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Abstract
The network and distributed systems research commu-
nities have an increasing need for “replayable” research,
but our current experimentation resources fall short of
reaching this goal. Replayable activities are those that
can be re-executed, either as-is or in modified form,
yielding new results that can be compared to previously
obtained results. Replayability requires complete records
of experiment processes and data, of course, but it also
requires facilities that allow those processes to actually
be examined, repeated, modified, and reused for new
studies.

We are now evolving Emulab, our popular network
testbed management system, to be the basis of a new “ex-
perimentation workbench” in support of realistic, large-
scale, replayable networking research. We have im-
plemented a new model of testbed-based experiments,
based on scientific workflow, that allows people to move
forward and backward through their experimentation
processes. Integrated tools in the workbench help re-
searchers manage their activities (both planned and un-
planned), software artifacts, data, and analyses. In this
paper we present the workbench, describe its implemen-
tation, and report how it has been used by early adopters.
Our initial case studies, using PlanetLab nodes, cluster
PCs, 802.11 wireless, and software radio, have high-
lighted both the utility of the current workbench and ad-
ditional usability challenges that must be addressed.

1 Introduction
In the networking and operating systems communities,
there is an increasing awareness of the benefits of re-
peated research [6, 18]. A scientific community advances
when its experiments are published, subjected to scrutiny
by peers, and repeated to determine the veracity of re-
sults. Repeated research not only helps to validate the
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conclusions of previous studies, but also to expand on
those conclusions and suggest new directions for future
research.

To repeat a piece of research, one first needs access
to the complete records of the experiment that is to
be redone. This obviously includes the results of the
experiment—not only the final data products, but also
the “raw” data products that are the bases for analysis.
In the networking community especially, there has been
much focus on publishing and archiving the data sets that
are the bases of scientific conclusions [3, 4, 7, 28]. Data
sets allow researchers to repeat experimental analyses,
but by themselves, they do not help researchers validate
or repeat the data collection process itself. Therefore,
the records of a repeatable experiment must also contain
descriptions of the procedures that were followed, in suf-
ficient detail to allow them to be re-executed. For studies
of software-based systems, the documentation of an ex-
periment can also contain copies of the actual software
that was executed, test scripts, and so on.

A second requirement for repeated research is access
to experimental infrastructure: i.e., laboratories. In the
networking community, this need is increasingly being
served by a variety of network testbeds: environments
designed to provide resources for scalable and “real-
world” experimentation. Some testbeds (such as Emu-
lab [32]) focus on providing high degrees of control and
repeatability, whereas others (such as PlanetLab [25])
focus on exposing networked systems to actual Internet
conditions and users. Although modern testbeds differ in
many respects, most are similar in that they are primar-
ily designed to provide experimenters with access to re-
sources. Once a person has obtained resources, he or she
generally receives little help from the testbed in actually
performing an experiment: i.e., configuring it, executing
it, and collecting data from it. Current testbeds offer little
help to users that want to repeat research, and moreover,
they provide little guidance toward making new experi-
ments repeatable.
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Based on our experience in running and using Emulab,
we believe that new testbed-integrated, user-centered
tools will be a necessary third requirement for estab-
lishing repeatable research within the networking com-
munity. Emulab is our large and continually growing
testbed: it provides uniform access to many hundred
computing devices of diverse types, in conjunction with
user services such as file storage, file distribution, and
user-scheduled events. As Emulab has grown over the
past six years, its users have performed increasingly
large-scale and sophisticated studies. An essential part
of these activities is managing the many parts of every
experiment, and we have seen first-hand that this burden
can be a heavy load for Emulab’s users. As both admin-
istrators and users of our testbed, we recognize that net-
work researchers need better ways to organize, execute,
record, and analyze their work.

In this paper we present our evolving solution: an in-
tegrated experimentation management system called the
experimentation workbench. The workbench uses con-
cepts from scientific workflow management systems to
provide new ways for Emulab’s users to structure their
activities. The workbench is based on a new model of
testbed-based experiments, one that is designed to de-
scribe the relationships between multiple parts of exper-
iments and their evolution over time. The workbench
enhances Emulab’s previous model and existing features
in order to help researchers “package” their experiment
definitions, explore variations of experiments, capture
the inputs and outputs of experiments, and perform data
analyses. A key concern of the workbench is automa-
tion: we intend for users to be able to re-execute testbed-
based experiments with minimum effort, either as-is or
in modified form. Repeated research requires both ex-
periment encapsulation and access to a laboratory, but
the workbench goes further by automating the execution
of experiments. Thus, instead of saying that the work-
bench supports repeated research, we say that it supports
replayable research: activities that not only can be re-
executed, but that are based on a framework that makes
re-execution straightforward.

The primary contributions of this paper are (1) the
identification of replayable research as an critical part of
future advances in networking; (2) the detailed presen-
tation of our experimentation workbench, which is our
evolving framework for replayable networking research;
and (3) an evaluation of the current workbench through
case studies of its use in actual research projects. Our
workbench is implemented atop Emulab, but the idea
of replayable research is general and applicable to other
testbed substrates. In fact, two of our case studies utilize
PlanetLab via the Emulab-PlanetLab portal [31].

This paper builds on our previous work [11] by detail-
ing the actual workbench we have built, both at the con-

Figure 1: Emulab’s Web interface

ceptual level (Section 3) and the implementation level
(Section 4). In addition, our case studies (Section 5)
show how the current workbench has been applied to
ongoing network research activities, including software
development and performance evaluation, within our re-
search group. The case studies highlight both the useful-
ness of the current workbench and ways in which the cur-
rent workbench should be improved. Section 6 presents
related work, and Section 7 concludes.

