterize that performance.
All testing used the facilities of emulab.net, the Utah

Network Emulation Testbed [8]. Testbed nodes are
600MHz PentiumIII PCs using ASUS P3B-F motherboards
with 128MB of PC100 SDRAM and 5 Intel EtherExpress
Pro/100+ 10/100Mbit PCI Ethernet cards all connected
to a Cisco 6509 switch. Our experiment consisted of three
nodes, connected in a linear arrangement: a packet pro-
ducer node was connected by a private VLAN to the packet
router node, which in turn was connected via a second pri-
vate VLAN to a packet consumer node. The producer and
consumer nodes ran custom OSKit-based kernels while the
router node ran one of three routers as described below.
The test was to generate and send 18-byte UDP (64-byte

Ethernet) packets at increasing rates to discover the maxi-
mum packet forwarding rate of the router node as measured
at the consumer node. As in the Scout IP Fast Path exper-
iment, only minimal IP processing was performed on the
router node. The results are summarized in Table II.
The OSKit experiment establishes a performance base-

line by measuring the raw packet forwarding rate of a sim-
ple OSKit-based router. This router has a single function
which receives a packet pushed from the input interface

Forwarding Path Rate (Kpps)

OSKit 75.7
Moab cutChan 48.7
C-based EE 45.0

TABLE II

Packet forwarding rates at various levels of the Janos

architecture, in thousands of packets-per-second (Kpps).

driver, performs IP processing, and pushes the packet out
on the output interface. This result represents the upper-
bound on performance of a system based on OSKit inter-
faces built on top of stock, interrupt-driven Linux device
drivers. Given the di�erences in hardware con�gurations,
the recorded 75,700 packets-per-second (pps) is compara-
ble to the 84,000 the Click team reported for similar stock
Linux device drivers. The Click work[15] as well as the
Scout team's experience also demonstrated the enormous
improvement|exceeding a factor of three|in the forward-
ing rate of generic packets that polled device drivers pro-
vide. Based on those reports, converting Moab to use
polled drivers should improve performance dramatically.

We then measured Moab using a cutChan to forward
packets between the interfaces (Moab cutChan). The re-
sult was a 35% degradation of the OSKit forwarding rate,
down to 48,700 pps. The bulk of the slowdown is at-
tributable to the current unoptimized implementation of
Moab cutChans. Since they are now implemented as a
simple concatenation of an inChan and outChan, an ac-
tual Moab thread is dispatched for each arriving packet.
This thread runs the cutChan function whose sole purpose
is to send the packet on the outChan and release the packet
bu�er. Avoiding this scenerio is the purpose of cut-through
channels, and we will optimize our implementation in the
near future.

Finally, in C-based EE, we measured the performance
of a C-language EE running on Moab using the NodeOS
API. The EE consists of a domain with a single thread
receiving packets on an inChan, performing the IP process-
ing, and sending the packet on the outChan. This is exactly
what the Moab cutChan forwarder does, only running out-
side the NodeOS API boundary. Hence, this test accu-
rately demonstrates the overhead involved in crossing the
API boundary. As one of the goals of Janos is the tight cou-
pling of the EE and NodeOS, this result is important. In
this con�guration, there was an 8% drop to 45,000 pps. In
absolute terms, the EE-level channel receive function took
an average of 9,300 cycles (15.5 �s) per call versus 6,900
(11.5 �s) per call for the NodeOS-level function when re-
ceiving at a rate of 40,000 pps. Each EE-level invocation
requires six API boundary crossings, for an average added
cost of 400 cycles per crossing. This cost, which is some-
what high, will be reduced in the near future as we take
further steps to optimize the implementation.

11

VI. Implementation III: AMP

Our third implementation, called AMP, is layered on top
of the exokernel (xok) and its POSIX-like libEXOS library
OS [13]. AMP's goal is to provide a secure platform upon
which EEs and active applications can run, without unduly
compromising eÆciency. As illustrated in Figure 10, AMP
consists of library code (libAMP), and four trusted servers,
that jointly provide the NodeOS interface to an EE. One
of our self-imposed design constraints was to avoid intro-
ducing new abstractions or mechanisms into xok, as we
attempt to demonstrate that a secure system may be con-
structed entirely above an exokernel.

