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ABSTRACT

The ability of active networks technology to allow customized router com-

putation critically depends on having resource control techniques that prevent

buggy, malicious, or greedy code from affecting the integrity or availability of the

router’s resources. It is hard to choose between static and dynamic checking for

resource control. Dynamic checking has the advantage of basing its decisions on

precise real-time information about what the extension is doing but causes runtime

overhead and asynchronous termination. Static checking, on the other hand, has

the advantage of avoiding asynchronous termination and runtime overhead, but

is overly conservative. This thesis presents a hybrid solution: static checking is

used to reject extremely resource-greedy code from the kernel fast path, while

dynamic checking is used to enforce overall resource control. The hybrid solution

uses a restricted programming model that guarantees termination. It leverages

the termination guarantee to reduce the overhead of runtime checks and to avoid

asynchronous termination.

This thesis also presents a design and initial implementation of the key parts of

the hybrid resource control technique in a router toolkit called rbclick. rbclick is

an extension of the Click modular router toolkit, customized for active networking

in Janos, an active network operating system. Untrusted extension code is written

in a resource-bounded version of Cyclone, a type-safe version of C. rbclick would

allow users to download new router extensions directly into the Janos kernel. The

thesis shows, by presenting an analysis of existing and new extensions, that hybrid

resource control can be successfully applied to many classes of extensions. Further,

as compared to the dynamic resource control in Janos, the hybrid solution can

improve the performance of router extensions by up to a factor of two.
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CHAPTER 1

INTRODUCTION

Active network technology allows users of a network to customize the compu-

tation performed at routers using mobile code. Users run mobile code either by

including it in each data packet or by installing it ahead-of-time. This flexibility

of dynamically adding packet processing code to routers comes with risks. User-

supplied code can be buggy or malicious, and by consuming excessive resources can

harm the active router, other active services on the router, or the network itself.

Therefore, it is important to limit the resources available to active code.

This thesis addresses the issue of resource control of active extensions in discrete

or control-plane active networking [31]. Active extensions are loaded into the active

router via a separate control channel and then invoked by examining the headers

of data packets. More specifically, we are interested in developing an architecture

that allows a rich set of active extensions to be installed in the kernel of an active

node operating system. We call these extensions fast-path extensions because they

extend the functionality of an OS’s routing fast-path. For example, an extension

implementing application-level gateway functionality could be installed into the

kernel to process packets at high speed, provided the protection and resource control

challenges were met.

Most existing systems take one of two approaches to control the resources

consumed by active code: sandboxing or static analysis. In sandboxing, active

code is run in a resource-limited, preemptive environment and runtime checks

are performed to monitor its resource usage. On detection of misbehavior, the

active code is asynchronously terminated. Asynchronous termination can affect
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the integrity of data structures shared by multiple extensions. The costs to build

such a preemptive environment are high, as shown in this thesis.

Static analysis, on the other hand, avoids runtime checks and asynchronous

termination by statically verifying that active code does not consume excessive

resources. However, static analysis is often conservative and overestimates applica-

tions’ resource requirements. Difficulties in modeling complex features of modern

computers, such as cache hierarchy, and multiple instruction issue also add to the

degree of overestimation. In our measurements, ignoring the effects of caching

alone can cause static analysis of x86 assembly code to be overestimated by up to

a factor of 50. Therefore, it is hard to choose between the two; sandboxing incurs

runtime overhead and causes asynchronous termination, while static analysis is very

conservative.

This thesis proposes hybrid resource control, a resource control mechanism that

uses a combination of static analysis and runtime accounting. Static analysis

techniques, combined with realistic assumptions about a program’s cache behavior,

are used to statically predict resource upper bounds of active code. These resource

bounds are then used to control admission to a nonpreemptive and lightly protected

kernel execution environment, prevent the extensions from running too long, and

reduce the overhead of runtime checks. At the same time, precise runtime account-

ing is used to overcome the restrictions due to the pessimism of static analysis and

admit more extensions than otherwise allowed. The resource control technique is

termed “hybrid” because of the combination of dynamic and static methods.

We have developed a prototype of the key parts of the hybrid resource con-

trol technique in an environment for active extensions, called RBClick, “Resource

Bounded Click.” rbclick is an extension of the Click modular router toolkit [19],

implemented in Janos, an active network operating system [32] that was originally

designed to achieve resource control only through sandboxing. Active extensions in

rbclick are Click graphs involving both trusted and untrusted elements. Trusted

elements are taken from a base version of Click, while untrusted elements are

written in rbcyclone, a resource-bounded variant of Cyclone [16] that is a type-safe
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version of C. rbclick estimates resource bounds on active extensions and acceptable

extensions are then loaded into the Janos kernel.

This thesis evaluates hybrid resource control along two dimensions: feasibility

and performance. To assess the former, we present an analysis of a Click release

and find that acceptably flexible versions of all of its elements can be written

with the resource bounding restrictions of rbcyclone. Further, these elements

can be successfully analyzed using our prototype static analysis tool. To estimate

the performance improvement from reducing the overhead of runtime checks, we

compare hybrid resource control with dynamic resource control in Janos. In Janos,

rbclick extensions can benefit by up to a factor of two in IP forwarding rate by

using hybrid resource control instead of the sandboxing techniques currently being

used.

The contributions of this thesis are:

• The hybrid resource control technique that uses a combination and static

analysis and runtime checking to efficiently control the resources of untrusted

mobile code.

• The design of rbclick, an extensible modular router toolkit based on Click,

that would allow users to download untrusted extensions in the Janos kernel.

rbclick uses hybrid resource control to control the CPU resource of active

extensions.

• An evaluation of the feasibility and potential performance benefits of hybrid

resource control using a prototype implementation of rbclick.

The rest of this thesis is organized as follows. Chapter 2 provides some back-

ground on three existing technologies that are leveraged by this thesis: Click,

Cyclone, and Janos. Chapter 2 also details the the overhead of resource controls in

Janos and motivates rbclick. Chapter 3 discusses the mechanisms used by hybrid

resource control and lays out their rationale. Chapter 4 details the design of rbclick

and its companion tools, rbcyclone and cat. Chapter 5 evaluates the feasibility

and potential performance benefits of hybrid resource control using a prototype
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implementation of rbclick, rbcyclone and cat. Chapter 6 relates hybrid resource

control and its implementation with previous work, and finally, Chapter 7 concludes

this thesis and discusses some future directions for this work.



CHAPTER 2

BACKGROUND

2.1 Software Systems

This section presents some background on three existing technologies from

networking, languages, and operating systems domains that come together in this

thesis: Click [22], Cyclone [16], and Janos [32]. Readers familiar with these tech-

nologies can skip this section.

2.1.1 Click

Click [19, 22, 18] is a router toolkit for developing modular, extensible, and

yet low overhead routers. Routers in Click are built from modular software com-

ponents called elements, written in C++. A Click router configuration is a set of

elements connected in a directed graph, which is specified in the Click configuration

language. The edges of a Click graph indicate possible directions for packet flow.

By convention, Click elements perform small, general functions, such as decrement

time-to-live (ttl) field in an IP packet or classify a packet based on its contents,

and not complicated, specialized functions, such as “IP routing”. Figure 2.1 shows

an example Click graph. The graph shows four elements: a FromDevice element

that reads packets from the network, a Classifier element that filters packets

based on some user-specified criteria, a Sink element that destroys all packets, and

a ToDevice element that sends packets on the network.

By convention, a Click element has a very well-defined and limited interface.

This limited interface constrains how elements interact with each other—an element

makes only packet send and receive calls on its neighboring elements. These

standard practices, combined with the domain-specific Click specification language,

enable automatic analysis and editing of Click routers. For example, Click software
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ToDevice

FromDevice Classifier

Sink

Figure 2.1. An example Click configuration with four elements.

comes with tools that reorganize elements in a Click configuration for optimizations

and tools that enforces high-level Click invariants. In Chapter 4, we discuss how

we use automatic analysis of Click configurations to enforce resource-boundedness

on routers.

Click ships with many router extensions. We worked with Click version 1.2.1,

which contains about 234 elements that can be combined in many different ways

to form new routers. Many of these extensions are contributed by users of Click

in different universities and organizations. Therefore, these extensions, to some

extent, represent typical router extensions that users care about and provide us

with a useful base to work with.

2.1.2 Cyclone

Cyclone [16] is a type-safe language that is syntactically similar to C. In addition

to its type-safety, Cyclone has the following features that make it more suitable for

interfacing with C-based environments than other high-level safe languages, such

as Java.