2 Background

Since April 2000, our research group has continuously
developed and operated Emulab [32], a highly successful
and general-purpose testbed facility and “operating sys-
tem” for networked and distributed system experimenta-
tion. Emulab provides integrated, Web-based access to a
wide range of experimental environments including sim-
ulated, emulated, and wide-area network resources. It
is a central resource in the network research and educa-
tion communities: as of October 2006, the Utah Emulab
site had over 1,500 users from more than 225 institutions
around the globe, and these users ran over 18,000 exper-
iments in the preceding 12 months. In addition to our
testbed site, Emulab’s software today operates more than
a dozen other testbeds around the world.

The primary interface to Emulab is through the Web,
as shown in Figure 2. Once a user logs in, he or she
can start an experiment, which is Emulab’s central op-
erational abstraction. An experiment defines both a
static configuration and a dynamic configuration of a
network, as outlined in Figure 2. Experiments are typ-
ically described using an extended version of the ns lan-
guage [14], but they may also be created through a GUI
within Emulab’s Web interface.

2



set ns [new Simulator]

source tb_compat.tcl

# STATIC PART: nodes, networks, and agents.

set cnode [$ns node] # Define a node

set snode [$ns node]

set lan [$ns make-lan "$cnode $snode" \

100Mb 0ms]

set client [$cnode program-agent]

set server [$snode program-agent]

# DYNAMIC PART: events.

set do-client [$ns event-sequence {

$client run -command "setup.sh"

$client run -command "client.sh"

}]

set do-server [$ns event-sequence {

$server run -command "server.sh"

}]

set do-expt [$ns event-sequence {

$do-server run

$do-client run

}]

$ns at 0.0 "$do-exp start"

$ns run

Figure 2: A sample experiment definition

The static portion describes a network topology: a set
of computers and other devices, the network in which
they are contained, and the configurations of those de-
vices and network links. This description includes the
type each node (e.g., a 3 GHz PC, a PlanetLab node, or
a virtual machine), the operating system and other pack-
ages that are to be loaded onto each node, the character-
istics of each network link, and so on. It also includes
the definitions of program agents, which are testbed-
managed entities that run programs as part of an experi-
ment.

The dynamic portion is a description of events: ac-
tivities that are scheduled to occur when the experiment
is executed. An event may be scheduled to occur at a
particular time, e.g., thirty seconds after the start of the
experiment. An event may also be unscheduled: in this
case, the user or some running processes may signal the
event at run time. Events can be assembled into event
sequences as shown in Figure 2. Events are managed
and distributed by Emulab and are received by various
testbed-managed agents. Some agents are set up auto-
matically by Emulab, including those that receive com-
mands to operate on nodes and links (e.g., to bring them
up or down). Other agents are set up by the user as part of
an experiment. These include the program agents men-
tioned above; traffic generator agents, which produce
various types of network traffic; and timelines, which are

agents that signal a user-specified sequence of events.
Through Emulab’s Web interface, a user submits an

experiment definition and gives it a name. Emulab
parses the specification and stores the experiment in its
database. The user can now “swap in” the experiment,
meaning that it is mapped onto physical resources in the
testbed. Nodes and network links are allocated and con-
figured, program agents are created, and so on. When
swap in is complete, the user can login to the allocated
machines and do his or her work. A central NFS file
server provides persistent storage; this server is avail-
able to all the machines within an experiment. Some
users carry out their experiments “by hand,” whereas oth-
ers use events to automate and coordinate their activi-
ties. When the user is done, he or she tells Emulab to
“swap out” the experiment, which releases the experi-
ment’s resources. The experiment itself remains in Em-
ulab’s database so it can be swapped in again later.

3 New Model of Experimentation
Over time, as Emulab was used for increasingly complex
and large-scale research activities, we realized that the
model of experiments described above fails to capture
important aspects of the experimentation process.

3.1 Problems

We identified five key ways that the original Emulab
model of experiments breaks down for users.

1. An experiment entangles the notions of defini-
tion and instance. In other words, an experiment com-
bines the idea of describing a network with the idea of
allocating physical resources for that description. This
means, for example, that a single experiment description
cannot be used to create two concurrent instances of that
experiment.

2. The old model cannot describe related experi-
ments, but representing such relationships is important
in practice. Because distributed systems have many vari-
ables, a careful study requires running multiple, related
experiments that cover a parameter space.

3. An experiment does not capture the fact that
a single “session” may encompass multiple subparts,
such as individual tests or trials. These subparts may or
may not be independent of each other: for example, a test
activity may depend on the prior execution of a setup ac-
tivity.

4. Data management is not handled as a first-class
concern: i.e., acquisition, collection, organization, and
analysis. Users had to deal with instrumenting their
systems under study and orchestrating the collection of
that data. For a large system with many high-frequency
probes, the amount of data gathered can obviously be
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very large. Moreover, users need to analyze all their data:
not just within one experiment, but across separate exper-
iments.

5. Finally, the old model does not help users to
manage all the parts of an experiment. In practice,
an experiment is not defined just by an ns file, but also
by all the software, input data, configuration parameters,
documentation, and so on that is utilized within the ex-
periment. These things change in both planned and un-
planned ways over the course of a study, which may span
a long period of time. Saving and recalling history is es-
sential for many purposes including collaboration, reuse,
replaying experiments, and reproducing results.

3.2 Solution: refine the model

The issues described above central to the experimenta-
tion workbench and our vision for replayable research.
Addressing these issues, therefore, was an essential first
step in the design and implementation of the workbench.

Our solution was to design a new, expanded model of
testbed-based experiments. The original model of Emu-
lab experiments is monolithic in the sense that a single
user-visible entity represents the entirety of an experi-
ment. This monolithic notion nevertheless fails to cap-
ture all the aspects of an experiment as described above.
Our new model divided the original notion of an experi-
ment into parts, and then enhances those parts with new
capabilities.

