Some Guidelines for Proportional Share Scheduling

John Regehr – University of Utah
Dec. 5, 2001

Context

- Huge number of RT schedulers
 - Which do we use?
 - What are the implications?
- Proportional share
 - Uses periodic interrupts
 - Can use priority infrastructure
- But... there is allocation error
 - Optimal error bound is quantum length
 - 10-30ms for GPOS

Real-Time with PS

- Mapping PS to periodic task model (Ștoica et al. 97)
 - Share * period – error > WCET
- Define pessimism \(P \):
 - \(P = \frac{\text{share} \times \text{period}}{\text{WCET}} \)
 - \(P = 1.0 \) is ideal
- A little algebra gives us:
 - \(P = \frac{\text{WCET} + \text{error}}{\text{WCET}} \)

Pessimism and Quanta

- Making \(P \) small forces small scheduling quanta
- But...

Context Switches and Caches

- Cache cost can dominate OS overhead by orders of magnitude
- Up to 2.5ms cache preemption cost for threads with 512 KB working set on 500 MHz Pentium III
- So for real apps quanta cannot be too small

Conclusion

- So what do we do?
 - Make OS quantum size flexible
 - Permit latency trading
 - or (more or less) equivalently
 - Use reservation schedulers
- No single answer – scheduler choice is complex