1. Compatibility with C. Cyclone and C have the same calling conventions

and data representation for most data-types. Therefore, it is easy and efficient

to transfer data between C and Cyclone programs—most data structures

can be safely shared between C and Cyclone by passing pointers instead of

copying data. However, some data structures still need marshaling because

Cyclone has a different (fatter) representation of pointers that support pointer

arithmetic.
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2. Region-based memory management. Cyclone provides support for region-

based, manual memory management, which makes it easy to provide memory

safety without incurring the cost of garbage collection (GC) [13]. (By mem-

ory safety, we refer to avoidance of nontype-safe and unauthorized memory

accesses.) In region-based memory management, each object lives in a region

and, except a designated heap region that may be garbage collected, all

objects in a region are deallocated simultaneously.

Cyclone has three types of regions: heap region, stack region, and dynamic

region. There is only one global heap region. All static objects are auto-

matically created in the heap and users can explicitly allocate objects on

the heap with malloc and new primitives. However, to preserve memory

safety, Cyclone does not provide a free primitive. The objects allocated on

the heap can only be reclaimed at program termination or using an optional

garbage collector. Stack regions correspond to C’s local declaration blocks.

A stack region’s lifetime begins and ends when the control enters and leaves

the corresponding declaration block. Dynamic regions, in contrast to heap

and stack regions have completely dynamic lifetimes. A dynamic region can

be created and destroyed anywhere in the program controlling the lifetime of

objects allocated in these regions. In that sense, dynamic regions are similar

to memory areas managed by malloc and free primitives in the C language.

These three types of regions provide sufficient flexibility and control over

memory management in a Cyclone program.

3. Lightweight runtime. Cyclone language has a much smaller runtime com-

pared to other high-level languages, such as Java. It is easily portable to a

kernel, as it does not require a full C library. In addition, the Cyclone runtime

does not depend on any heavy-weight mechanisms; for example, the garbage

collector is optional. We were able to port the Cyclone runtime, excluding

the support for garbage collection, to the Janos [32] kernel without much

problems.
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2.1.3 Janos

The active networking community has agreed on a three-layer general architec-

ture of an active node [28, 26, 1], as shown in Figure 2.2. At the lowest layer is a

node operating system, or NodeOS, that manages the resources available on a node

and provides primitives for resource management. At the middle-layer, one or more

execution environments (EE) provide a programming environment and runtime for

active applications. At the topmost layer are the active applications themselves.

Janos [32] is an active network operating system that implements both the

NodeOS and EE layers of an active node. Figure 2.3 shows a block diagram of the

software layers in Janos and their correspondence with the darpa active network

node architecture. Janos supports Java-based active applications on top of the Bees

execution environment, a successor of the ANTS EE [36], which runs on top of the

resource controlling jvm, called JanosVM. Together, Bees and JanosVM form the

EE layer of an active node and run on top of Moab, the NodeOS in Janos. Moab

is an active-node operating system based on the OSKit [10] and it implements the

active networks community standard, the NodeOS API specification [1].

2.2 Overhead of Resource Controls in Janos

In this section, we examine the performance of packet forwarders at different

execution levels in Janos and point out the resource control overheads in Moab that

motivate our work. Figure 2.4 illustrates these execution levels. At the topmost

Execution Environments (EEs)

Active Applications (AAs)

EE2EE1

AA1 AA2 AA3

Node Operating System (NodeOS)

Figure 2.2. darpa active network node architecture.



9

AA3 AA4AA1

OSKit
Moab

Environment  

Active

(AAs)
Applications  AA2

}
}

NodeOS}

Execution

(EE)Janos Virtual Machine

Bees

Janos Java NodeOS Bindings

Figure 2.3. Software architecture of Janos and the corresponding darpa active
network node architecture.

NodeOS User−level 

In−kernel

Bees Exection Environment

Moab NodeOS Implementation

Bees

Figure 2.4. The three execution levels in Janos.

level, the Bees execution environment runs untrusted active applications written in

Java. At the next lower level, Moab runs C-based trusted applications or memory-

safe untrusted applications written to the NodeOS API. At the lowest level, trusted

packet forwarders run directly inside the Moab kernel.

The performance of Bees-based active applications was compared with C-based

user-level applications by the authors of Bees [29]. The authors implemented a
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simple UDP packet relay program at various execution levels in Bees and at Linux

user-level. The UDP relay program was a null forwarder—it received and sent

packets as fast as it could without looking at or modifying them in any way. The

Bees-based packet forwarder performed five times slower than the C-based packet

forwarder.

There are many reasons for this performance gap between Bees and C. First,

the cost of boundary crossing between C and Java is high. Packets need to be

marshaled into proper Java objects before they can be processed by Bees-based

applications. Second, the Bees environment incurs costs for resource control and

security mechanisms that provide support for general-purpose active programs.

The active applications in Bees run twice as slow as normal Java programs in the

JanosVM. The JNodeOS layer that implements the NodeOS API specification and

the Bees layer that implements the security checks in Java (see Section 2.1.3) are

the major causes for this performance slowdown. Third, the Kaffe JVM, on which

the JanosVM is based, is not as optimized as commercial JVMs [3]. Finally, Java

programs are inherently slower than C programs due to the cost of interpretation

and type-safety checks. All these costs add up and slow down Java-based active

applications by a factor of 5 as compared to their C-based counterparts [29].

The huge slowdown of Bees programs, as compared to C programs, seems

overkill for active applications that add little computation to vanilla IP forwarding.

Moab provides resource control support at a much lower level than Bees. How-

ever, it does not provide any type of memory safety, and therefore, only active

applications written in safe language can be run directly on top of Moab. Cyclone

fits this requirement and is reportedly efficient to interface with C [16]. To test its

performance, we ported Cyclone to Moab and found that a Cyclone implementation

of the UDP relay program performed as well as a C program on Moab. (For a

general performance comparison of C vs. Cyclone programs, refer to [16].)

Using Cyclone on Moab, we can offset a significant amount of overhead due to

the many layers that constitute the Bees EE. However, further experiments with

a complex program show that even Moab’s native resource control mechanisms
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are quite expensive compared to the computation time of vanilla IP forwarding.

To estimate the cost of Moab’s native resource control mechanisms, we executed

a minimal IP router program, called ip−−, on both sides of Moab’s user-kernel

boundary.

The ip−− forwarding rates inside and outside Moab are shown in Table 2.1.

Note that Moab does not implement any type of memory safety. Therefore, the

performance difference between user-level and in-kernel executions is entirely due to

resource control checks. Table 2.1 shows that Moab’s resource control mechanisms

cause about 42% performance slowdown. On further investigation, we found that

40% of this total slowdown is due to preemptive scheduling mechanisms in Moab.

Moab controls the CPU consumption of active applications by running each appli-

cation in its own preemptive threads. This mechanism results in a thread context

switch whenever an extension is scheduled or descheduled. Figure 2.5 illustrates

these context switches. The remaining 60% of the overhead in ip−− is due to

checks performed at the Moab user-kernel boundary. Moab tries to avoid packet

drops due to long running extensions by polling the network interfaces at the entry

point of its system calls. Note that the overhead due to system calls depends on

the number of system calls made by an extension.

Simple calculations show that Moab’s preemptive scheduling-based resource

control mechanism is an unnecessary overhead for well-behaved extensions. The

Moab kernel runs at a clock granularity of 0.01 sec. The processing time for a single

packet in ip−− forwarding program is about 9 µsec. This implies that for most

extensions the thread running the packet processing function finishes execution

before it can be preempted. Thus, if the system knows that the upper bound

on execution time of a packet processing function is much lower than the timer

Table 2.1. ip−− forwarding rates inside and outside Moab.

Environment Forwarding rate (Kpps)
Moab user-level 67
Moab in-kernel 115
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Figure 2.5. Hand-off of packets between the system thread and user-level threads
at the Moab user-kernel resource control boundary.

granularity, it can execute that function in the system thread itself and save two

context switches per packet. A similar reasoning implies that polling at the system

call boundary is also unnecessary overhead and it can be avoided if upper bounds

on execution time of packet processing functions are known in advance.

This thesis aims to lower the overhead due to resource control of fast active

extensions by predicting the execution time of extensions prior to loading them;

and performing minimal resource control checks during their execution. Although

we use Janos as our motivating example and later as a platform for evaluation, the

general principles of our solution should also apply to other untrusted mobile code

based systems.