Figure 3 summarizes the main relationships between
the components of the new model. The two most im-
portant components are templates, shown at the top, and
records, shown at the bottom. These two types of com-
ponents are persistent and are stored “forever” by the ex-
perimentation workbench. In contrast, most of the other
model components are transient because they represent
entities that exist only while testbed resources are being
used.

The rest of this section describes the elements of our
new model of experimentation at high level. Section 4
shows how these model elements are realized and used
in our Emulab-based workbench implementation.
• A template is a repository for the many things that

collectively define a testbed-based environment. A tem-
plate plays the “definition” role of Emulab’s original ex-
periment abstraction. A template contains the many files
that are needed for a study—not just an ns file, but also
the source code and/or binaries of the system under test,
input files, and so on. In addition, a template may con-
tain other kinds data such as (reified) database tables and
references to external persistent storage, e.g., dataposito-
ries [4] and CVS repositories.

Templates have two additional important properties.
First, templates are persistent and versioned. A template

is an immutable object: “editing” a template actually cre-
ates a new template, and the many revisions of a template
form a tree that the user can navigate. Second, templates
have parameters, akin to the parameters to a function.
Parameters allow a template to describe a family of re-
lated environments and activities, not just one. A user
specifies the values of parameters when he or she instan-
tiates a template, as described next.
• A template instance is a container of testbed re-

sources: nodes, links, and so on. A user creates a tem-
plate instance and populates it with resources by using
the workbench’s Web interface (implemented as exten-
sions to Emulab’s Web interface). The process of in-
stantiating a template is very much like the process of
swapping in an experiment in the traditional Emulab Web
interface. There are two obvious differences, however.
First, the user can specify parameter values when a tem-
plate is instantiated. These parameter values are accessi-
ble to processes within the instance and are included in
records as described below. Second, a user can instanti-
ate a template even if there is an existing instance that is
associated with the template.

A template instance is a dynamic and transient entity:
it plays the “resource owner” role of the original, mono-
lithic experiment notion. The resources within a template
instance may change over time, as directed by the activi-
ties that occur within it. When the activities are finished,
the allocated resources are released and the instance is
destroyed.
• An run is a user-defined context for activities. Con-

ceptually, a run is a container of processes that execute
and events that occur within a template instance. In terms
of the monolithic Emulab experiment model, the role of
a run is to represent a user-defined “unit of work.” In
the new model, a user can demarcate separate groups
of activities that might occur within a single template
instantiation—for example, a user could separate indi-
vidual trials of a system under test. These separate trials
may occur serially or in parallel. (Our current implemen-
tation supports only serial runs.) A run is transient, but
the events that occur within the run, along with the ef-
fects of those events (e.g., output files), are recorded in
persistent storage as described below.

Like a template instance, a run can have parameter val-
ues, which are specified when a run is created.
• An activity is a collection of processes, workflows,

scripts, and so on that execute within a run. Having an
explicit model component for activities is useful for two
reasons. First, it is necessary for tracking the provenance
of artifacts (e.g., output files) and presenting that prove-
nance to experimenters in meaningful ways. Second, it is
needed for the workbench to manipulate activities in rich
ways. For example, the workbench could execute only
the portions of a workflow that are relevant to a particular
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Figure 3: Summary of the new model of experimentation. The diagram illustrates an example of a user’s experimentation over
time. (The information is displayed differently in the actual workbench GUI, as shown in other figures.) In the example, the user
first creates a template and uses it to get one set of results, represented by the leftmost record. The user then modifies the template
by defining a parameter: this is used to create two instances, and the four-node instance fails. The experimenter fixes the bug and
runs a final template instance, which succeeds.

output that a researcher wants to generate. In our current
implementation, activities correspond to Emulab events
and event sequences, plus the actions that are taken by
testbed agents when events are received.
• A record is the persistent record of the activities

and effects that occurred within a run. A record is a
repository: it contains output files, of course, but it may
also contain input files when those files are not contained
within the template that is associated with the record.
The idea of an record is to be a “flight recorder,” cap-
turing everything that is relevant to the experimenter and
at a user-specified level of detail. Once the record for a
run is complete, it is immutable.

The workbench automatically captures data from
well-defined sources, and automatic techniques such as
packet recorders [12], filesystem monitors [11], and
provenance-aware storage systems [21] can help to de-
termine the “extent” of an experiment. Such techniques
can be automatically deployed by a testbed and can
drastically lower the experiment-specification burden for
workbench users.
• Finally, metadata is used to annotate templates and

records. Metadata are first-class objects, as opposed to
being contained within other objects. This is impor-
tant, because templates and records are immutable once
they are created. Metadata can therefore be used to de-
scribe other objects, without changing the described ob-

jects themselves. For instance, users can give meaningful
names to templates and records through metadata. The
workbench itself can also use metadata to attach mutable
properties to templates and records—for example, infor-
mation about how these things should be presented to
users in a testbed’s GUI.

4 Using the Workbench

In this section we present our implementation of the
workbench through an example of its use. Our im-
plementation extends Emulab to support replayable re-
search, based on the conceptual model described in Sec-
tion 3. Taken as a whole, the model may seem over-
whelming to users. An important part of our work, there-
fore, is to implement the model through GUI extensions
and other tools that build upon the interfaces that testbed
users are already accustomed to.

4.1 Creating templates

A user of the workbench begins by creating a new tem-
plate. He or she logs in to Emulab Web site and navi-
gates to the form for defining a new template, shown in
Figure 4 Readers familiar with Emulab will see that the
form is similar to the page for creating regular Emulab
“experiments,” except that the controls related to swap-
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Figure 4: Creating a new template

ping in an experiment are missing. The form asks the
user to specify:
• the project and group for the template. These at-

tributes relate to Emulab’s security model for users,
described elsewhere [32].