Comparing AMP to Janos, the same AAs and ANTSR
EE are layered on the Janos Java NodeOS bindings. How-
ever, AMP implements its own subclasses of the NodeOS
bindings, specialized to use the Java native method inter-
face to make calls to the libAMP routines implemented
in C. The Ka�e virtual machine has been ported to, but
not specialized in any signi�cant way for, the exokernel.
LibAMP follows the exokernel library OS design approach
of placing a copy of the OS in the same address space as
the application. To provide protection of system-wide state
information, portions of NodeOS abstractions are imple-
mented within separate trusted servers, and libAMP in-
vokes protected operations via cross-address space RPC.
Trusted servers implement protected portions of these
NodeOS abstractions: domains (Security Writer Daemon,
SWTD), input channels (Dynamic Packet Filter Daemon,
DPFD), output channels (Network Transmission Control
Daemon, NTCD), and shared memory (Shared Memory
Daemon, SHMD).

AMP shifts much of the protection burden away from
the Janos VM and onto the trusted servers. There are two
consequences of this design decision. First, AMP forgoes
many of the opportunities for performance optimizations
possible by exploiting a single-address space system. In
particular, context switching costs related to RPC is a po-
tentially signi�cant performance bottleneck. Second, AMP
is able to accomodate a wide range of EE implementations
and languages. Because there is relatively little trust that
must be placed in a given EE, AMP can limit the resources
and operations that an EE is granted access to, thereby al-
lowing more
exibility in con�guring EEs to run within the
system.

AA3 AA4AA1 AA2

Xok

Kaffe Virtual Machine

ANTSR

Janos Java NodeOS Bindings

LibAMP

Trusted Servers

SHMD

NTCD

DPFD

SWTD

Fig. 10. The AMP Architecture.

A. Design Issues

The exokernel provides a minimal set of abstractions
above the raw hardware. Ideally, only those mechanisms re-
quired to control access to physical resources and kernel ab-
stractions are provided. All other OS abstractions are im-
plemented in user space. Exokernel implementations utilize
library operating systems co-located in the address space
of each application, as opposed to protected OS servers ex-
ecuting in their own address spaces. This implementation
choice reduces one of the well known problems of micro-
kernel architectures, namely, the high direct and indirect
costs of invoking services via RPC [18]. However, the ex-
okernel also provides eÆcient support for RPC, which we
have used extensively in our design and implementation.

AMP's in
uence on the NodeOS interface is re
ected in
the simplicity of the interface API with respect to secu-
rity arguments. In fact, there is precisely one point, at do-
main creation, where credentials are passed to the NodeOS.
These credentials represent the principal authorizing the
domain's creation, and are used to determine limits on both
resources and operations. By determining all rights for a
domain exactly once, and at exactly one entry point in the
NodeOS interface, this design facilitates the enforcement
of security policies. AMP maps a domain's authorization
to primitive protection mechanisms in the xok as described
below.

The key to exokernel protection is the uniform support
for hierarchically-named capabilities (CAPS). CAPS are
more akin to an extensible Posix UID/GID mechanism
than to capabilities, in that CAPS are checked against ac-
cess control lists rather than naming and granting rights
directly. Two properties of CAPS are essential to building
a secure AMP system above xok:

� Kernel control over creation and use|xok maintains all
CAPS in the system, controlling when new CAPS are cre-
ated, associated with a process (environment abstraction
in xok), and passed from one environment to another.
� Ubiquitous and exclusive use throughout the system call
interface|every system call takes exactly one CAP as an
argument to determine if the requesting entity has suÆcient
rights to perform the operation.

Together, these two properties provide the initial basis
for assuring that the AMP system and its security mech-
anisms are tamperproof, non-bypassible, and intercept or
enforce decisions on all requests for resources or services.
By implementing the NodeOS abstractions and AMP secu-
rity mechanisms above xok, development time is reduced,
modularity is enhanced, and security requirements can be
addressed in a straightforward manner.