Dynamically controlling the consumption of two other important active node

resources—outgoing network bandwidth and memory—does not require expensive

runtime checks. Outgoing network bandwidth is controlled by a low-overhead,

proportional-share link scheduler. Controlling the memory only requires one check

during memory allocation and one additional instruction during memory dealloca-

tion. Since the cost of these additional checks is not significant, we do not change

the way these resources are controlled in Moab and focus on the CPU.



CHAPTER 3

HYBRID RESOURCE CONTROL

Hybrid resource control is a technique for efficiently controlling the resources

consumed by untrusted active extensions. In this chapter, we discuss the general

mechanisms involved in implementing it. Hybrid resource control is designed for

fast-path extensions that operate on almost every packet of an end-to-end flow, such

as a network-address translator (NAT) or an application-level gateway (ALG).

3.1 Overview

Hybrid resource control employs two key mechanisms: static analysis and run-

time accounting. In this thesis, static analysis is used to infer soft upper bounds on

resources required to process a single packet using an extension. Extensions that

are estimated to consume resources within some acceptable limits are admitted and

allowed to run nonpreemptively. However, static resource analysis often overes-

timates resource requirements—sometimes by an order of magnitude. Therefore,

completely relying on soft upper bounds for admission can be very constraining,

i.e., the system will reject extensions that would actually consume resources within

the acceptable limits.

To overcome the limitations due to static analysis, the system conditionally

admits all extensions whose estimated resource bounds fall within inflated limits.

The inflated limits are calculated by multiplying the acceptable limits by an in-

flation factor. The system then ensures that the actual resource consumption of

each admitted extension is within the acceptable limits by performing inexpensive

runtime accounting to detect extensions that consume excessive resources. Thus,

by using a combination of static and dynamic checking, hybrid resource control
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enforces a soft upper limit on resource consumption without relying on expensive

mechanisms such as preemptive scheduling.

Figure 3.1 illustrates the above discussed high-level algorithm of hybrid resource

control. First, the system obtains the source code of an extension to be loaded.

The source code is analyzed and its resource upper bounds are estimated. Next,

the resource upper bounds are checked against the inflated resource limits. If the

extension passes this check, it is loaded into the system, or else it is rejected. The

YES

YESNO

NO

Reject extension

Runtime

Pre−loading

Get Extension
Code

Run & measure resource usage

Estimate Resource Bounds

Exceeds inflated limits?

Exceeds acceptable limits?

Unload extension

Figure 3.1. High-level algorithm of the Hybrid Resource Control technique.
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resource usage of all running extensions is continuously measured and compared

against the acceptable resource limits. If an extension consistently violates the

acceptable limits, it is unloaded as soon as it becomes idle.

The next two sections discuss static analysis and runtime accounting in more

detail. The following two sections discuss rules of thumb to choose the acceptable

limits and an inflation factor for a router. Finally, the last section of this chapter

describes poll points, a mechanism that provides flexibility in using hybrid resource

control.

3.2 Static Analysis

As discussed in the previous chapter, 40% of the cost of resource control is due

to preemptive scheduling. The goal of hybrid resource control is to prevent this

cost by running extensions in a nonpreemptive environment while still enforcing

an upper bound on their resource consumption. To achieve this, hybrid resource

control uses static analysis to automatically estimate upper bounds on resources

required to process a packet using an extension.

The halting problem prevents us from successfully analyzing all programs writ-

ten in a general-purpose programming language. To determine the potential of

using static analysis for typical fast-path extensions, we manually studied the

source code of extensions that ship with Click. The results are presented in

Appendix A. This study found that all loops in the code of Click extensions

can be bound to statically known quantities, such as the maximum size of an

Ethernet packet, or the maximum size of a particular protocol header. Further, the

total amount of resources consumed by these extensions is also bounded. These

results lead us to conclude that these extensions can be easily programmed in a

restricted programming language that allows only resource-bounded programs, such

as PLAN [15] and SNAP [21]1.

1Note that we cannot directly use PLAN or SNAP to write Click-like router extensions because
these languages were primarily designed to replace packet headers and hence lack support for
global or persistent memory.
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Programs written in a resource-bounded language can be successfully analyzed

using static code analysis techniques. For example, techniques similar to those

used for worst-case execution time (WCET) analysis can be used to estimate upper

bounds on execution time. Hybrid resource control leverages on this property of

resource bounded languages and requires that an untrusted extension be written

in a resource-bounded language. As shown by our study of Click elements, this

requirement is not too constraining for typical router extensions.

Static analysis, even when performed on low-level assembly code, is very con-

servative due to two reasons. First, complex features of modern hardware, such as

multiple pipelines, caching, branch prediction, etc., are extremely hard to model

accurately and are therefore ignored by conservative static analysis. Second, static

analysis cannot know the input data and hence the exact codepath taken at runtime.

Therefore, it always assumes the worst-case codepath and estimates much more

than the average resource usage of a program.

In our measurements of a Click extension on an Intel Pentium III 850 MHz ma-

chine, ignoring the effects of caching alone causes static analysis to be conservative

by up to an additional factor of 50. This large factor can be easily understood

by looking at the memory access latencies of this machine, as shown in Table 3.1.

The table was obtained using the HBench benchmarking tool [7] and it shows the

memory read times for all elements of the memory hierarchy. Memory write time

for the main memory is about 200 cycles or 33% more than the memory read time.

If static analysis assumes all memory accesses to miss the cache hierarchy, it ends

up with up to a factor of 75 overestimation for each memory instruction.

Table 3.1. Memory access latencies for a Pentium III 850 MHz machine.

Memory Element Size Read Latency
L1 Cache 16KB 2.4 ns (2.0 cycles)
L2 Cache 256KB 7.1 ns (6.0 cycles)
DRAM 512MB 174.3 ns (148.7 cycles)
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Static analysis in hybrid resource control avoids a significant amount of overesti-

mation by making realistic assumptions about the cache behavior of an extension. A

Click router that only accesses protocol headers of a packet, incurs only five level-2

data and instruction cache misses [18]. These cache misses include the two cache

misses to access the DMA descriptors at the input and output device. Even for

extensions that access the complete payload of a packet, the number of cache misses

is very small due to large cache line sizes (eight machine words in our setup) and

compiler-driven prefetching. However, since the active code can perform arbitrary

memory accesses, hybrid resource control cannot assume Click-like cache behavior

from all extensions. Instead, it takes advantage of the fact that the worst-case

memory access time of an extension can be limited by limiting the size of its working

set.

To illustrate that the above is true for arbitrary code, let us look at Figure 3.2.

The figure shows the results from a memory latency benchmark, called mbench, that

makes a large number of strided accesses in a given working set. The graph plots

the working set size of the program on the x-axis, versus the average number of

cycles required for each write on the y-axis. Both axes are drawn in log scale. The

benchmark was executed on an Intel Pentium III 850 MHz machine that had 16KB

of L1 and 256 KB of L2 cache and L1 and L2 cache line sizes of 4 and 8 machine

words respectively. Experiments with stride values of 8 and higher generate a worst-

case memory access pattern for access latency because each successive memory

access falls on a different L2 cache line. The results clearly show that if the working

set of a program is restricted to the size of the L2 cache, even the worst-case memory

access pattern will get an average memory latency of less than 10 cycles.

Hybrid resource control limits the size of the working set of an extension by

limiting the amount of memory available to it. It then assumes that even in the

worst-case scenario the active code’s average memory access time will be less than

that shown by mbench for the corresponding working set size. This reduces the

amount of overestimation by static analysis.
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Figure 3.2. Results of a memory latency benchmark on an Pentium III 850 MHz
machine with 16KB L1 and 256 KB L2 cache.

Note that it is possible for a program, whose working set is bound by the size

of the L2 cache to have worse memory access time than that estimated by mbench.

For example, this might happen if a program accesses each cache line only once.

Hence all (or most) accesses would be from the main memory. However, due to the

limited size of the working set, the damage due to such a memory access pattern

would be limited. In other words, the execution time limits calculated by our static

analysis might be violated. Therefore, we call them soft upper limits (as opposed

to more conservative hard upper limits that can never be violated).

Despite making realistic assumptions about cache access, static analysis can

result in a very high percentage of “false-positives.” Since static analysis assumes

the worst-case codepath, the system will overestimate resource bounds and reject

extensions that are actually well-behaved. Hybrid resource control counters this by

accepting extensions whose estimated resource bounds fall within “inflated-limits.”

The inflated-limits are calculated by multiplying the acceptable-limits with a pre-
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determined constant, called “the inflation factor.” However, the system ensures that

the actual resource consumption of each admitted extension is within the acceptable

limits by performing runtime resource accounting. Later in this chapter, we discuss

how to choose a suitable inflation factor.