• a template ID, which is a user-friendly name for the
template, and an initial description of the template.
These are two initial pieces of metadata.

• an ns file, which describes a network topology and
a set of events, as described in Section 2.

As illustrated later on, the workbench assigns a globally
unique identifier (GUID) to each template, and the GUID
of a template never changes. In contrast, the user-given
template ID is changeable metadata.

Parameters. Templates may have parameters, and
these are specified through new syntax in the ns file. A
parameter is defined by a new ns command:

$ns define-template-parameter name value desc

where name is the name of the parameter, value is the
default value, and desc is an optional descriptive string.
These elements will be presented back to the user when
he or she instantiates the template. A parameter defines
a variable in the ns file, so it may affect the configura-
tion of a template instance. For example, the following
code uses a parameter to specify the number of nodes in
a network topology:

$ns define-template-parameter NodeCount 3

for {set i 1} {$i <= $NodeCount} {incr i} {

set node($i) [$ns node]

}

Datastore. At this point, the user can click the Create
Template button. The ns file is parsed, and the template
is added to the workbench’s database of templates. Now
the user can add other files to the template.1

1In the future, we will extend the workbench user interface so that
users can add files to a template as part of the initial creation step.

The most convenient way for users to add files to a
template is by projecting the template into a filesystem.
One can think of this as a “checkout” of the template
from the repository that is kept by the workbench. Once
a template is created, the workbench automatically cre-
ates a checkout of the template at a well-known place in
Emulab’s file system. The part of the template that con-
tains files is called the datastore, and to put files into a
template, a user places them within the datastore di-
rectory.

# Navigate to the datastore of the template.

cd .../datastore

# Add scripts, files, etc. to the template.

cp ~/client.sh ~/server.sh .

cp -r ~/input-files .

At this point, the user can “commit” the new files to the
template.

template_commit

In fact, this action creates a new template. Recall that
templates are immutable, which allows the workbench to
keep track of history. Thus, changing the files within a
template results in a new template, and the workbench
records that the new template is a modification of the
original template. The template_commit command in-
fers the identity of the original template from the current
working directory.

Our current implementation in based on Subversion,
the popular open-source configuration management and
version control system. This implementation is hidden
from users, however: the directories corresponding to a
template are not a “live” Subversion sandbox. So far, we
have implemented the ability to put ordinary files into a
template. Connecting a template to other sources of per-
sistent data, such as databases or external source repos-
itories, is future implementation work. Emulab already
integrates CVS (and soon Subversion) support for users,
so we expect to connect the workbench to those facilities
first.

Template history. A template can be modified either
through the file system or through Emulab’s Web inter-
face. Each modification results in a new template, and a
single template may be modified multiple times—for ex-
ample, to explore different directions of research. Thus,
over a time, a user creates a tree of templates, represent-
ing the history of a research study over time. The work-
bench keeps track of this history and can present it to
users as shown in Figure 5. The original template is the
root of the tree, at left; the most recent versions of the
template are at the right. By clicking on the nodes of the
tree, the user can recall and inspect any template in the
history. The interface utilizes AJAX to provide a high de-
gree of interactivity. The workbench also provides con-
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Figure 5: The workbench tracks and displays how templates
are derived

Figure 6: Instantiating a template

trols that affect the tree display: e.g., individual nodes or
subtrees can be elided from the display.

4.2 Instantiating templates

Through the Web interface, a user can select a template
and then instantiate it. The page for instantiating a tem-
plate is shown in Figure 6. Readers familiar with Emu-
lab will see that the form for instantiating a template is
similar to the form for swapping in a regular Emulab ex-
periment, with two primary differences. First, the tem-
plate form displays the template parameters and allows
the user to edit their values. Second, the user must give
a name to the template instance; this name is used by
Emulab to create DNS records for the machines that are
allocated to the template instance. By default, the name
of the instance is derived from the name of the template,
but the user can edit this value.

When a template is instantiated, a copy of the tem-
plate’s datastore is created for the instance. This en-
sures that concurrent instances of a template will not
interfere with each other through modifications of the
datastore. This also builds on existing Emulab facilities.
Users know that Emulab creates a directory for each ex-
periment they run; our implementation extends this by
adding template-specific features, such as copies of the
datastore, to that directory.

4.3 Defining activities

When a template instance is created, testbed resources
are allocated, configured, and booted. After the network
and devices are up and running, the workbench automat-
ically starts a run—a context for user work, as described
previously—and starts any prescheduled activities within
that run. The parameters that were specified for the tem-
plate instance are communicated to the agents within the
run.

Predefined activities. In our current implementa-
tion, activities are implemented using events and agents.
Agents are part of the infrastructure provided by Emu-
lab; they respond to events and perform actions such as
modifying the characteristics of links or running user-
specified programs. We found that the existing agent
and event model was well-suited for describing “pre-
scripted” activities within our initial workbench imple-
mentation.

As already described, agents and scripted events are
specified in a template’s ns file, and commonly, events
refer to data that is external to the ns file. For example,
as shown in Figure 2, events for a program agents typi-
cally refer to external scripts. The workbench makes it
possible to encapsulate these files within templates, by
putting them in the template’s datastore. When a tem-
plate is instantiated, the location of the instance’s copy of
the datastore is made available via the DATASTORE vari-
able. An experimenter can use that variable to refer to
files that are encapsulated within the template, as shown
in this example:

set do-client [$ns event-sequence {

$client run -command {$DATASTORE/setup.sh}

$client run -command {$DATASTORE/client.sh}

}]

Dynamically recording activities. The workbench
also allows a user to record events dynamically, for re-
play in the future. This feature is important for lower-
ing the barrier to entry for the workbench and support-
ing multiple modes of use. To record a dynamic event, a
user simply executes the record command on some host
within the template instance. For example, the following
records a dynamic event to execute client.sh:
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record client.sh

A second instance of record adds a second event to the
recording, and so on. The workbench provides additional
commands allow a user to stop and restart time with re-
spect to the dynamic record, so that the recording does
not contain large pauses when it is later replayed. When
a recording is complete, it can be edited using a simple
Web-based editor. We discuss replay below.

