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Abstract

In an object-oriented language, a derived class may declare a
method with the same signature as a method in the base class
The meaning of the re-declaration depends on the language. Most
commonly, the new declaratiaiverrides the base declaration, per-
haps completely replacing it, or perhaps ussoger to invoke the

old implementation. Another possibility is that the base class al-
ways controls the method implementation, and the new declaration
merelyaugments the method in the case that the base method calls
inner. Each possibility has advantages and disadvantages. In this
paper, we explain why programmers need both kinds of method re-

declaration, and we present a language that integrates them. We
also present a formal semantics for the new language, and we de-

scribe an implementation for MzScheme.

Categories and Subject Descriptors
D.3.3 [Programming Language$: Language Constructs and Fea-
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Figure 1. Java-style Method Overriding
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In a Java-like language, each method is overrideable by default,
so a subclass can replace the functionality of a method with ar-
bitrarily different functionality. Asuper form (or its equivalent)

}

Figure 2. Beta-style Method Extension

allows a subclass implementor to reuse a superclass’s method, in-

stead of replacing the method entirely. The choice, in any case, be-
longs to thesubclassmplementor. Correspondingly, as illustrated

in Figure 1, method dispatch for an object begins at the bottom of
the class hierarchy. Java-style overriding encourages the reuse o
class implementations, since subclass implementors are relatively
unconstrained in re-shaping the subclass.
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In a Beta-like language, a method may be augmented, but the

]method cannot be replaced arbitrarily. A class enables method

augmentation by callingnner, but it may perform work before

and after thenner call, and it may skip thénner call altogether.

The choice, in any case, belongs to theerclasimplementor.
Correspondingly, as illustrated in Figure 2, method dispatch for an
object begins at the top of the class hierarchy. Controlled method
extension encourages (though does not guarantee) subclasses that
are behavioral subtypes [1, 21, 22] of the base class, since subclass
implementors are relatively constrained.

Ithough programmers can simulate each form of method exten-
sion using the other, simulation patterns are clumsy. The patterns
require that a programmer invent extra methods and give them dis-
tinct names, and the protocol for using and overriding or augment-
ing methods becomes a part of the documentation, rather than the



declared structure of the code. Furthermore, changing an existing
method from one form of extension to the other requires modifica-
tions to existing code.

Some researchers, including Cook [7] and Clark [6], have observed
the dual roles ouperandinner, and they have developed unified
object models with constructs that encompass both. We have taken
a more direct approach, adding Beta-style methodsraret to an
existing Java-style language.

Implementing our combination fuper andinner requires only
modest changes to a typical compiler and run-time system. In
particular, the compilation of method arsiper dispatching is
unchanged, and the implementationiofer is an adaptation of
method dispatch (using an auxiliary dispatch table). Furthermore,
our system does not constrain a method permanently to either Java-
style or Beta-style refinement. That is, a derived class may use a
different style of method overriding from its super class.

Since Beta-style method overriding is designed to help enforce in-
variants in the code, it trumps Java-style method overriding in our
design. That is, a Java-style method extension only replaces the
behavior of the method up to the nearest Beta method. In contrast,
a Beta-style method controls the behavior of all of its subclasses.
Consider the chain of method extensions in Figure 3. Three sub-
chains of Java-style method extensions appear as three distinct sets
of upward arrows in the figure. Ead¥eta method, meanwhile,
introduces a point of control over all later subclasses. This control
appears in the figure as long-jumping arrows that delineate the three
sets. The number to the right of each method shows its position in
the overall order of execution.

We have implemented this combination sdiper and inner in
MzScheme [12], and our design was motivated by problems
building the DrScheme programming environment [11] using
MzScheme’s object system. In general, we find that most uses
of the object system favor flexible reuse over behavioral control,
which supports our decision to start with a Java-style object sys-
tem. We have noted many exceptions, however, where our code
is made more complex or less reliable by the possibility of uncon-
strained method overriding. We believe that our code will become
cleaner and more reliable by using both kinds of methods, and the
early results are promising.