3.3 Runtime Accounting

The goal of runtime accounting is to ensure that each admitted extension’s

resource consumption is within the acceptable limits of the host environment.

To achieve this goal, resource accounting measures the resources consumed by an

extension for processing each packet. It then detects extensions that consistently

violate the acceptable limits and unloads them. However, the extensions cannot

be terminated asynchronously because of nonpreemptive scheduling. The system

unloads a faulty extension when it is idle. (Note that all extensions terminate

eventually because they are written in a resource-bounded language.)

Runtime accounting checks impose minimal overhead on the normal execution

of extensions. For example, to measure the CPU time taken by an extension, we

need to sample the system timestamp only before and after each invocation of the

extension. In our measurements on a PIII 850 MHz machine, each reading of the

timestamp costs only about 40 nanoseconds.

3.4 The Acceptable Limits

The acceptable limits for CPU usage on a node can be computed based on the

maximum packet arrival rate supported on that node. For example, consider the

simple extensible router shown in Figure 3.3. The router has two nonpreemptively

scheduled extensions connected to 10Mbps full-duplex Ethernet ports on both input

and output ends. A 10Mbps full-duplex Ethernet link has a minimum packet

interarrival gap of 67.2 µsec (based on the fact that 10Mbps Ethernet supports

14,880 minimum-size packets per second [17]). Therefore, to prevent packet drops

at the router input queue, the processing time for a minimum-size packet should

not exceed 67.2 µsec. Similarly, processing of a maximum sized packet (1500 bytes)
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Figure 3.3. A system with two nonpreemptively scheduled extensions.

should not exceed 1.2 milliseconds (813 packets per second). These minimum packet

inter-arrival times can be directly used as the acceptable CPU limits for this simple

router. The calculation of acceptable limits for routers with multiple input/output

queues can be performed by extending the above logic.

3.5 Choosing an Inflation Factor

The goal of hybrid resource control technique is to overcome the inflexibility

of conservative static analysis while minimizing the cost of runtime checks. It

achieves this goal by making realistic assumptions about the cache behavior of

extensions and by inflating the acceptable limits. An inflation factor of N implies

that extensions whose estimated resource bounds are N times greater than the

acceptable limits are admitted into the system. While this decreases the false-

positive rate of the system, unfortunately, it also increases the false-negative rate,

i.e., some malicious or resource greedy extensions may be admitted into the system.

For instance, an extension that always takes the worst-case codepath so that its

actual resource usage is higher than the acceptable limits may be wrongly admitted.

Hybrid resource control allows the users (e.g., node administrators) to limit the

damage due to such false-negatives by choosing a suitable inflation-factor.

A suitable inflation factor for a router can be determined based on its tolerance

to packet drops and the size of the queue at its input port(s). For example, consider

a router that runs only two extensions—one trusted and one untrusted—and whose

input device queue has a capacity of 64 packets. Clearly, to avoid packet drops,

the untrusted extension’s execution time should never exceed the arrival time of 64
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packets, assuming that the extension starts execution on an empty queue. Therefore

for this example, an inflation factor of 64 can tolerate one misbehavior for every

64 input packets, on average, without dropping any packets. Generalizing this rule

of thumb, a system with an inflation factor of N will need M∗N slots in its device

input queue to fully tolerate M back-to-back misbehaviors.

Note that hybrid resource control uses soft upper bounds, which may be vio-

lated in rare cases by malicious extensions. Therefore, even if a system chooses

its inflation-factor as described above, packets may still be dropped at its input

queue. To completely prevent packet drops, a system must calculate hard upper

bounds using static analysis. However, hard upper bounds using static analysis are

often overly conservative, which increases the false-positive rate of the system but

provides increased protection against malicious extensions.

In practice, routers provide only best-effort services and dropping packets is

not catastrophic. Second, a wrongly admitted extension is allowed to misbehave

only once before runtime accounting detects it. Therefore, rarely dropping packets

in favor of a lower false-positive ratio might be the right trade-off. So, a system

may choose to use soft upper bounds and an inflation factor that tolerates very few

misbehaviors.

3.6 Poll Points

The flexibility of the hybrid technique depends on the tightness of resource

bounds: the rejection rate of legitimate code increases with the amount of pessimism

in the estimation of resource bounds. Due to its inherent limitations, static analysis

cannot be tight for all programs. Therefore, it may be desirable to admit code

whose actual resource consumption is within acceptable limits but whose estimated

resource bounds are greater than the inflated limits.

Hybrid resource control may admit such extensions by using internal buffer

queues that are much larger than the device input queues. It inserts poll points

in the extension code and divides the extension code into segments such that the

estimated CPU of each segment is within the inflated limit. If the size of the
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internal buffer queue is N times larger than the device input queue, the system can

admit an extension that can be divided into N “admissible” segments by inserting

N-1 poll points in its code. Of course, the system would still measure the execution

time of the extension at runtime, and would unload it if the sum of the execution

times of all its segments exceeds the acceptable limit.

Figure 3.4 shows the code that executes at a poll point. The system reads the

clock, and if the extension is taking too long to execute, the extension is flagged to

be in violation of the acceptable limit. Further, the network interfaces are polled

and any packets in their input queues are stored in internal buffers to avoid packet

drops. Conceptually, the poll points can be inserted anywhere in the code, for

example, between two basic-blocks or at function entry/exit points. In the common

case, when the extension is within the acceptable limit, the processing overhead of

a poll point is very low. In our experiments on a Pentium III 850 MHz machine,

this overhead is less than 100 nsec. The poll points let us trade off constraints

new_timestamp = poll_timestamp();

if (new_timestamp - begin_timestamp > acceptable_limit) {

/*

* Extension taking too long to execute

*/

current_extension->violations++;

/*

* poll network interfaces

* and store input packets in internal queues

*/

poll_interfaces();

}

Figure 3.4. Code executed at a poll point.
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due to pessimism of resource estimates with the overhead of runtime checks and

internal buffer space.



CHAPTER 4

DESIGN OF RBCLICK

In this chapter, we present the design of Resource Bounded Click (rbclick),

an active network environment for best-effort active extensions that implements

hybrid resource control. To discuss rbclick in terms of established terminology,

we use active networking terminology from the NodeOS specification [1] and Click

terminology as defined in [19].

4.1 Overview

rbclick is an extension of the Click modular router toolkit [19] customized to

support untrusted packet processors on a NodeOS. The rbclick toolkit contains a

trusted base of Click elements. Untrusted users can add more functionality to it by

supplying new elements written in a resource-bounded version of Cyclone, called

rbcyclone (see Section 4.2). An rbclick-based active extension is simply a graph

specified in the Click language that interconnects trusted and untrusted elements.

However, rbclick configurations are resource bounded and therefore cannot have

unbounded loops in them. Instead, users are required to bound loops in rbclick

configurations using a special Loop element that enforces constant loop bounds.

Figure 4.1 shows an example active extension in rbclick. The elements with

filled boxes are untrusted elements supplied by the user while all other elements

are taken from the trusted base.

4.1.1 RBCyclone Elements

rbclick exports a Cyclone interface that provides equivalent functionality as

the Element class and support libraries in Click. The interface includes essential

services, such as functions to invoke timers, manipulate packets, and communicate
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Figure 4.1. An example rbclick extension.

with other elements in the configuration. C++ and rbcyclone elements interact

with each other using stub functions. These stub functions perform data marshaling

and also prevent any Cyclone language exceptions from leaking into the trusted

C++ code.

4.1.2 Deploying an Extension

Before an extension can be deployed a code analysis tool performs code analysis

on all the untrusted elements in its configuration. The code analysis tool outputs the

resource bounds of individual elements. The resource bounds for trusted elements

are measured using a benchmark workload. The resource bounds for trusted and

untrusted elements are fed to a graph analysis tool that calculates the overall

resource bounds for a configuration. The configuration checking tool may also

insert poll points in the configuration, as explained later in this chapter.

Figure 4.2 shows the interaction between Janos and rbclick. The rbclick

environment runs as a trusted environment on Moab. It schedules and performs

runtime accounting for all running extensions. Note that rbclick provides only
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Figure 4.2. rbclick and Janos. The control plane for rbclick router configurations
is implemented via the Bees EE on Moab.

datapath support, the active extensions are downloaded and installed using the

control plane through the Bees EE.

In the following sections, we describe two key components involved in imple-

menting hybrid resource control technique in rbclick: rbcyclone and code analysis

of rbclick extension configurations.