4.4 Using records

In the new model of experimentation, a record is the
flight recorder of all the activities and effects that oc-
cur during the lifetime of a run. To achieve this goal in
a transparent way, the workbench needs to fully instru-
ment the resources and agents that constitute a template
instance. We are gradually adding such instrumentation
to the testbed, and in the meantime, we use a combina-
tion of automatic and manual (user-directed) techniques
to decide what should be placed in the permanent record
of a run.

Creating records. When a run is complete—e.g., be-
cause the experimenter uses the Web interface to ter-
minate the template instance—the workbench creates a
record of the run containing the following things:
• the parameter values that were passed from the tem-

plate instance to the run. These are stored in an
XML file.

• the logs that were generated by testbed agents.
These are written to well-known places, and so the
workbench can collect them automatically.

• files that were written to a special archive direc-
tory. Similar to the datastore directory described
previously, every template instance also has a ded-
icated archive directory in which users can place
files that should be persisted.

• the recorded dyanmic events, as explained previ-
ously.

• a dump of the database for the template instance.
Similar to the archive directory, the workbench
automatically creates an online database as part of
every template instance. The activities within a tem-
plate instance can use this database as they see fit.
At the end of a run, the contents of the database, if
any, are exported and included in the record.

As described for templates, records are also stored in a
Subversion repository that is internal to the workbench.
This design was chosen as a way to save storage space,
since it was anticipated that the different records derived
from a single template would be largely similar. Experi-
ence has shown, however, that Subversion is too slow for
our needs when it is asked to merge large data sets. In re-
sponse, we have enhanced the production-quality Linux
“LVM” logical volume manager software [16].

Figure 7: Viewing the records associated with a template

LVM already supported filesystem snapshots, but mul-
tiple snapshots caused snapshotting to become very slow,
due to the way its COW design wrote modified blocks to
all snapshots. Our first improvement was to speed up the
performance of chained snapshots by an order of magni-
tude. Our second was to extend LVM to support arbitrary
branching of snapshots. Such branching filesystems have
until now only been partially implemented in research
artifacts [1, 26]. Our implementation is currently work-
ing, and when it is production-quality and connected to
the workbench, it should solve our performance prob-
lem. Perhaps more importantly, it will remove the need
for users to put all files that they want saved into the
special archive directory tree. However, this “universal”
versioning and restoration will raise issues of user intent
and user interface, as sometimes they won’t wish certain
files, e.g., “dot” files, to roll back.

Inspecting records. The workbench stores records
automatically and makes them available to users through
the Web interface. From the Web page that describes a
template, the user can click on the Template Record to
view the records that have been derived from that tem-
plate. Figure 7 shows an example listing of records,
which are arranged in a two level hierarchy correspond-
ing to template instances and runs within those instances.

Through the Web interface, a user can navigate to any
record and inspect its contents. Addtional controls allow
a user to reconsititute the database that was dumped to
a record: this is useful for post-mortem analysis, either
by hand or in the context of another run. Finally, the
workbench also provides a command-line program for
exporting the entire contents of a record.

Replay from records. The Web interface in Figure 7
also includes a Replay button, which creates a new tem-
plate instance from a record. The replay button allows a
user to create an instance using the parameters and data-
store contents that were used in the original run, when-
ever that was, since these things are all archived away.
The original ns file and datastore are retrieved from the
template and/or record, and the parameter values come
from the record. A new instance is created and replayed,
eventually producing a new record of its own.
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4.5 Managing runs

A user may choose to enclose all of his or her activi-
ties within a single run. Alternatively, a user may start
and stop multiple runs during the lifetime of a template
instance, thus yielding multiple records for the individ-
ual activities. An interesting feature of our workbench
is that, whenever a new run is started, the user has the
opportunity to specify new values of the parameters for
that run. The set of parameters are those defined by the
template; the user simply has the opportunty to change
their values for the new run.

When a run is stopped, the workbench stops all the
program agents and tracing agents within the run; col-
lects the logfiles from the agents; dumps the template
instance’s database; and commits the contents of the in-
stance’s archive directory to the record. When a new
run is started, the workbench optionally cleans the agent
logs; optionally resets the instance’s database; commu-
nictaes new parameter values to the program agents;
restarts the program agents; and restarts “event time” so
that the scheduled events in the template’s ns file will re-
occur.

An additional capability of the workbench is that users
are able to script their entire sequence of runs using the
event system and/or Emulab’s XML-RPC interface. Us-
ing a command line program provided by Emulab, or
one written by the user in any language that supports
the XML-RPC interface, the user can stop and start new
runs, providing new parameter values via an attached
XML file. Further, the user can employ either static or
dynamic events to launch new runs, or even to launch a
script that will connect to the Emulab XML-RPC server.

5 Case Studies

Although our experimentation workbench is a work in
progress, we wanted to obtain early feedback on the
model and implementation from Emulab users. We
therefore recruited several members of our own research
group to use our prototype. All were experienced testbed
users (and developers), but not directly involved in the
design and implementation of the workbench. They used
the workbench for about a month for their own research
in networked systems, as described below.