Section 2 presents a programming task that can be implemented
with only Java-style methods or only Beta-style methods, but it is
best implemented with a combination. Section 3 describes in detail
our method-dispatch algorithm to support both kinds of methods in

javam() {

M

©)

javam() {

@

S
o]

o.m() beta m() {

.. super ...
inner_... (1)

f javam) {

javam() {

(6)

©)

i

beta m() {
) nner, @

ﬁ javamo) {

javam() {

e
S
®

\

©)

®

I

beta m() {

.. super .. @

}

Figure 3. BETAJAVA Method Refinement

a single class derivation. Section 4 defines a formal model of our
language. Section 5 describes our implementation in MzScheme
and initial experience.

2 The Case for Combining Super and Inner

Consider building a library of GUI widgets, including basic win-
dows, bordered panels, and clickable buttons. All widgets corre-
spond to areas on the screen, and they all react in various ways to
mouse and keyboard actions. Furthermore, as the widget set grows,
new widgets tend to resemble existing widgets, but with extra be-
havior. For all of these reasons, a class-based, object-oriented lan-
guage is an excellent choice for implementing the widget library.

One possible class hierarchy for widgets is shown in Figure 4:

e The genericwindowclass includes gaint method to draw
the content of the window. Subclassesvdihdowrefine the
paintmethod to draw specific kinds of widgets.

e Many widgets require a border, $dorderWindowrefines

Windows paint to draw a border around the window. Sub-
classes oBorderWindoware expected to refingaint further

to draw inside the border, but they are not expected to replace
paint entirely, which would omit the border.

The Button class ofBorderWindowimplements a clickable
widget. It adds thenClickmethod, which is called when the
user clicks inside the widget’s border. TBattonclass also
refinespaint to provide a default button look, but subclasses
may define an entirely different look for the button, as long as
the border is intact.

ThelmageButtorclass refines thpaint method ofButtonto
draw a specific image for the button, supplanting the default
button look (except for the border).



Window

void paint()

X

BorderWindow
/I This and all subclasses should draw a border
void paint()

Button

void paint()
void onClick()

// Should draw simple buttons

oK

A

ImageButton

HighlightButton

/I ' Should draw images for buttons
void paint()

A

/I Should draw buttons similar

/I to Button, but with dark blue

/I background and light blue shading
void paint()

Figure 4. Class hierarchy for GUI classes

e The HighlightButtonclass, in contrast, builds on the default

as opposed tovindow Thesuper call in BorderWindowthen ex-

button look, but adds a dark blue background behind the label plicitly dispatches tgaintin Windowto paint the background.

and a translucent texture over the label.

Implementing this class hierarchy in either Java (vétiper) or
Beta (withinner) is straightforward, and yet the results are not
entirely satisfactory. We consider each possibility in the follow-
ing two sub-sections, and then show hemper andinner together
provide a more satisfactory implementation of the hierarchy.

2.1 Widgets in Java

To implement Figure 4 in Java, we start with\dndowclass whose
paint method merely erases the background by painting it white,
and aBorderWindowclass that refines thgaint method ofwindow

to draw a border around the window:

classWindow( ...
void paint() {
...; Il paint the background
}

}

classBorderWindowextendsWindowy ...
void paint() {
super.paint(); // paint background
...;/l draw a border

}
}

The paint method inBorderWindowoverrides the method iin-
dow, which means that whepaintis called on an instance &or-
derWindow control jumps to thgaint method inBorderWindow

The next class iButton which further refinepaint

classButtonextendsBorderWindow{ ...
void paint() {
super.paint(); // paint background, border
.../l draw a button label

}
}

Here, again, the nepaintin Buttonusessuperto paint at first like
BorderWindow In the BorderWindowcase, however, thisuper

call was optional; we could instead have chosen to pRarter-
Windowbackgrounds differently. A subclass BbrderWindowis
always supposed to calorderWindowvis paint to ensure that the
window has a border. This constraint is merely part of the docu-
mentation forBorderWindowit cannot be enforced by Java.

This problem becomes somewhat worse as we move tbthge-
Buttonclass:

classimageButtorextendsButton{ ...
void paint() {
super.paint(); // paints background, border — and label!
...; Il draw image, somehow blotting out the label

}
}

SincelmageButtoris a subclass oBorderWindow it is supposed
to call super to ensure that a border is drawn. But callisgper
also draws a button label, amehageButtorintends to replace the
label with an image.