B. NodeOS Interface and Trusted Servers

Each NodeOS resource abstraction must be controlled
in order to ensure separation between the various domains
instantiated in the system. The domain abstraction is the
container that holds other resources, along with the creden-
tials that authorize the domain's actions. Trusted servers
provide control over the NodeOS resources by enforcing

12

the current policy. These servers are rightly viewed as ex-
tended parts of the operating system implemented in user
space. As such, they have powers granted to them at boot
time as trusted software in order to carry out their func-
tion. They enforce access to their resources in essentially
the same manner as the xok system call enforcement mech-
anism. An xok CAP is passed as an argument of each RPC
to a trusted server, and used to check that the request is
allowed. In explaining the implementation details of each
node OS abstraction in AMP, we focus on the consequences
of layering above xok.

Packet Forwarding: Unlike a typical monolithic kernel,
xok does not include IP routing functionality in the ker-
nel. Instead, a dedicated, non-active IP forwarder running
in user space mimics the functionality provided within the
kernel on other systems. One consequence is that IP for-
warding is essentially identical to any other Active Network
EE implementation running on the system. Our choice of
a C implementation with support for a static IP forward-
ing function could easily be replaced by any EE ported to
AMP, con�gured to run an AA that implements an appro-
priate IP forwarding function. However, this means that
AMP can be expected to be somewhat slower forwarding
IP packets than a corresponding Unix system, because of
the additional costs of copying all packets up to user space
and then back down for transmission.

Domains: The trusted server directly involved in man-
aging domains, SWTD, interprets high-level policy, tracks
domains and their associated credentials, and informs the
other servers regarding what system resources are autho-
rized to domains. Domains are established via an RPC
to SWTD, which relies on a Credential Service (not de-
scribed) to retrieve, validate and cache credentials. SWTD
creates one xok CAP for each domain in the system. Since
a CAP is passed on every system RPC to a trusted server,
the CAP is actually used as an authenticated name for the
domain. CAPs are never manipulated in user space, since
they are passed by reference and maintained in the ker-
nel. The credentials supplied with the domain create oper-
ation are used to determine the speci�c resources or services
that the domain is granted access to. Our design calls for
a
exible policy language, but our initial implementation
hands out static policy mediation directives to each of the
other trusted servers. For example, if a domain is created
with the right to open certain input channels, then the
policy mediation directives passed from SWTD to DPFD,
which mediates inChan creation operations, would contain
a canonical representation of the packet �lter �elds that
must be speci�ed by any inChan created by the domain.

There are several consequences to layering the domain
abstraction above xok in this way. First and foremost, the
kernel knows nothing about domains, but rather tracks the
CAPS associated with domains. This means that other ab-
stractions can be added to the domain container by imple-
menting additional trusted servers, and informing them of
the CAP and policy mediation directives associated with
a domain. Since trusted servers are only special by dint of
their possession of CAPS, and because they receive priv-

ileged communications from SWTD, it would not be dif-
�cult to extend the system. In fact, an EE or AA could
play the role of trusted server with respect to control of
an additional abstraction. Second, even though the do-
main hierarchy and CAP hierarchy were designed to be
isomorphic, this property is not exploited at the trusted
server level. The NodeOS interface allows parent domains
to control their children domains; in theory, this could be
implemented in AMP by having the parent use a CAP with
the power of all its children's CAPs. Xok provides this ex-
act functionality, but AMP can directly add the additional
rights granted to each child domain to the parent's set of
allowed operations at creation time.

Channels: The channel implementation in AMP is split
across three address spaces: DPFD, the libAMP code co-
located with the EE, and NTCD. DPFD enforces the policy
regarding what packet �ltering rules may be installed into
the xok DPF mechanism by a domain, thereby guarantee-
ing strong separation of domains with respect to packets
received over the network. NTCD plays a similiar, but
not quite symmetric role for transmission of packets over
output channels. The libAMP channel code does all the
processing for ANEP, UDP and IP. (TCP is currently un-
supported.) Output channels use a set of bu�ers mapped
into the address space of NTCD to pass packets along for
transmission, and NTCD selects the correct physical inter-
face based on the destination IP address, and constructs
the Ethernet header. NTCD can optionally enforce both
transmission limits and header content controls on pack-
ets. Transmission limits on a domain can be enforced by
directly controlling how many packets or bytes are sent per
second.