5.1 Study 1: system development

The first study applied the workbench to software devel-
opment tasks within the Flexlab [10] project. Flexlab is
software to support the emulation of “real world” net-
work conditions within Emulab. Specifically, Flexlab
emulates conditions observed in PlanetLab, an Internet-
based overlay testbed, within Emulab. The goal is to

make it possible for applications that are run within Em-
ulab to be subject to the network conditions that would
be present if those same applications had been run on
PlanetLab. The Flexlab developers used the workbench
to improve the way in which they were developing and
testing Flexlab itself.

A Flexlab configuration consists of several pairs of
nodes, where each pair contains one Emulab node and
a “proxy” of that node in PlanetLab. The Flexlab in-
frastructure continually sends traffic between the Planet-
Lab nodes. It observes the resulting behavior, produces
a model of the network conditions, and then directs Em-
ulab to condition its network links to match the model.
The details of these processes are complex and described
elsewhere [10].

The original framework for a Flexlab experiment con-
sisted of (1) an ns file, containing variables that control
the topology plus the specifics of a particular experiment,
and (2) a set of scripts for launching the Flexlab services,
monitoring application behavior, and collecting results.
An Flexlab developer would start a typical experiment
by modifying the ns file variables as needed, creating an
Emulab experiment with the modified ns file, and run-
ning a “start experiment” script to start up the Flexlab
infrastructure. Thus, although all the files were managed
via CVS, each experiment required by-hand modification
to the ns file, and the Emulab experiment itself was not
associated with the files in the developer’s CVS sandbox.

At this point the experimenter would run additional
scripts to launch an application atop Flexlab. When the
application ended, he or she would run a “stop experi-
ment” script to tear down the Flexlab infrastructure and
collect results. He or she would then analyse the results,
and possibly repeat the start, stop, and analysis phases
a number of times. The attributes of each “run” could
be changed either by specifying options to the scripts or,
in some cases, by modifying the experiment (via Emu-
lab’s Web interface). Thus, although the collection of
results was automated, the documentation and long-term
archiving of these results were performed by hand—or
not at all. In addition, the configuration of each run was
accomplished through script parameters, not through a
testbed-monitored mechanism. Finally, if the user mod-
ified the experiment, the change was destructive: going
back to a previous configuration meant undoing changes
by hand or starting over.

The Flexlab developers used the prototype workbench
to start addressing the problems described above with
their ad hoc Flexlab testing framework. They created a
template from their existing ns file, and it was straight-
forward for them to change the internal variables of their
orignal ns file to be parameters of the new template.
They moved the start- and stop-experiment scripts into
the template datastore, thus making them part of the tem-
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plate. The options passed to these scripts also became
template parameters: this made it possible for the work-
bench to automatically record their values, and for ex-
perimenters to change those values at the start of each
run (Section 4.5). Once the scripts and their options were
elements of the template, it became possible to modify
the template so that the start- and stop-experiment scripts
would be automatically triggered at run boundaries. The
Flexlab developers also integrated the functions of as-
sorted other maintenance scripts with the start-run and
stop-run hooks. A final but important and immediate
benefit of the conversion was that the workbench now
performs the collection and archiving of result files from
each Flexlab run.

These changes provided an immediate logistical ben-
efit to the Flexlab developers. A typical experiment now
consists of starting with the Flexlab template, setting the
values for the basic parameters (e.g., number of nodes
in the emulated topology, and whether or not Planet-
Lab nodes will be needed), instantiating the template,
and then performing a series of runs via menu options
in the workbench Web interface. Each run can be param-
eterized separately and given a name and description to
identify results.

At the end of the case study, the Flexlab develop-
ers made four main comments about the workbench and
their overall experience. First, they said that although
the experience had yielded a benefit in the end, the initial
fragility of the prototype workbench sometimes made it
more painful and time-consuming to use than their “old”
system. We fixed implementation bugs as they were
reported, but still they frustrated the Flexlab develop-
ers along the way. Second, the developers noted that a
great deal of structuring had already been done in the
old Flexlab environment that mirrors some of what the
workbench provides. Although this can be seen as rein-
vention, we see it as a validation that the facilities of the
workbench are needed for serious development efforts.
As a result of the case study to date, the Flexlab devel-
opers can now use the generic facilities provided by the
workbench instead of maintaining their own ad hoc so-
lutions. Third, the Flexlab developers noted that they are
not yet taking advantage of other facilities that the work-
bench offers. For example, they are not recording appli-
cation data into the per-instance database (which would
support SQL-based analysis tools), nor are they using the
ability to replay runs using data from previous records.
Fourth, the developers observed that the prototype work-
bench could not cooperate with their existing source con-
trol system, CVS. Integrating with such facilities is part
of our design (Section 3.2), but is not yet implemented.

Despite the current limits of the workbench, the
Flexlab developers were able to use it to perform real
tasks. For instance, the evaluation of Flexlab that ap-

peared in a recent conference submission [9] was carried
out with the workbench.

5.2 Study 2: performance analysis

We asked one of the Flexlab developers to use the work-
bench in a second case study, to compare the behavior
of BitTorrent on Flexlab to the behavior of BitTorrent on
PlanetLab.

He created templates to run BitTorrent configurations
on both testbeds. His templates automated the process of
preparing the network (e.g., distributing the BitTorrent
software), running BitTorrent, producing a consolidated
report from numerous log files, and creating graphs using
gnuplot. Data were collected to the database that is set
up by the workbench for each template instance, and the
generated reports and graphs were placed into the record.
These output files were then made available via Emulab’s
Web interface (as part of the record).

Once a run was over, to analyze collected data in
depth, the developer used the workbench Web interface
to reactivate the live database that was produced dur-
ing the run. The performance results that the researcher
obtained through workbench-based experiments—too
lengthy to present here—were included in the previously
cited conference submission about Flexlab [9].