C++ [25] offers a solution to the immediate problemImage-
Button Instead of usingsuper.paint(), ImageButtoncould re-
fer directly to BorderWindow::painf). The other problem re-
mains, i.e., nothing forcgsaintin ImageButtorto call BorderWin-
dow::paint).

A more general solution is to simulate Beta-style methods in Java.
A programmer can designapaint as final inBorderWindowand
have it call a new methodaintinside Subclass authors cannot
overridepaint, ensuring that the border is always drawn, but they
can overridepaintinsideto redefine the interior painting. Unfor-
tunately, this solution forces programmers to deal with different
names for the same functionality in different parts of the class hi-
erarchy: subclasses ®findoware expected to override thpaint
method to add functionality, but subclasseBafrderWindoware
expected to override thgaintinsidemethod. Besides increasing

the burden on the programmer, these different names limit the ways

in which mixins [3, 5, 14] can be applied, since mixin composition
typically relies on matching method names. Furthermoregiifitis
splitinto afinal paintand apaintinsidemethod after many classes
have been derived, then hames must be changed throughout the h
erarchy belovBorderWindowto accommodate the split.

Assuming that we splipaintinsidefrom paint, we can finish our
widget set in Java as follows:

classimageButtorextendsButton{ ...
void paintinsidé) {
...; Il draw image (don't cabuper for label)
}
}

classHighlightButtonextendsButton{ . ..
void paintinsidé) {
...; Il replace the background with dark blue
super.paintinsid€); // draws the label
...; Il draw light blue shading on top of the label

}
}

The HighlightButtonclass callssuper to paint the default button
label, but this class exploits its control over the timing of siper

call. In particular, it draws the new background, then csillper

to draw text on the new background. Reversing the order clearly
would not work.

This last example, in particular, illustrates the overall philosophy
of class extension in Java-like languagssibclass implementors
know better Methods are overrideable by default, so they can be
replaced completely in a subclass, which tends to maximize the
reuse of a class hierarchy. The only way that a superclass can in
sist on specific behavior, preventing subclasses from refining it, is
to declare a methofihal. The idiom of afinal method that calls a
regular method (like oupaint/paintinsideexample) appears com-

monly used in C++ and Java programs, inspiring design patterns
such as the Template Method [15]. As we demonstrate in the next

section, Beta-style method extension can more directly express
programmer’s intent in such cases.

2.2 Widgets in Beta

In Beta, thepattern is the sole abstraction mechanism, and patterns

are used to express types, classes, and methods. We are mainly

a

The essential difference of Beta is the absencseupfer and the
presence ofner. In our first two classesNindowexplicitly al-
lows subclasses to add functionalitypgaint by usinginner:

classWindow({ ...
void paint() {
.../l paint the background
inner.paint();

}

classBorderWindowextendsWindow ...
void paint() {
...; Il draw a border
}
}

When thepaint method is called on an instance®érderWindow
control jumps to the implementation phint in Window At the
point whereWindows paint usesinner, control jumps tgpaintin

iBorderV\ﬁndow If an instance ofVindowis created, thénner in

painthas no effect.

This implementation ofVindowis not quite the same as our im-
plementation in Java, because the Bafadowalways paints the
background, but the painting was optional in the JAadowclass.

To fix this, we can simulate Java-style methods in Beta, just as we
could simulate Beta-style methods in Java. In this particular case,
we create gaintBackgroundmethod and only call it directly in
Windows paint wheninner would do nothing. To accommodate
such code, we introduce a new variantimfer that has arelse
statement, which is executed only if tmmer has no target.

classWindow({ ...
void paintBackgroung) {
...; Il paint the background

}
void paint() {
inner.paint() elsepaintBackgroung;

}

classBorderWindowextendsWindow ...
void paint() {
paintBackgroung;
...;/l draw a border
inner.paint();

}

When paint is called for an instance dNindow the inner call

has no target (i.e., no subclass),montBackgroun() is executed.
When paint is called for an instance ddorderWindow inner in
Windowjumps topaintin BorderWindowwhich elects to paint the
background by callingaintBackgroung.