The DPF mechanism is reused in NTCD to limit the val-
ues of header �elds in transmitted packets. NTCD clones
both the DPF implemented in xok, and the packet �lter
mediation function (from DPFD) used to control which �l-
ters are inserted into the DPF set. We observe that there
is no need for a tight-coupling between the EE/libAMP
channel implementation that establishes an outChan and
the DPF rules used to control packet transmission. A small
change to the NodeOS interface would allow other imple-
mentations, including ones in which trusted AAs separately
supplied the �ltering rules.

Threads: Our prototype uses the Ka�e implementation,
for which we have developed a thread package called xok-
jthreads. Xok only supports processes, while providing
primitive mechanisms useful for implementing threads in
user space. The xok-jthreads package is used by Ka�e for
creating its own threads, as well as by the channel stack.
Our prototype does not migrate a thread from the inChan
into the EE, but rather delivers the packet and allows Ka�e
to schedule one of its own threads to process the packet
through the EE and AA. As threads are user space enti-
ties, we have designed (but not yet implemented) the ma-
chinery needed to limit CPU consumption by domains. In
this design, a scheduler daemon acts as a �rst-level hierar-
chical scheduler, as well as controls all free scheduler time-
slices (quantums). Xok provides an interface to control,

13

allocate, and preempt quantums scheduled using a simple
round-robin policy. The second-level scheduler inside each
xok-jthreads implementation determines which thread in-
side the EE is run.
Files: CFFS is the native �lesystem in AMP. Its oper-

ations are implemeted via a trusted server that is part of
the original exokernel distribution. Our only design change
is to control which portions of the �le namespace are vis-
ible to the individual EEs. However, this is not adequate
to assure the strong separation of di�erent portions of the
global �lespace, since symlinks and shared inodes may ob-
scure when sharing is taking place. The NodeOS sharing
abstraction implemented via shm open() and mmap() is
intentionally restrictive in order to simplify the security
aspects of controlling shared memory. The key restriction
is that a shared region may only have a single writer. This
obviates the need for controlling write access, implement-
ing write locks, and reclaiming orphaned locks at domain
termination. Moreover, it eliminates entirely the security
policy and con�guration that would be required to spec-
ify which entities had access to these ancillary operations.
Instead, the shared memory daemon (SHMD) needs only
check that read or write access for the shared region is per-
mitted. Memory is provided by the writer, out of their
mempool. Mempools currently exist only at the level of
the entire EE|resource limits control the entire amount
of memory used by the EE and all sub-domains.

C. Performance

We report on the forwarding rates for AMP at vari-
ous layers in the architecture for minimum sized ethernet
packets. Channelized IP corresponds to a C implemen-
tation of a forwarding process layered above the NodeOS
channel abstraction. This process necessarily runs in user
space, as the xok kernel does not directly implement for-
warding. The limited performance re
ects the costs of
two copies and four CPU context switches required per
each packet. The next two entries correspond to im-
plementations that process ANEP packets encapsulated
within UDP/IP. The minimal ANEP header does not carry
any options, such as those requiring CPU intensive cryto-
graphic operations. The rough doubling of performance
between the two cases re
ects the bene�t of a cutChan
over a separate inChan/outChan pair anchored in a Java
EE. The �nal entry measures the rate at which a mini-
mal ANTSR capsule is forwarded. All numbers were mea-
sured on a testbed consisting of three 750MHz Pentium-
III PCs with Intel EtherExpress Pro/100+ Mbit Ethernet
cards connected to a Netgear FS516 switch.