In terms of evaluating the workbench itself, the de-
veloper in this case study put the most stress on our
prototype—and thereby illuminated important issues for
future workbench improvements. For example, he ini-
tially had problems using the workbench in conjunction
with PlanetLab, because our prototype workbench was
not prepared to handle cases in which nodes become un-
available between runs. He also asked for new features,
such as the ability to change the ns file during a tem-
plate instance, and have those changes become “inputs”
to subsequent runs. We had not previously considered
the idea that a user might want to change not just param-
eter values, but the entire ns file, between runs in a single
template instance. We quickly implemented support for
these features, but we will clearly need to revisit the is-
sues that were raised during this case study. In particular,
it is clear that the issue of handling testbed resource fail-
ures will be important for making the workbench robust
and applicable to testbeds such as PlanetLab.

5.3 Study 3: application monitoring

In this section, we describe how another local researcher
used our workbench to study the behavior of an exist-
ing large-scale emulation scenario called GHETE (Giant
HETerogeneous Experiment).

GHETE was written by this researcher in June 2006
to showcase Emulab’s ability to handle large network
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Figure 8: An example GHETE topology. Squares represent
nodes, circles represent LANs, and lines represent wired links.
Nodes without wired connections have wireless links only.
Some nodes act as endpoints and others act as routers.

topologies containing many types of nodes and links:
wired and wireless PCs, virtual nodes, software-defined
radio nodes, sensor network motes, and mobile robots
carrying motes. GHETE uses these node types inside an
emulation of a distributed data center. The data cen-
ter consists of two or more remote clusters, each act-
ing as a service center for large numbers of client nodes.
Client nodes send large TCP streams of data to the clus-
ter servers via iperf, emulating an Internet service,
such as a heavily used, distributed file backup service.
Each of the clusters is monitored for excessive heat by
a collection of fixed and mobile sensor nodes. When
excessive heat is detected at a cluster, the cluster ser-
vices are stopped, emulating a sudden shutdown. A
load-balancing program monitors cluster bandwidth and
routes new clients to the least-utilized cluster. Figure 8
shows an example GHETE topology. Two service clus-
ters are shown near the top, and several client LANs are
shown clustered around the central router.

The GHETE developer used the workbench template
system to parameterize many aspects of the emulation,
including client network size, bandwidth and latency
characteristics, and node operating systems. Because
the arguments controlling program execution were also
turned into template parameters, the workbench version
of GHETE allows an experimenter to execute multiple
runs (Section 4.5) to quickly evaluate a variety of soft-
ware configurations on a single emulated topology.

Although the workbench version of GHETE provided
many avenues for exploration, we asked the developer to
focus his analysis on the behavior of GHETE’s load bal-
ancer. To perform this study, he defined a GHETE topol-
ogy with two service clusters. The aggregate bandwidth
of each cluster was measured at 1 second intervals, and
these measurements were stored in the database that is
created by the workbench for the template instance. To
visualize the effectiveness of the load balancer, the devel-
oper wrote a script for the R statistics system [27] that an-
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Figure 9: Measured difference in the incoming bandwidths of
the two service clusters, using a simple load balancer
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Figure 10: Measured difference in the incoming bandwidths of
the two service clusters, using an improved load balancer

alyzes the collected bandwidth measurements. The script
automates post-processing of the data: it executes SQL
queries to process the measurements directly from the
database tables and generates plots of the results.

Figure 9 and Figure 10 show two of the graphs that the
developer produced with his R script during the study.
Each shows the absolute difference between the aggre-
gate incoming bandwidths of the two service clusters.
The spikes in the graphs correspond to times when one
cluster was “shut down” due to simulated heat events.

Figure 9 illustrates the behavior of a very simple load-
balancing strategy, which exhibits widely varying differ-
ences between the two clusters. As long as one cluster’s
incoming bandwidth utilization is below the other, clients
are routed to the least-utilized cluster. This method pro-
duces large oscillations of incoming bandwidth between
the two clusters. This occurs because, when the clusters
have equalized, the newly added iperf clients are still
increasing their transmission speed, and the originally
least-utilized cluster quickly becomes the most-utilized.

Figure 10 shows the behavior of an improved load
balancer that routes clients in a round-robin fashion if
the clusters’ incoming bandwidths differ by less than a
small threshold. If the bandwidth difference exceeds this
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threshold, the load balancer routes one client to the most-
utilized cluster for every two clients sent to the least-
utilized cluster. This has the effect of reducing oscillation
and keeping the clusters slightly more equal in terms of
incoming bandwidth.

The GHETE developer said that the workbench was ex-
tremely useful in evaluating the load balancing in GHETE
and provided insights for future improvements. He listed
three primary ways in which the workbench improved
upon his previous development and testing methods.
First, as noted above, by providing the opportunity to
set new template parameter values for each run within
a template instance, software controlled by Emulab pro-
gram agents could be easily configured and reconfigured.
This enabled rapid trials and reduced experimenter wait
time. Second, via the per-template-instance database that
is saved after each run, the GHETE developer was able to
analyze incoming data in real time in an interactive R ses-
sion. He could also easily re-instantiate the database
from any previous run for further analysis. Third, since
he parameterized all relevant aspects of GHETE’s emu-
lation software, he was able to quickly iterate through
many different parameters without wasting time track-
ing which runs correspond to which parameter settings.
Since the parameter bindings for each run are archived
by the workbench, he was able to easily recall settings in
the analysis phase.