The newBorderWindowalso contains its owmner call in paint,
so that the content of the window can be painted by subclasses.
Thus,Buttonis implemented as follows:

classButtonextendsBorderWindow( . ..
void paintLabe() {
..., /I draw a button label

}
void paint() {
inner.paint() elsepaintLabe();

interested in patterns as a class mechanism, so for our examples,

we use a Java-like syntax with a Beta-like semantics.



Since theBorderWindowclass does not givButtonthe option to
skip border painting, the implementor Bltton cannot acciden- Window
tally omit the border by forgetting to catuper.paint().

java void paint()
Meanwhile, Button uses the saminer programming pattern as 4

Windowto make label painting optional in subclasses. Much like

introducingpaintinsidein Java to give the superclass control, in-

troducingpaintLabelin Beta gives subclasses control. Also, as in BorderWindow
Java, _thls programming pattern proliferates _m_ethod names, so it beta void paint()
is similarly unfriendly to programmers and mixins. More signifi-

cantly, this programming pattern must be used whenever a subclass 4#
should be able to completely replace the functionality of a method,

and our experience suggests that such methods are the rule rather Button

than the exception.
java void paint()

With paintLabelsplit from paint, we can finish our widget set in java void onClick()
Beta as follows: /K
classimageButtorextendsButton{ ... [ \
void paint() { ) ImageButton HighlightButton
...; /Il draw image (don't calbaintLabe)
) } beta void paint()| |java void paint()
Figure 5. Hierarchy with both Java- and Beta-style methods
classHighlightButtonextendsButton{ ...
void paint() {
...; Il replace the background with dark blue
paintLabe(); // draws the label
...; Il draw light blue shading on top of the label
} classWindow( ...
} java void paint() {
TheHighlightButtonclass callgaintLabelto paint the default but- } -3/ paint the background
ton label, again exploiting its control over the timing of th&int- }

Label call. As written, these methods do not allow refinement in

further subclasses, which would require the introduction of more The java annotation indicates that a subclass can override this

paintLabetlike methods. method. If the overriding method wants to use the original method,
. o . . it can usesuper.

The necessity of methods lilgaintLabelhighlights the overall phi-

losophy of class extension in Beta-like languagesperclass im-  The BorderWindowclass overridepaint, but its own implemen-

plementors know betteiMethods are not overrideable by default,  tation should never be overridden completely in later subclasses.

so they cannot be replaced completely by subclasses, which tendsrhat is, Beta more neatly implements thaint method forBor-

to maximize the reliability of a class hierarchy. The only way thata gerwindow so we annotate the implementation witeta and use

superclass can release its control over behavior is tinuge with inner in the body:

the default work in a new method. As we demonstrated in the pre-

vious section, Java-style method extension more directly express a classBorderWindowextendsWindow{ ...
programmer’s intent in such cases. beta void paint() {

super.paint(); // paint background
...; Il draw a border
inner.paint();

2.3 Widgets in a Beta/Java Combination

In a sufficiently large program, the Java philosophy is right at times, )
and the Beta philosophy is right at other times; sometimes the

subclass implementor knows better, and sometimes it is the SU-The peta annotation indicates that this implementation pafint
perclass implementor. By including both Java-style and Beta-style cannot be overridden. Operationally, when thant method is
method refinement in a programming language, we can support dif- cjled on an instance &orderWindowor any subclass ddorder-
ferent philosophies for different parts of the program. Indeed, these window control jumps toBorderWindovis implementation. This
philosophies can be mixed at a fine granularity by allowing a pro- jmplementation, in turn, invokes the implementationvifindow

grammer to annote individual method implementationgaaa or then paints the border, and then allows control to jump to a sub-
beta.” The resulting system is consistent and, we believe, concep- ¢jass implementation.
tually simple.

. o ) . TheButtonclass, for one, accepts that control:
Since the initialWindowclass was more cleanly implemented in

Java, we begin our widget implementation witfasa implemen- classButtonextendsBorderWindow ...
tation ofpaint java void paint() {
...; Il draw a button label

1We expect that any realistic language will have better keywords }
thanjava andbeta, of course. }



Thus, wherpaintis called on an instance 8utton control initially
jumps topaintin BorderWindow but ultimately it arrives apaint

in Button The method irButtonis declaredava, however, so that
a subclass can completely replace the button part of the method.