4.2 RBCyclone

4.2.1 Why Cyclone?

Using active extensions technology with rbclick, users should be able to supply

their own elements and extend the functionality available on a node. However,

user-supplied elements cannot be trusted and must be executed in a memory and

resource-safe environment.

Hardware-based virtual memory techniques can ensure complete memory safety

from untrusted code, however, they seem too heavyweight for use with fast-path

active extensions. Therefore, we decided to use relatively lightweight language-

based technology. A comparison of software- and hardware-based memory safety

techniques is shown in [30].

Interfacing Click to a high-level type-safe language, such as, Java and OCaml,

seems to involve prohibitive performance costs. Overheads of interpretation, mar-

shaling, and garbage collection are the dominant costs [2]. Therefore, we decided
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to use a type-safe but C-like language, Cyclone [16]. The compatibility of Cyclone

with C/C++ makes it easier and efficient to interface with Click.

rbcyclone is a resource-bounded subset of Cyclone that leverages the limited do-

main of active extensions. In the rest of this section, we discuss the domain-specific

restrictions imposed by rbcyclone to ensure safety and resource boundedness.

4.2.2 Namespace Control

rbcyclone elements have access to only two external namespaces: RBClick NS

and CYC NS. Untrusted elements cannot directly allocate or resize a Click packet.

Instead, RBClick NS provides restricted means to perform such operations. It also

includes wrapper functions used by Click elements to make calls into rbcyclone

elements, for example, to push or pull packets and invoke timer handlers. These

wrapper functions handle any Cyclone language exceptions that leak through from

rbcyclone code. The CYC NS namespace provides a restricted standard Cyclone

library, a Cyclone equivalent of the standard C-library. However, certain unsafe

system calls which can be used to violate resource bounds, such as, signal, malloc,

new and exit have been overridden to simply return error messages.

4.2.3 Restricted Programming Constructs

To limit the CPU cycles executed by untrusted code, we remove the following

constructs from Cyclone: goto, while, normal for loops, recursion, and function

pointers. The only iteration construct available in rbcyclone is a specialized for

construct with the following syntax:

for (CONST) (... ; ... ; ...) { /* Body of the for loop */ } /*

CONST is a compile time constant */

The above type of for loop is executed at most CONST times. CONST can

be a symbolic constant whose value is substituted at the deployment node. Values

from node-specific symbolic constants such as, PACKET LEN MAX, MTU, and

DATA LEN MAX are maintained by the trusted rbcyclone compiler.
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4.2.4 Memory Management

rbcyclone runtime manages memory using Cyclone’s region-based memory man-

agement [13] and completely eliminates the need for garbage collection. As dis-

cussed in Section 2.1.2, Cyclone has three kinds of regions: a heap region that lives

forever and is garbage collected, stack regions that correspond to local declarations,

and dynamic regions that have programmer-controlled dynamic lifetimes, similar

to memory areas allocated with new and free. rbcyclone has no explicit heap

region and hence no garbage collection. Instead, based on our survey of networking

code, we have defined the following four fixed regions in rbcyclone: ‘A, ‘B, ‘C,

and ‘D. These regions have nested lifetimes: ‘A < ‘B < ‘C < ‘D. A reference in a

region with longer lifetime cannot point to data in a region with shorter lifetime.

For example, a reference allocated in ‘B cannot point to data in ‘A. The rationale

for these regions is discussed below.

4.2.4.1 Region for per-packet memory (‘A)

This region has lifetime equal to the duration of processing a single packet. This

memory region is available to all the elements of a domain while it does packet

processing. Hence it can be used to share transient state among code elements. In

Click such state is shared by allocating extra fields in the Packet object. Because

it has the shortest lifetime, none of the other three regions can hold references

pointing into this region.

4.2.4.2 Region for per-domain packet cache (‘B)

In rbclick, the memory area holding a packet is freed as soon as its processing

is finished and hence a reference to it cannot be stored in persistent memory.

Region ‘B provides a fixed size array to cache packets without having to copy

them to persistent memory. Packets can be stored and retrieved using put and

get operations. This region is specifically designed for efficient storage of packets

by packet caching applications, such as aggregated multicast [38]. This region is
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allocated at domain creation time and its size is specified in an extension’s rbclick

configuration.

4.2.4.3 Region for per-domain memory (‘C)

Region ‘C is used by a domain to keep a state that persists between packets.

For example, an element could maintain flow state in this region. This region is

allocated when a domain is created and destroyed when the domain is terminated. If

an extension needs to recycle persistent memory, it can create and destroy dynamic

regions in region ‘C as needed. However, region ‘C cannot be shared with other

extensions.

4.2.4.4 Region for shared memory (‘D)

This region is designated for memory that is shared between multiple domains,

for example, memory for routing tables. The memory in this region can be obtained

using special names for memory areas in this region. A standard filesystem-like

interface can be used to access memory in region ‘D.

4.3 Static Analysis

Static analysis predicts resource upper bounds on active code. In rbclick, static

analysis of an active extension is done in two stages: 1) code analysis of individual

untrusted elements and 2) graph analysis of its rbclick extension configuration. As

Galiter et al. noted [11], the resources consumed by a program, especially CPU

time, depend significantly on local conditions on a node. Factors such as traffic

patterns, execution time of system calls, machine speed, and other node-specific

constants affect the resource bounds. Therefore, in rbclick, static analysis is done

either at the deployment node or at a trusted site that knows the values of node-

specific constants.

4.3.1 Code Analysis of an Untrusted Element

Designing a sophisticated code analysis tool to estimate resource bounds was not

one of the goals of this thesis. rbclick’s purpose is to demonstrate what advantages
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can be gained given the values of resource bounds. However, to show the feasibility

of such a tool, we have designed and partially implemented (see Section 5.1) a

simple code analysis tool (cat) that analyzes untrusted code. Currently, CAT

works as follows.

An rbcyclone preprocessor validates rbcyclone code and generates valid Cy-

clone code. This Cyclone code is then compiled into C code by the Cyclone compiler.

A loop annotation tool then analyzes the C code and generates annotations around

the bodies of loops. The loop annotations also include the value of static upper

bound on each loop. Similar annotations are also generated for those functions in

the CYC NS and RBClick NS namespaces whose execution time depends on the

value of its parameters, such as memcpy. This annotated C code is then compiled

into assembly code using the gcc compiler. The annotated assembly code is then

used by cat’s assembly level code analyzer to predict resource upper bounds on

untrusted code.

cat uses simplistic models to predict CPU usage. The basic idea behind cat is

to traverse all execution paths and collect instruction statistics along these paths.

These instruction statistics are then used to generate bounds for CPU usage in

the following manner. Note that rbcyclone manages the memory resource by

dynamically limiting the size of memory regions.

cat classifies all instructions as either register-only, memory reference, or func-

tion call operations. Each register-only instruction is assigned a fixed cost, typically

1 cycle. Memory references are assigned a fixed cost derived from the memory access

latency benchmark for the target machine and the working set size of the extension,

as explained in Section 3.2. Function call instructions are assigned a cost equal to

the CPU resource bound of the called function. Function calls are either calls into

untrusted code itself or library calls. For an active node, a benchmark is used to

compute the cost of all library calls. A similar benchmark-based method to predict

node specific CPU time for system calls is also used by V. Galtier et al. in [11].
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4.3.2 Static Analysis of an Extension Configuration

cat estimates the complete CPU usage of an extension by analyzing its rbclick

extension configuration. rbclick configurations cannot have unbounded loops in

them. For example, in Click [22], the IP forwarding router has unbounded loops in

it and hence is not a valid rbclick extension configuration. However, bounded loops

are allowed. A loop can be bounded by inserting a special Loop element at the loop

join point. A Loop element takes a constant as its configuration parameter, which

determines the maximum number of times a loop is traversed during the processing

of a single packet.

With all configuration loops bounded, an rbclick configuration can be repre-

sented as a directed graph, where each <element, port> pair represents a node

and each connection between ports represents an edge. Each edge gets its direction

from the direction of packet flow (push vs. pull) that is assigned to it. Traversal of

this directed graph with knowledge of static upper bounds on each element is used

to find an upper bound for an active extension.

As mentioned in the Section 3.6, poll points may be used to reduce the false-

positive ratio of hybrid resource control. In rbclick, this can be achieved by

inserting a special Poll element at appropriate places in a configuration. The Poll

element works as a poll point at function entry points in the packet processing

code of an extension. The results from cat are used to find the segments of a

graph whose resource usage is within the inflated limits. These segments are then

separated by inserting Poll elements between them.