VII. Discussion

It is interesting to note how the di�erences between the
three base systems impacted the way in which the domain
abstraction was implemented. In Scout, the principal ab-
straction is the path, which essentially bundles a domain
plus an inChan/outChan pair. In Moab, domains are closely
associated with the JanosVM's abstractions for separate
memory heaps and namespaces. Moab's support of threads

Forwarding Path Rate (Kpps)

Channelized IP 22.1
C channelized ANEP 17.5
Java channelized ANEP 6.9
ANTSR forwarder 1.2

TABLE III

Packet forwarding rates for various software layers,

measured in thousands of packets-per-second (Kpps).

as a �rst-class abstraction, coupled with the advantage of
a single address space for memory, provide the right de-
gree of support to allow the virtual machine to isolate and
separately account for the resources used by active appli-
cations. In contrast to both of these, the exokernel allows
AMP to map domains one-to-one with the fundamental
protection mechanism of the system: hierarchically-named
capabilities. This translates into the exokernel's notion of
a domain as an owner of more primitive resources. A do-
main, in the eyes of exokernel, is roughly the resources it
is permitted to allocate, and operations it is permitted to
invoke.

Turning to the channel abstraction, the di�erences be-
tween the Scout and AMP implementations illustrate how
underlying system structure impacts the design choices,
and permeates the system in subtle ways. Scout's chan-
nel implementation consists of a number of system for-
warding modules strung together into a protocol stack.
AMP adopts a similar architecture. However, Scout im-
plements inChan demultiplexing rules by distributing the
pattern matching functions across the layers of the protocol
stack, while AMP centralizes the demultiplexing function
by constructing and downloading the pattern into the ker-
nel. The Scout implementation allows individual system
modules a great deal of
exibility, while the AMP imple-
mentation facilitates the imposition of higher-level security
policy by checking inChan demultiplexing �lters for confor-
mance with the policy before they are downloaded into the
kernel.

With the memory pool abstraction, the central imple-
mentation issue hinges on how to treat an EE's internal use
of memory, versus the memory used by the NodeOS while
performing an operation on behalf on a domain. Here,
Moab assigns a single mempool to the entire JanosVM,
and relies on the speci�c properties of that closely-coupled
virtual machine to limit the memory used by individual do-
mains within the EE. Most of the remaining work involves
restructuring the memory allocation mechanisms below the
Moab kernel interfaces to properly associate memory use
with domains. AMP, on the other hand, has the goal of
supporting EEs using di�erent language technologies. As-
sociating memory usage by speci�c domain is diÆcult, and
requires modi�cation of the EE implementations to create
and manage mempools corresponding to separate virtual
address spaces with both shared and private page ranges.
As a simple step toward this goal, AMP includes a shared-

14

memory abstraction that supports the inclusion of a set
of physical pages into multiple virtual address spaces. Be-
low the NodeOS interface, AMP has a relatively easy way
to track memory. Because each domain has an assigned
CAP, and every memory allocation operation requires that
a CAP be provided, individual domain usage can be di-
rectly tracked.

VIII. Related Work

The �rst known active network, Softnet[33], imple-
mented a programmable packet radio network in 1983. It
built upon what one could call the �rst NodeOS/EE, a
Forth environment called MFORTH [32]. This environ-
ment is consistent with the contemporary pattern of using
special languages to program the network.
A more recent system, RCANE [19], de�nes a resource

controlled framework for active network services. It sup-
ports the OCaml programming language [23], is imple-
mented on the Nemesis operating system [17], and is in-
teroperable with PLAN [11]. RCANE supports resource
reservations for network bandwidth, memory use and com-
putation, much like the NodeOS. The primary di�erence
between RCANE and the NodeOS is the NodeOS's
ex-
ible communication abstraction. RCANE uses Nemesis's
network, and allows only link layer communication, while
the NodeOS allows any supported protocol to be used.
(RCANE's link layer may be a virtual network imple-
mented on top of UDP; nevertheless, RCANE does not
allow the
exibility that the NodeOS provides.) Other dif-
ferences include RCANE's reliance on a safe language to
guarantee security.
Three recent router implementations|SuezOS [22],

Click [15], and Router Plugins [7]|allow some degree of ex-
tensibility. In each system, router functionality can be ex-
tended by con�guring safe extensions into the kernel. This
is similar to the use of system modules to extend the for-
warding paths in the Scout kernel. In contrast, the NodeOS
separates the core OS from the EE, thereby allowing dif-
ferent EEs to safely implement di�erent programming en-
vironments on the same router.
Bowman[20], which runs on top of Solaris, was the �rst

NodeOS that targeted the same community-developed ac-
tive network and NodeOS architectures that we target.
Bowman was developed in the early days of the speci�-
cation, and therefore implements a subset of the interface.
It also does not provide resource controls since it runs on
a generic Unix substrate.