ThelmageButtorclass completely replacesintin Button forcing
any subclasses to draw an imagddighlightButtonusessuper to
extend button painting, rather than replacing it entirely:

classimageButtorextendsButton{ ...
beta void paint() {
...; Il draw image (don't cabuper for label)
inner.paint();

}

classHighlightButtonextendsButton{ ...
java void paint() {
...; Il replace the background with dark blue
super.paint); // draws the label
.../l draw light blue shading on top of the label

}
}

When paint is called on arimageButtorninstance, control jumps
to BorderWindowthen toWindow then back througBorderWin-
dow to ImageButton Whenpaint is called on aHighlightButton
instance, control jumps tBorderWindow then toWindow then
back througBorderWindowto HighlightButton then temporarily
to Button and finally back tdHighlightButton

At every point in this class derivation, a programmer specifies ex-
actly the intent for refinement in subclasses. While the overall flow
of control through methods can be complex, it is locally apparent
what results will be achieved. In our example, it is clear thBbe
derWindowsubclass always us&orderWindovs paint, whereas a
Buttonsubclass has the option to replgunt

The widget example shows hdveta may be used any number of
times. The implementor dmageButtordecided that drawing the
images is mandatory, implementing this intent by annotating the
method withbeta. Because of this annotation, wheaintis called

for a subclass ofmageButton control first jumps toBorderWin-
dow (as required by th8orderWindowimplementor), but always

to ImageButtorbefore any subclass tthageButton

As shown earlier, it is possible to simulate one form of method
extension in a language that has the other form. The simulation
is awkward compared to directly expressing the intended mode of
method refinement. Furthermore, after a method has been writ-
ten without the simulation pattern, converting it to use a simulation

pattern requires extensive modification to descendant classes (since

they must use the new method name introduced by the simulation).
In contrast, changing &eta annotation tojava (or vice-versa)
requires modifying only classes that directly refine the changed
method, and not the decedents of those classes.

With java andbeta annotationsfinal is no longer necessary;fa

nal method is simply d&etamethod that contains no callsitmer.

In the same way that a Java compiler rejects overridingfofad,

a compiler could statically reject declaration of a method in a sub-
class when a superclass has previously declared the mb#iad
with noinner call.

3 From Java to a Beta/Java Combination

Syntactically, the difference between Java and our extension is the
addition ofjava andbetakeywords for methods in classes, plus the
addition of aninner expression form:

Expression= inner . Identifier (Expression. .. Expressioh
elseStatement

An inner expression can appear only if the enclosing class contains
abetadeclaration fotdentifier, or if such a declaration is inherited
and the enclosing class containsjawa declaration ofldentifier.
(Usinginner.moutside of methothetamwould be unusual, much
like usingsuper.moutside of a methoth.) If a method has neither
abetanor java annotationjava is assumed.

3.1 Method Dispatch

Dynamically, the difference between Java and our extension to Java
is in method dispatch, including support fioner. If a program
contains ndbeta annotations (and therefore nmer expressions),
then method dispatch proceeds exactly as in Java:

¢ A method call (of the formexpr.methodNampeuses the class
of the method’s object to determine the target method imple-
mentation. The target is the implementation in the superclass
that is closest to the instantiated class.

e Eachsupercall is resolved statically to a method implemen-
tation in the closest superclass.

If every method of a program is annotateeta, then method dis-
patching proceeds as in Beta:

e A method call uses the firstimplementation of a method in the
class derivation, starting from the root class. This target can
be resolved statically, assuming that the object expression’s
type is a class (as opposed to an interface).

An inner call, in contrast, must use the classtbfs to find

the target method. The target is the implementation in the
subclass closest to the class that containsrther call. If no
target exists, then the default expression is evaluated.