CHAPTER 5

EVALUATION

Our goal is to evaluate the feasibility and the potential performance benefits

of our approach. To this end, we have implemented a prototype of the design of

rbclick discussed in Chapter 4. In this chapter, we first evaluate the feasibility of

our approach by estimating execution times of existing Click elements and router

configurations using CAT. We will see that for most elements, overestimation using

CAT stays within a reasonable factor of 23 but for some elements it exceeds 100.

Part of this excessive overestimation can be overcome using a sophisticated analysis

tool, but part of it is inherent in static analysis. We will also evaluate the perfor-

mance benefits obtainable with hybrid resource control in rbclick by comparing its

performance with the native resource control scheme in Moab. We will show that,

as compared to the dynamic resource control technique in Moab, hybrid resource

control improves the performance of IP routing by up to a factor of two and benefits

all the configurations we experimented with. These performance benefits directly

correspond to the removal of context switch and system call overheads at the Moab

user-kernel boundary that were discussed in Chapter 2.

5.1 Implementation

We have prototyped key parts of the hybrid resource control scheme in rbclick

and its companion tools, rbcyclone, and cat. Our system still lacks a number of

features necessary for practical deployment, for example, Moab lacks dynamic code

linking and loading and cat lacks general control-flow analysis capabilities. The

goal of this prototype is to demonstrate the feasibility of hybrid resource control

and show potential performance benefits obtainable by using it. Our prototype

achieves these goals despite being unready for practical deployment.
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5.1.1 RBClick

rbclick prototype provides fast-path extensibility in Moab in Janos. Currently,

rbclick instantiates each rbclick extension configuration in a special “lightweight”

NodeOS domain [1]. A NodeOS domain is a resource container, similar to a process

in a traditional UNIX-style operating system. All rbclick extension domains are

managed using the hybrid resource control technique. Domains that run under

hybrid resource control do not incur any resource control checks at the Moab user-

kernel boundary.

5.1.2 CAT

We have implemented a rudimentary version of cat. It consists of a set of code

analysis tools that work on Cyclone and C source code and x86 assembly code to

analyze an rbcyclone element and a graph analysis tool that works on the Click

language to analyze a complete rbclick graph. For best results, these tools need

to be integrated into an rbcyclone compiler, but for the initial prototype, we have

implemented them as a set of simple tools written in lex, yacc, C, and perl. cat

works as explained in Section 4.3.

5.1.3 RBCyclone

Our rbcyclone prototype does not implement the four memory regions outlined

in Section 4.2. Implementing these regions is conceptually simple and requires modi-

fications to the type-checking system in the Cyclone compiler. As of this writing, we

have not done these modifications. However, addition of these regions to the type-

checking system in rbcyclone probably only affects static type-checking, and hence

will have no effect on the performance numbers reported in this thesis. Another

practical limitation of our rbcyclone prototype is incomplete fault-isolation from

untrusted code. The default Cyclone compiler, as of version 0.5, does not prevent

stack overflow and arithmetic errors like divide-by-zero. These errors could cause

the Moab kernel to crash. Fortunately, it would be easy to build code analysis tool
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to prevent these errors for the rbcyclone language because it cannot have recursion

or unbounded loops in it. The OKE project [6, 14] has already built such a tool.

5.2 Feasibility

A key part of our approach is automatic estimation of soft upper bounds on the

resource usage of extensions. In this section, we evaluate the effectiveness of our

prototype implementation of cat in doing that.

5.2.1 Criteria and Experimental Parameters

As discussed in Section 3.5, the inflation factor for a router can be derived

from the size of its input port queue(s). It is common for current general-purpose

operating systems to have an input port queue with 64 or more slots. For example,

the network driver for the Intel EtherExpress Pro/100 network card in the Linux

kernel version 2.4.18-27 uses 64 buffers each for device receive and transmit queues.

This implies that the system can tolerate one complete misbehavior with inflation

factor of 64, or two with inflation factor of 32, and so on. Since Moab is a dedicated

router operating system, we use 128 receive and 32 transmit buffers in its network

port queues. Hence, it can tolerate two misbehaviors with an inflation factor of 64.

To evaluate the feasibility of static analysis, we assume that our analysis is

effective if it estimates resource bounds within a factor of 64 of the actual worst-

input average case values. So an inflation factor of 64 can offset the effects of

pessimism of static analysis, and result in an extremely low false-positive ratio.

As explained in Section 4.3, cat analyzes code elements by classifying x86

assembly instructions into memory, register only, and function call instructions.

It uses the average cost of a memory access from the mbench memory latency

benchmark for the target platform based on the working set size of the extension.

It then calculates the CPU usage of each function by adding up the cost of all

register and memory instructions, system calls, and other called functions.

We conducted all our experiments in the Netbed network testbed facility [37].

All the machines used for the results presented in this chapter were Pentium III
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850 MHz. All measurements were taken for max-sized Ethernet packets—1500

bytes. The results from mbench memory latency benchmark for this machine are

shown in Table 5.1. Table 5.2 summarizes all the parameters used by cat in these

experiments.

5.2.2 Elements of the IP Router

We analyzed all 13 elements involved in the standard IP router configuration

in Click [19]. We manually annotated all the loops with their static bounds in

the C++ code of these elements, and performed analysis on them using cat. The

results are shown in Table 5.3. As we see from the table, except for the bottom

two elements ARPQuerier and IPGWOption, all elements are estimated within a

factor of 23.

Table 5.1. Memory latency table used in experiments.

Working Set Size Write Latency
(KB) (Cycles)
16 2.3
32 10
64 10
128 10
256 10
512 80
1024 200
2048 200
4096 200
8192 200

Table 5.2. Parameters used by CAT.

Parameter Value
Working Set Size 64 KB
Memory Latency 10 cycles
Input port queue size 128 packets
Inflation factor 64
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Table 5.3. CPU estimation of the elements of standard IP graph by CAT.

Element Name Estimated time Measured Time Ratio
(CPU Cycles) (CPU Cycles)

Paint 54 46 1.17
Strip 488 350 1.40
GetIPAddress 586 146 4.01
IPFragmenter 313 68 4.61
FixIPSrc 398 71 5.60
DecIPTTL 1088 139 7.83
DropBroadcasts 919 107 8.59
PaintTee 1360 118 11.52
CheckIPHeader 6075 342 17.77
LookupIPRoute 2919 141 20.70
Classifier 7276 319 22.81
ARPQuerier 38499 360 106.00
IPGWOptions 69653 350 199.00

The ARPQuerier element takes an IP packet and sends it to its next hop after

making any ARP requests, if needed. The IPGWOptions element processes any IP

options present in packets that pass through it.

Part of the overestimation that is most visible in the ARPQuerier element is

due to the fact that cat does not understand program control flow other than

loops. Therefore, cat always adds up the cost of even mutually exclusive code

paths instead of taking only the worse of the two. For example, cat always adds

up the cost of the “then” part and the “else” part of a standard “if (condition)

{then-body} else {else-body}” statement. (Making cat recognize these mutually

exclusive codepaths is straightforward but requires changes to the gcc compiler.

As cat’s primary use is on rbcyclone elements, we have not done these changes in

gcc.)

The ARPQuerier element has an if-then-else statement right at the top-level

function in its call-graph, as shown in Figure 5.1. Each of the functions handle ip

and handle response accounts for half of the estimated CPU cycles. cat just

adds up the cost of both parts of the if-then-else statement shown the figure. A
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void

ARPQuerier::push(int port, Packet *p)

{

if (port == 0)

handle_ip(p);

else {

handle_response(p);

p->kill();

}

}

Figure 5.1. The code for the top-level push function of the ARPQuerier element.

smarter code analysis will report at most half as many cycles as reported by cat

and estimate ARPQuerier within a factor of 53.

Another part of the overestimation is due to an inherent limitation of static

analysis—it always assumes the worst code path. The ARPQuerier element caches

ARP responses from the network. Therefore, in the common-case the ARP request

is satisfied from the cache and only the shortest code path is taken. Similarly,

excessive overestimation for the IPGWOptions element results from the fact that

in our experiments no packets contained any IP options. Therefore, the measured

time does not include the cost of IP options processing but only includes the shortest

code path in the element. cat estimates the shortest code path within a factor of

two.

In general, for elements with a large difference between the common case path

and the worst-case path, static analysis will always report much higher resource

usage than what will be observed in practice. One way to counter this limitation

is to require the programmers to annotate the common-case code path. The code

maybe admitted on the basis of estimations of the common-case code path, and the

system could insert poll points in the worst-case code path and runtime accounting

could ensure that only the common-case code path is taken on an average.