IX. Conclusion

We have described an interface that allows active ap-
plications to access the resources available on an active
router, and reported our experiences implementing the in-
terface using three di�erent operating systems. The in-
terface is novel in how it is optimized to support packet
forwarding, allows for �ne-grain resource managment, and
supports secure extensions. The three implementations not
only demonstrate the feasibility of the interface, but per-
haps more importantly, they also strongly in
uenced the

design of the interface in the �rst place.

Acknowlegements

We are indebted to the many members of the active
network community who contributed to the collaborative
design e�ort that resulted in the DARPA active network
architectural documents. We are grateful to the anony-
mous reviewers and our shepherd, David Wetherall, for
their many helpful comments.

References

[1] Active Network NodeOS Working Group. NodeOS interface
speci�cation. Available as http://www.cs.princeton.edu/nsg/-
papers/nodeos.ps, January 2000.

[2] Active Network Working Group. Architectural framework
for active networks, version 1.0. Available from http://-
www.darpa.mil/ito/research/anets/Arcdocs.html, July 1999.

[3] D. Scott Alexander, Marianne Shaw, Scott M. Nettles, and
Jonathan M. Smith. Active bridging. In Proceedings of the ACM
SIGCOMM '97 Conference, pages 101{111, September 1997.

[4] Gaurav Banga, Peter Druschel, and Je�rey Mogul. Resource
containers: A new facility for resource management in server
systems. In Proceedings of the 3rd Symp. on Operating System
Design and Impl., pages 45{58, February 1999.

[5] Samrat Bhattacharjee, Ken Calvert, and Ellen Zegura. Conges-
tion control and caching in CANES. In ICC '98, 1998.

[6] David Clark. The design philosophy of the DARPA Internet
protocols. In Proceedings of the SIGCOMM '88 Symposium,
pages 106{114, August 1988.

[7] Dan Decasper, Zubin Dittia, Guru Parulkar, and Bernhard Plat-
tner. Router plugins: A software architecture for next generation
routers. In Proceedings of the ACM SIGCOMM '98 Conference,
pages 229{240, September 1998.

[8] Flux Research Group, University of Utah. University of Utah
Network Testbed and Emulation Facility Web site. http://-
www.emulab.net/ and http://www.cs.utah.edu/
ux/testbed/.

[9] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert
Lin, and Olin Shivers. The Flux OSKit: A substrate for OS and
language research. In Proceedings of the 16th ACM Symp. on
Operating Systems Principles, pages 38{51, St. Malo, France,
October 1997.

[10] John Hartman, Larry Peterson, Andy Bavier, Peter Bigot,
Patrick Bridges, Brady Montz, Rob Piltz, Todd Proebsting,
and Oliver Spatscheck. Experiences building a communication-
oriented JavaOS. Software|Practice & Experience, 2000.

[11] Michael Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A.
Gunter, and Scott Nettles. PLAN: A packet language for ac-
tive networks. In ICFP 98, pages 86{93, September 1998.

[12] IEEE P1520 Working Group. IEEE P1520: Proposed IEEE
standard for application programming interfaces for networks {
web site. http://www.ieee-pin.org/.

[13] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Hec-
tor Briceno, Russell Hunt, David Mazieres, Thomas Pinckney,
Robert Grimm, John Jannotti, and Kenneth Mackenzie. Ap-
plication performance and
exibility on exokernel systems. In
Proceedings of the 16th ACM Symp. on Operating Systems Prin-
ciples, pages 52{65, St. Malo, France, October 1997.

[14] Scott Karlin and Larry Peterson. VERA: An extensible router
architecture. In IEEE OPENARCH 01, Anchorage, AK, April
2001.