Figure 6 shows one chain in our example GUI widget class hierar-
chy. The extra classésiagePopumndGraylmagePopuglustrate
further uses obeta andjava. Arrows on the left side of the figure
show howinner calls forpaintjump from one class to another (the
numbers will be explained in section 3.2), ending at an arrowhead,
and arrows on the right show hauper paint calls jump:

e A super call (arrow on the right) behaves exactly as in Java,
always jumping to a statically determined implementation in
a superclass. We disalloguper calls tobeta declarations,
because they are not useful in our experience, and because
they tend to produce infinite loops that are difficult to debug.

An inner call (arrow on the left) is slightly different than

in Beta, because the target is not always in the closest sub-
class. Instead, the target is the closest subclass that declares
the methodbeta, or thefarthestsubclass if no subclass con-
tains abetadeclaration of the method.

A method call in a mixed environment behaves much like an
inner call, where the target of the initial call is the fils¢ta
implementation of the method if one exists, and the jas
implementation otherwise.

External dispatch aniciner go to the highedbetaimplementation
of a method, because the programmer’s intent in ubigig is to



Window ' 0 T 5
java void paint() paint BorderWindovis | ImageButtofs | ImagePopujs
> I
onClick
0 BorderWindow ImagePopuis
beta void paint() Figure 7. Dispatch table forlmageButtorin Figure 6
4 int 0 1 2
Button pai BorderWindovis | ImageButtois | GraylmagePopup
javavoid paint()
javavoid onClick() . 0 1
%; onClick GraylmagePopup | null
Figure 8. Dispatch table for GraylmageButtorn Figure 6
1Y ImageButton g P yimag g
beta void paint()

X

ImagePopup mined by both the class of the object on which iteer is called
- - - and the class declaration in which threr call appears. Thus,
javavoid paint() theinner dispatch table is not simply linear in the numbeibeta
java void onClick() methods. In fact, for each method, the table contains an array of
target methods. Amner call can be mapped statically to an index
4; for the method’s array, where the index is the total numbédreta
declarations of the method in tliener call’s class and its super-
GraylmagePopup classes. Meanwhile, index O corresponds to the target for external
v - - 3 method calls.
2 javavoid paint()
beta void onClick() For example, when thpaint method is called for an instance of
. GraylmagePopupthe numbers in Figure 6 correspond to the in-
Inner super dices. An external call always starts with index 0BairderWin-

dow. Aninner call in BorderWindowumps to the method at index
1, because thBorderWindowintroduces the firsbeta declaration
of paint An inner call in ImageButtorjumps to the method at in-
dex 2, becausknageButtorintroduces the secorizktadeclaration
of paint

Figure 6. Method dispatch example, with arrows for inner and
super calls inside thepaint method

ensure that the code in that method will get called, no matter how
subclasses refine the method. Ultimately, declaring a metbtal

should trump any future attempts to override it, because the en-
forced behavior may be necessary for the program to behave cor-

In general, for a particular method, class, ander array index,
the dispatch table contains one of three values:

e |t contains null if no further refinements of the method are

rectly. declared belovinner calls that use the index.

An inner or externa' dispatch Skip'ava methodsl because the pro_ o |t Contains the ﬁrsbeta dec|arati0n Of the methOd belOW the
grammer's intent when usingva is to allow overriding. The inner call, if any such declaration exists.

skippedjava implementations are used only if thiener target e It contains the lasjava declaration of the method below the
chooses to caiuper. inner call, if any such delectation exists, and if heta dec-

laration is available.

3.2 Compiling Method Dispatch

Figure 7 shows the complete method dispatch tablelrfaage-
Typically, dynamic method dispatch in Java uses a virtual method Popup and Figure 8 shows the dispatch table@saylmagePopup
table, where a target method implementation is obtained by extract-In both cases, index 0 contaiBerderWindovs method forpaint,
ing it from a particular slot in the table. This strategy still works and index 1 containisnageButtois method. Atindex 2, thémage-
with betamethods, and the only change is in the construction of the Popuptable contains the implementation frdmagePopupbut it
table. Instead of installing the Igstva implementation of amethod  is replaced byGraylmagePopup implementation in the table for
into the table, the firdbetamethod (if any) should be installed. The  GraylmagePopup Similarly, index 0 foronClick containsimage-
relevantbeta method resides in a superclass, so incremental com- Popups implementation inmagePopufs table, but it is overridden