Another option is to split such elements in such a way that the worst-case code

is isolated in one element and the common-case in another. Users can then include
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only the common-case element in the nonpreemptive processing path and defer the

execution of the worst-case code segment. As a matter of fact, most commercial

routers defer IP options processing to a slow path. Such a split of the IPGWOptions

element would bring down the ratio of estimated time to observed time to within

a factor of two.

5.2.3 RBCyclone Elements

To further evaluate the feasibility of our approach, we wrote three elements

in rbcyclone—two highly CPU intensive, DES and ActiveDoom, and one sim-

ple element that operates only on the IP header of a packet, ECN. DES is an

implementation of the common Data Encryption Standard algorithm triple-DES.

ActiveDoom is an in-network packet aggregation program for the game of Doom .

The ECN element sets the congestion signal bits [27] in the IP header of all input

packets sent to it by a queue. It also updates the IP checksum. The results for

these elements are given in Table 5.4. As seen from the table, cat estimates the

CPU requirements of these elements reasonably well, within a factor of 22. The

CPU estimate of the smaller ECN element is within a factor of two.

5.2.4 Analysis of Router Configurations

We analyzed four configurations using CAT. Since the IP router is part of the

trusted computing base, for all elements of the IP router configuration we take the

measured value of CPU usage from Table 5.3, as opposed to the values estimated

by cat. Of course, CPU usage for untrusted rbcyclone elements is estimated using

cat. cat’s estimates for the configurations are presented in Table 5.5. The table

Table 5.4. CPU estimation of rbcyclone elements by CAT.

RBCyclone Element Estimated time Measured Time Ratio
(CPU Cycles) (CPU Cycles)

DES 12654225 556110 20
ActiveDoom 728075 32584 22
ECN 3189 1964 1.6
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Table 5.5. CPU estimation of router configurations by CAT.

Router Configuration Estimated time Measured Time Ratio
(Cycles) (Cycles) Ratio

IP Router 14765 9257 1.6
IP Router with ECN 17954 11221 1.6
IP Router with DES 12668990 570430 22
ActiveDoom 728075 32584 22

demonstrates that using our tools and a conservative 90% cache hit-rate, we are

able to estimate the running time of these configurations within a factor of 22.

5.2.5 Summary

These results show that despite being rudimentary and experimental, cat’s

overestimations, with the exception of IPGWOptions and ARPQuerier elements,

can be accommodated within an inflation-factor of 25. These results clearly demon-

strate the feasibility of our approach for many classes of best-effort router services.

Our approach works particularly well for new configurations that combine a rela-

tively small amount of new functionality with a number of trusted Click elements,

as demonstrated by the ECN configuration.

We also note that our techniques do not guarantee that the extensions will never

consume more CPU than estimated. For example, an extension may consume more

than the estimated CPU if its cache behavior is worse than that predicted by the

memory latency benchmark. We rely on runtime accounting to quickly detect these

cases and unload the faulty extensions.

5.3 Performance

In this section, we evaluate the potential performance benefits of the hybrid

resource control by measuring its performance with the dynamic resource control

scheme in Moab.
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5.3.1 Experimental Setup

All experiments were performed on the cluster portion of the Netbed network

testbed [37]. All machines were 850MHz Intel Pentium IIIs with 512 MB of SDRAM

and five Intel EtherExpress Pro/100+ PCI Ethernet cards. All experiments that

used IP forwarding (IP router and DES) used a simple three-node setup where

an active node running the corresponding router code interposes between a sender

and a receiver. ActiveDoom experiments involved two ActiveDoom servers directly

connected to each other and each server in turn connected to 5 FakeDoom clients.

FakeDoom is a program that generates traffic similar to that generated by the real

Doom program. Doom clients refresh game state at a rate of 30 times per second.

All experiments run the same code under two resource control schemes: Moab’s

dynamic resource control and rbclick’s hybrid resource control.

5.3.2 IP Router

To estimate the improvement in forwarding rate obtainable with the hybrid re-

source control scheme, we ran IP forwarding code in three configurations illustrated

in Figure 5.2. In-kernel IP−− is a hardwired implementation of a minimal IP router

in the Moab kernel. Dynamic IP a Click configuration that implements nearly all

standards-compliant IP forwarding functionality [4], see [19] for details of how it

works. It runs at user-level under Moab’s dynamic resource control. Hybrid IP is

an rbclick configuration which implements the same functionality as Dynamic IP.

(This configuration contains extra Loop elements.) It runs under hybrid resource

control .

As we see from Figure 5.3, IP forwarding under the control of the hybrid resource

control technique (Hybrid IP) performs much better than with purely dynamic

resource control (Dynamic IP). This improvement is due to the avoidance of context

switching and reduced runtime checks at the user-kernel boundary. Note that

Dynamic IP and Hybrid IP both do not include any MMU-imposed overhead.

Therefore, the performance improvement in Hybrid IP over Dynamic IP is entirely
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Figure 5.2. Experimental configurations of the IP router experiment.
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due to the reduction in overhead of dynamic resource checks at the user-kernel

boundary.

The performance difference between Hybrid IP and In-kernel IP−− results from

two factors. First, the in-kernel version does not implement the full functionality

of an IP router. Therefore, it performs fewer checks during IP forwarding. Second,

the cost of creating a C++ object is high because of an untuned implementation of

the memory management library in the OSKit. In our measurements, each object

allocation takes about 450 CPU cycles and each deallocation takes 350 cycles.

Therefore, the cost of creating and deleting a Click Packet object from a Moab

packet buffer is also high. Creating a Click Packet does not involve data copying,

but it does involve creating a new C++ object and assigning correct buffer pointers

in it. Similar costs occur for all C++ objects. The in-kernel IP−− implementation

does not involve any memory allocation (and deallocation) on the heap.

5.3.3 Overhead of Cyclone Interface

Figure 5.4 shows the performance difference between an IP router entirely in

C++ (C++ IP) and an IP router in which one Null C++ element has been replaced

by an equivalent rbcyclone element (Cyc IP). Null elements immediately push out

the packets they receive. This configuration measures the overhead of boundary-

crossing from trusted elements in C++ to untrusted elements in rbcyclone.

As we see from the graph, the performance difference between C++ IP and Cyc

IP configurations is not significant. The boundary-crossing overhead from a C++

element to an rbcyclone element and back is less than 0.6 µs on the machines used

in these experiments. Note that this overhead includes marshaling a packet to send

it to rbcyclone code and unmarshaling it after receiving it back. The relatively low

overhead of marshaling, unmarshaling, and boundary-crossing suggests Cyclone is

an efficient type-safe extension language for the C++-based Click.
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Figure 5.4. Performance of IP forwarding in two configurations.

5.3.4 DES

Figure 5.5 shows the performance of DES under Moab’s native resource control

scheme and under hybrid resource control using rbclick. The performance benefits

due to hybrid resource control are more visible for smaller payload sizes. For bigger

payloads, the cost of DES processing becomes significant, and the improvements

due to hybrid resource control do not have much effect on packet forwarding rate.

5.3.5 ActiveDoom

Table 5.6 shows the performance of an ActiveDoom node under Moab’s dy-

namic resource control scheme (Dynamic ActiveDoom) and under hybrid resource

control scheme (Hybrid ActiveDoom). The results show that the benefits due to

hybrid resource control are marginal because of the excessive processing cost of

ActiveDoom.
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Table 5.6. ActiveDoom

Dynamic ActiveDoom Hybrid ActiveDoom
(Cycles) (Cycles)
36273 32584

5.3.6 ECN

Table 5.7 shows the performance of an IP router with ECN under Moab’s

dynamic resource control scheme (Dynamic ECN) and under hybrid resource control

scheme (Hybrid ECN). The results show that the hybrid resource control benefits

the ECN configuration by 41% over the dynamic resource control scheme.

Table 5.7. IP router with ECN

Dynamic ECN Hybrid ECN
(Cycles) (Cycles)
31781 18802



CHAPTER 6

RELATED WORK

Our work is most closely related to the plan [15] and snap [21] languages

from the SwitchWare project at the University of Pennsylvania. Both plan and

its successor snap are domain-specific languages designed to bound the resource

consumption of active code. The resource bounding restrictions we impose in

rbcyclone are similar to those in plan (Section 4.2). However, their work differs

from ours in the following ways.