[15] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and
M. Frans Kaashoek. The Click modular router. ACM Transac-
tions on Computer Systems, 18(4), November 2000.

[16] Tal Lavian, Robert Jaegeer, and Je�rey Hollingsworth. Open
programmable architecture for java-enabled network devices. In
Proc. of the Seventh IEEE Workshop on Hot Interconnects,
Stanford University, CA, August 1999.

[17] I. M. Leslie, D. McAuley, R. J. Black, T. Roscoe, P. R. Barham,
D. M. Evers, R. Fairbairns, and E. A. Hyden. The design and
implementation of an operating system to support distributed
multimedia applications. IEEE Journal on Selected Areas in
Communications, 14(7):1280{1297, September 1996.

[18] Jochen Liedtke. Improving IPC by kernel design. In Proceedings
of the 14th ACM Symp. on Operating Systems Principles, pages
175{187, Asheville, NC, December 1993.

15

[19] Paul Menage. RCANE: A Resource Controlled Framework for
Active Network Services. In Proceedings of the First Int. Work-
ing Conf. on Active Networks, volume 1653 of Lect. Notes in
Comp. Sci., pages 25{36. Springer-Verlag, July 1999.

[20] S. Merugu, S. Bhattacharjee, E. Zegura, and K. Calvert. Bow-
man: A node OS for active networks. In Proceedings of the 2000
IEEE INFOCOM, Tel-Aviv, Israel, March 2000.

[21] David Mosberger and Larry L. Peterson. Making paths explicit
in the Scout operating system. In Proceedings of the 2nd Symp.
on Operating System Design and Impl., pages 153{167, October
1996.

[22] Prashant Pradhan and Tzi-Cker Chiueh. Computation frame-
work for an extensible network router: Design, implementation
and evaluation. SUNY Stony Brook ECSL TR, 2000.

[23] Projet Cristal. The Caml language. URL:
http://pauillac.inria.fr/caml/index-eng.html, 2000.

[24] Jonathan M. Smith, Kenneth L. Calvert, Sandra L. Murphy,
Hilarie K. Orman, and Larry L. Peterson. Activating networks:
A progress report. IEEE Computer, 32(4):32{41, April 1999.

[25] Oliver Spatscheck and Larry Peterson. Defending against denial
of service attacks in Scout. In Proceedings of the 3rd Symp.
on Operating System Design and Impl., pages 59{72, February
1999.

[26] David Tennenhouse and David Wetherall. Towards an active
network architecture. InMultimedia Computing and Networking
96, January 1996.

[27] Patrick Tullmann, Mike Hibler, and Jay Lepreau. Janos: A
Java-oriented OS for active network nodes. In IEEE Journal on
Selected Areas in Communications, Active and Programmable
Networks, 2001.

[28] Carl A. Waldspurger. Lottery and Stride Scheduling: Flexible
Proportional-Share Resource Management. PhD thesis, Mas-
sachusetts Institute of Technology, September 1995.

[29] David Wetherall. Active network vision and reality: lessons from
a capsule-based system. In Proceedings of the 17th Symp. on
Operating Systems Principles, pages 64{79, December 1999.

[30] David Wetherall, John Guttag, and David Tennenhouse. ANTS:
A toolkit for building and dynamically deploying network proto-
cols. In IEEE OPENARCH 98, San Francisco, CA, April 1998.

[31] Tim Wilkinson. Ka�e|a virtual machine to compile and inter-
pret Java bytecodes. http://www.transvirtual.com/ka�e.html.

[32] J. Zander. MFORTH { programmer's manual. Technical Report
LiTH-ISY-I-0660, Linkvping University, Dept of EE, April 1984.

[33] J. Zander and R. Forchheimer. Softnet { An approach to high
level packet communication. In Proc. Second ARRL Amateur
Radio Computer Networking Conference (AMRAD), San Fran-
cisco, CA, March 1983.

[34] Lixia Zhang, Steve Deering, Debra Estrin, Scott Schenker, and
D. Zappala. RSVP: A new resource reservation protocol. IEEE
Network, 7(9):8{18, September 1993.