6 Related Work

The experimentation workbench is an experiment man-
agement system, and there is a growing awareness of the
need for such systems in the networking research com-
munity. Plush [2], for instance, is a framework for man-
aging experiments in PlanetLab. To use Plush, a user
writes an XML file that describes the software that is to
be run, the testbed resources that must be acquired, how
the software is to be deployed onto testbed nodes, and
how the running system is to be monitored. At run time,
Plush provides a shell-like interface that helps a user per-
form resource acquisition and application control actions
across many testbed nodes. Plush thus provides features
that are similar to those provided by Emulab’s core man-
agement services, which utilizes extended ns files and
provides a Web-based user interface. Our experimen-
tation builds atop these services to address higher-level
concerns of experimentation management: encapsula-
tion and parameterization via templates, revision track-
ing and navigation, data archiving, data analysis, and
user annotation. Plush and our work are therefore com-
plementary, and it is conceivable that a future version
of the workbench could manage the concerns mentioned
above for Plush-driven experiments.

Weevil [30] is a second experiment management sys-

tem that has been applied to PlanetLab-based research.
Weevil is similar to Plush and Emulab’s control system
in that it deals with deploying and executing distributed
applications on testbeds. It is also similar to the work-
bench in that it deals with parameterization and data
collection concerns. Weevil is novel, however, in two
primary ways. First, Weevil uses generative techniques
to produce both testbed-level artifacts (e.g., topologies)
and application-level artifacts (e.g., scripts) from a set
of configuration values. Our workbench uses parameters
to configure network topologies in a direct way, and it
makes parameters available to running applications via
program agents. It does not, however, use parameters to
generate artifacts like application configuration files, al-
though users can automate such tasks for themselves via
program agents. Weevil’s second novel feature is that
it places a strong focus on workload generation as part
of an experiment configuration. Both of the features de-
scribed above would be excellent additions to future ver-
sions of the workbench. As with Plush, Weevil and the
workbench are largely complementary because they ad-
dress different concerns of replayable research.

Software testing and quality assurance (QA) tasks are
common types of experiments, and frameworks for au-
tomated quality assurance have much in common with
our workbench. Skoll [19], for example, utilizes a dis-
tributed testbed to perform QA tasks automatically and
in parallel. Skoll provides a process execution frame-
work and features for collecting test results, but more in-
terestingly, it implements novel strategies for exploring
the software configuration space, i.e., finding interest-
ing experiments to run. We intend to incorporate similar
intelligent steering capabilities in future versions of the
workbench. Other popular tools for “automated contin-
uous integration” include CruiseControl [8], Dart [15],
and Tinderbox [20]. Although these tools are well-suited
to the domain of automated testing within a software de-
velopment, our experimentation workbench is designed
support many modes of use and a broad range of ex-
periment goals. In addition, the workbench is designed
to manage experiments involving distributed systems,
which is not a common focus of continuous integration
tools.

Many scientific workflow management systems have
been developed for computational science, including Ke-
pler [17], Taverna [23], Triana [29], VisTrails [5], and
others [33]. Many of these are designed for executing
distributed tasks in the Grid. Our workbench has much
in common with these systems in that the primary bene-
fits of workflow management include task definition and
annotation, tracking data products, and promoting ex-
ploration and automation. Our workbench differs from
general scientific workflow management systems, how-
ever, in terms of its intended modes of use and focus on
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networking research. Our experience is that Emulab is
most successful when it does not require special actions
from its users; the workbench is therefore designed to
enhance the use of existing testbeds, not to define a new
environment. Moreover, because the workbench is inte-
grated with a network testbed’s user interface, resource
allocators, and automation facilities, it can do “better”
than Grid workflow systems for experiments in network-
ing.

Many experiment management systems have also been
developed for domains outside of computer science.
For instance, ZOO [13] is a generic management en-
vironment that is designed to be customized for re-
search in fields such as soil science and biochemistry.
ZOO is designed to run simulators of physical processes
and focuses primarily on data management and explo-
ration. Another experiment management system is Lab-
VIEW [22], a popular commercial product that interfaces
with many scientific instruments. Our experimentation
workbench is a significant step toward bringing the bene-
fits of experiment management, which are well-known in
the hard sciences, to the domain of computer science in
general and networked and distributed systems research
in particular. Networking research presents new chal-
lenges for experiment management: for instance, the “in-
struments” in a network testbed consume and produce
many complex types of data including software, input
and output files, and databases of results from previous
experiments. Networking also presents new opportuni-
ties, such as the power of testbeds with integrated ex-
periment management systems to reproduce experiments
“exactly” and perform new experiments automatically.
Thus, whereas physical scientists must be satisfied with
repeatable research, we believe that the goal of computer
scientists should be replayable research: encapsulated
activities plus experiment management systems that help
people re-execute those activities with minimum effort.

7 Conclusion

Vern Paxson described the problems faced by someone
who needs to reproduce his or her own network experi-
ment after a prolonged break [24]: “It is at this point—
we know personally from repeated, painful experience—
that trouble can begin, because the reality is that for a
complex measurement study, the researcher will often
discover that they cannot reproduce the original findings
precisely! The main reason this happens is that the re-
searcher has now lost the rich mental context they de-
veloped during the earlier intense data-analysis period.”
Our goal in building an experimentation workbench for
replayable research is to help researchers overcome such
barriers—not just for re-examining their own work, but
for building on the work of others.

In this paper we have forwarded the idea of replayable
research for the networking community, which pairs re-
peatable experiments with the testbed facilities that are
needed to repeat and modify those experiments in prac-
tice. We have presented the design and implementa-
tion of our experimentation workbench that supports re-
playable research, and we have described how the evolv-
ing workbench is being applied by early adopters to ac-
tual networking research. Our new model of testbed-
based experiments is applicable to network testbeds in
general; our implementation extends the Emulab testbed
with new capabilities for experiment management. The
workbench incorporates and helps to automate the com-
munity practices that Paxson suggests [24]: e.g., strong
data management, version control, encompassing “labo-
ratory notebooks,” and the publication of measurement
data. Our goal is to unite these practices with the testbed
facilities that are required to actually replay and extend
experiments, and thereby advance science within the net-
working and distributed systems communities.
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