First, the SwitchWare project focused only on designing a resource-bounded

language. They did not explore how conservative the statically computed bounds

can be and how to cope with that pessimism. Our work complements theirs,

focusing on combining conservative static estimates with dynamic checks to build a

low-overhead execution environment. Second, we focus on the domain of fast-path

active extensions that are deployed using the control channel, while plan and

snap are both designed to be deployed directly in data packets. Third, we use a

familiar C-like programming language, Cyclone [16], and impose restrictions that

are necessary to bound resource consumption, while plan and snap are completely

new domain-specific languages. Fourth, we examine a flexible set of existing

networking components to show by example that the restrictions we impose in

rbcyclone are not overly constraining (Section 5). It is not entirely clear whether

plan could easily support all of these examples.

Other closely related efforts are the Open Kernel Environment (oke) [6] and the

“oke corral” [14]. The oke is a safe execution environment in the Linux kernel,

designed to run untrusted user extensions written in Cyclone. The oke corral is

an active network environment based on the oke and, like rbclick, draws heavily
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from the Click modular router. However, the resource control techniques in oke are

purely dynamic and rely on asynchronous termination to enforce resource limits.

In contrast, our goals for the hybrid technique have been to avoid asynchronous

termination, taking advantage of statically-predicted resource bounds augmented

by dynamic checks.

Proof Carrying Code (PCC) is a novel technique in which untrusted code carries

an efficiently checkable proof of its resource boundedness. PCC can be quite

effective in minimizing the overhead of runtime checks [23]. However, currently,

PCC is practical only for small programs.

Our implementation was done in the context of Janos, an active network node

operating system [32] that currently supports only Java-based active applications

written for the ants2 and Bees environments [29]. Java-based active applications

in Janos are much slower compared to the fast-path in the kernel. rbclick adds

safe fast-path active networking to Janos.

Similar to rbclick in Janos, many other active networking systems provide

extensibility close to the in-kernel fast-path [14, 20, 8]. A common differentiator

between these and our work is that all of these systems use purely dynamic tech-

niques for resource control.

Outside of the domain of active networking, hybrid resource control is similar

to low-overhead message passing using Active Messages [34]. An Active Message

carries the address of a remote program that is executed nonpreemptively as a

message handler on the stack of the message-receiving thread. Since an Active

Message is not allocated a thread of its own, it must not block and it must complete

execution in a short period of time. Hybrid resource control uses the exact same

principle to efficiently run active code. The important difference between the two is

that hybrid resource control is designed for untrusted mobile code. Therefore, it has

to automatically infer and enforce the resource bounds to ensure safety and security.

In Active Messages, on the other hand, there is no mobile code and the programmer

is trusted to obey the restrictions placed of the target execution environment.
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Optimistic Active Messages (OAMs) [35] improve upon Active Messages and

provide low-overhead message passing without any programming restrictions. In

OAMs, the system optimistically schedules arbitrary active message code on the

stack of the message-receiving thread. If the message handler tries to block, or

takes too long to execute, it is spawned in a separate thread. So, OAMs not only

have the advantage of low overhead for short programs, same as Active Messages

and hybrid resource control, but they also support a general purpose programming

model. The principles of OAMs may help relax the constrained programming model

of hybrid resource control.

Extensible operating systems, such as the SPIN operating system [5], allow

application-specific extensions directly in the kernel. Similar to rbclick in Moab,

the SPIN operating system relies on a type-safe language to achieve safety from

user extensions. (SPIN and its extensions are written in Modula-3, a type-safe

language.) However, SPIN uses dynamic resource control, a round-robin preemptive

CPU scheduler, to manage the resources available to user extensions.

In [11], the authors present techniques for controlling and predicting cpu use of

active code in networks of heterogeneous nodes. Their techniques for predicting cpu

usage could be used in conjunction with hybrid resource control. However, their

resource control techniques require precise resource bounds to allocate resources,

while hybrid resource control only needs approximate estimates of resource upper

bounds to admit code.

Finally, in recent work on supporting real-time applications on general-purpose

operating systems [12] the authors propose a mechanism that uses high-precision

timers to schedule applications at a fine granularity. Such a mechanism could

also be used by hybrid resource control to control the CPU resource. However,

fine-grained timers do not avoid asynchronous termination or the overheads due to

the kernel-user boundary.
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CONCLUSIONS AND FUTURE

DIRECTIONS

In this thesis, we have presented hybrid resource control, a resource control

technique for fast-path active extensions. Hybrid resource control estimates CPU

usage upper bounds on extensions by using static analysis and making realistic

assumptions about their cache behavior. The guarantees provided by upper bounds

help reduce the overhead due to runtime checks and avoid asynchronous termination

of active extensions. We also presented the design of rbclick and its companion

tools rbcyclone and cat. Our prototype implementation of rbclick uses the hybrid

resource control technique to control the resources consumed by untrusted user

extensions in the Janos kernel.

To facilitate memory protection and enable static analysis of code, rbclick

uses rbcyclone, a resource bounded variant of Cyclone. We have shown that

the restrictions imposed by rbcyclone still offer a flexible programming model

by examining a version of Click and showing that all its elements can be written

with the restrictions of rbcyclone.

Our analysis of existing and new elements shows that hybrid resource control

can be successfully used on a wide variety of extensions. Our measurements of

forwarding rates show that the hybrid technique can help improve the forwarding

rate of active extensions by up to a factor of two, compared to the purely dynamic

resource control technique in Janos. However, the performance improvement does

not result in significant throughput benefits for CPU-intensive extensions, such as

triple-DES encryption.

Our focus in this thesis has been to show the feasibility and potential perfor-

mance benefits of the hybrid approach. Our code analysis tool is very crude and
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does not understand simple control-flow of programs. In future work, all the tools

in cat and rbcyclone preprocessor can be combined into an rbcyclone compiler

derived from the Cyclone compiler. The rbcyclone compiler can use compiler

optimization techniques to tighten the estimated resource bounds.

Another complementary option is to explore runtime a measurements-based

techniques to estimate tighter resource bounds on untrusted code, as used in [9, 33].

One major difficulty with such measurements-based techniques is that of predicting

a typical workload for active code. In general, this is impossible to do. However, by

using user-supplied workloads and combining statistical analysis with control-flow

analysis, it may be possible to predict tight resource upper bounds with very high

probability.



APPENDIX A

ANALYSIS OF CLICK EXTENSIONS

We manually studied the source code of all 234 elements in Click version 1.2.11

to determine the fraction of its elements that were resource-bounded. Based on

their potential resource usage, we classified the elements into the following seven

categories:

1. E1: Resource usage Constant

2. E2: Resource usage Proportional to the length of the packet

3. E3: Resource usage Proportional to some protocol header length, e.g., Check-

IPHeader consumes resources proportional to the IP header length.

4. E4: Resource usage Proportional to the length of the configuration of an

element, e.g., the size of the Static routing table in LookupIPRoute.

5. E5: Resource usage Proportional to some value in the configuration of an

element, e.g., the Tee element gets the number of outputs from its configura-

tion.

6. E6: Resource usage Proportional to some field in a protocol header, e.g., the

ICMPError element consumes resources proportional to the IP hlen header

field.

7. E7: Resource usage Potentially resource-unbounded, e.g., the ARP element

searches through a data structure whose length is determined by the number

1We studied the Click version current at the time this work began, version 1.2.1, released June
2001. The current version, 1.2.4, released May 2002, has 252 elements.
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of packets it has seen in the last 5 min. Such elements are considered to be

potentially resource-unbounded.

Clearly, elements in categories E1–E4 are bounded in their resource usage. Ele-

ments in E5 are also bounded because we can compute the bounds at configuration

time. Elements in category E6 can be bound by enforcing an upper bound on

the value of the corresponding header field, e.g., the length of the IP header can be

constrained to be always less than 64 bytes. Therefore, elements in categories E1–E6

are resource-bounded and elements in E7 are potentially resource-unbounded.

Table A.1 shows the distribution of 234 Click elements into various categories.

As seen from the table, only 23 elements (9.83%) fall into category E7 and hence

could potentially consume unbounded amount of resources. The remaining 90%

of the elements consume bounded amount of resources. The 23 elements in E7

cannot be bound because they use unbounded data structures, like linked lists and

open hash tables. We could convert these elements to category E5 by re-coding

the corresponding data structures to have a configurable maximum number of data

items, which would make all 234 elements statically resource-bounded.

This study indicates that most fast-path extensions consume bounded resources.

Another important implication of the above study is that fast-path extensions can

be coded in a programming language in which all loops have static upper bounds.

Table A.1. Classification of Click elements

Category Number %age
E1 114 48.72%
E2 33 14.1%
E3 15 6.41%
E4 37 15.80%
E5 4 1.71%
E6 8 3.42%
E7 23 9.83%
Total 234 100%
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