Larry Peterson (SM'95) received the B.S. degree in computer sci-
ence from Kearney State College in 1979, and the M.S. and Ph.D. de-
grees in computer science from Purdue University in 1982 and 1985,
respectively. He is a Professor of Computer Science at Princeton Uni-
versity. His research focuses on end-to-end issues related to computer
networks, he has been involved in the design and implementation of
x-kernel and Scout operating systems, and he is a co-author of the
textbook Computer Networks: A Systems Approach. Dr. Peterson is
the Editor-in-Chief of the ACM Transactions on Computer Systems,
has been on the editorial boards for IEEE/ACM Transactions on
Networking and the IEEE Journal on Selected Areas in Communica-
tion, and has served on program committees for SOSP, SIGCOMM,
OSDI, and ASPLOS. He is also a member of the Internet's End-to-
End research group, and a fellow of the ACM.

Yitzchak Gottlieb received a Sc.B. in Applied Mathematics{
Computer Science from Brown University in 1998. He is currently
a graduate student in Computer Science at Princeton University.

Mike Hibler received B.S. (1980) and M.S. (1983) degrees in com-
puter science from New Mexico Tech. He is a research sta� member
with the Flux research group in the School of Computing at the Uni-
versity of Utah. His research interest is operating system design and
implementation including virtual memory systems, network support
and security. He was a major contributor to the original BSD project
and has been involved with the design and implementation of the
Mach4, Fluke and Moab research operating systems. He is arguably
the best known computer science researcher from Truth or Conse-
quences, New Mexico, lives in Utah despite the snow, and is an avid
mountain biker.

Patrick Tullmann received the B.S. degree in computer science
from the University of Vermont in 1995 and the M.S. degree in com-
puter science from the University of Utah in 1999. He is a research
associate in the Flux research group in the School of Computing at
the University of Utah. His research interests lie at the intersection
of operating systems and high-level languages, and he has worked on
the Fluke, Alta, and Moab operating systems in the Flux research
group. He is a member of the Usenix Association.

Jay Lepreau heads the Flux Research Group at the University of
Utah's School of Computing. He has interests in many areas of soft-
ware systems, most of them originating in operating systems issues,
although many go far a�eld. Those disparate areas include infor-
mation and resource security, networking, programming and non-
traditional languages, compilers, component-based systems, and even
a pinch of software engineering and formal methods. In 1994 he
founded the highly successful and prestigious OSDI conference series,
one of the two premier OS conferences. His current service e�orts are
focused on developing a large-scale, recon�gurable, network emula-
tion testbed that is universally available to remote researchers.

Stephen Schwab received a B.S. degree in EECS from U.C. Berke-
ley in 1987, and a M.S. degree in computer science from Carnegie
Mellon University in 1990. He is a senior research scientist at NAI
Labs, the security research division of Network Associates, Inc., where
he manages projects investigating high-speed �rewall technology and
active networking. He has been involved in the development and ap-
plication of technology in the areas of operating systems, security,
high-performance networking and parallel computing, and is a mem-
ber of the ACM.

Hrishikesh Dandekar received the B.S degree in computer engi-
neering from the University of Pune, India in 1996 and the M.S. in
computer science from the University of Southern California in 1998.
He is currently a research scientist at NAI Labs, the security research
division of Network Associates, Inc., where he has been involved in
implementing the NodeOS interface for active routers using the ex-
okernel system. His research interests are in the areas of computer
networking and operating systems.

Andrew Purtell is a research engineer at NAI Labs, the security
research division of Network Associates, Inc., where he has developed
high-speed �rewall and active network prototypes. His research inter-
ests lie at the intersection of programming language technology and
embedded operating systems. He is a member of the ACM.

John Hartman (M'95) received the Sc.B. degree in computer science
from Brown University in 1987, and the M.S. and Ph.D. degrees in
computer science from the University of California, Berkeley, in 1990
and 1994, respectively. He has been an Assistant Professor in the
Department of Computer Science, University of Arizona since 1995.
His research interests include distributed systems, operating systems,
and �le systems. Dr. Hartman is a member of the ACM.