pilation of classes in a hierarchy is the same as in Java. with GraylmagePopup implementation infGraylmagePopup ta-
ble. Finally, index 1 foonClickin GraylmagePopugontains null,
An inner call also needs a dynamic dispatch table, butitimer because no method refines tietadeclaration obnClickin Gray-

table is slightly more complex. The target ofianer call is deter- ImagePopup



To explain table construction another waypeta method occupies

an index permanently, in all subclasses, and increases the size of

the method’s array, whereagava method occupies an index only
until it is replaced by a subclass implementation. If no methods
are declaredbeta (either in the whole program or for a particular

method), then this algorithm degenerates to the usual Java-style al-

gorithm (either for the whole table or for an individual row). For an
instance ofmagePopupall declarations obnClickarejava, so the
onClickrow in Figure 7 has a single slot, just as in a Java dispatch
table.

In the case opaint for ImagePopupeveryinner call has a target
method, since the lagtaint method in the chain is declaréava.

The lastonClickmethod ofGraylmagePopuphowever, is declared
beta. If the GraylmagePopugontains arinner call for onClick,
there is no target method, which means thaither’s elseexpres-
sion is used at run time. This lack of a target is reflected by a null
pointer for index 1 in thenClickrow of the dispatch table. Thus,
aninner call at run time first checks whether the relevant table slot
is null; if so, it uses thelseexpression, otherwise it jumps to the
table-indicated method.

A Java-style dispatch table always has d@n) for m distinct
methods in the class, but the size of a dispatch tableiwitér de-

pends on both the number of methods in the class and the number

of betaimplementations of the method. A two-dimensional array
for theinner table would thus requir®(mx n) space fom meth-
ods and a maximurbeta depth ofn. Our implementation uses an

P = defn.. defne
defn = classcextendsc { meth.. meth}
meth = kindtmtvar,...tvar){e}
kind = beta|java
¢ = aclass name ddbject
md = amethod name
var = avariable name dhis
t = ¢
e = var
| null
| newc
| emde,...e)
| supervar.cmd(e,...e)
| inner var.c.md(e,...e) elsee
e = e|l
¢ = c|L
¢ = c|T

Figure 9. Syntax of BETAJAVA

4 BetaJava Model

array of arrays, instead (as suggested by Figure 7 and Figure 8), so

that the size i©O(m+ p) for p total beta declarations, which tends
to be much smaller tha@(m x n).

3.3 Interfaces

The beta andjava keywords apply only to method implementa-

To demonstrate type soundness of our combination of Beta-style
and Java-style methods, we define a complete formal model for
BETAJAVA in the style of @ASSICJAVA [14].

The model simplifies Java considerably, eliminating constructs that
are irrelevant to method dispatch. For example, the model does not
include local variablesf statements, or exceptions. Unlike &-
sicJava, the BeETAJavA model further omits fields, but we have

tions in a class. Because interfaces reflect subtyping and not be-Preserved enoughi@ssicJava structure in our BTAJAvA model
havior, these keywords are not needed in an interface declaration.l0 €nsure that fields could be added back to the model, exactly as
A method call through an interface behaves the same as an externai€y appear in CAssICJavA. We also omit interfaces from&ra-

method call using the object’s type. In compilation terms, interface

dispatch needs only the implementation that is stored in a virtual
method table, so interface-based method calls are effectively un-
changed compared to Java.

3.4 Differences from Beta

Technically, even for a program that contains obsta methods,
our language differs from Beta in two respects that are unrelated to
method dispatch:

e Ourinner form contains explicit arguments, instead of im-
plicitly using the enclosing method’s arguments (or, more pre-
cisely, the current values of the argument variables, in the case
that the variables have been assigned). This formredr call
more closely parallelsuper, allows the values passedite
ner to be changed non-imperatively, and allowsramer call
for a particular method to appear in any other method (again,
like super).

Our inner form includes a default expression to evaluate
when no subclass implementation is available, whereas Beta
defaults to a null operation. We include a default expression
to make the language more value oriented.

JAvA, becausdetaandjava play no role in interface declarations.

Figure 9 contains the syntax ofEBAJAvA programs in our model.

A programP consists of a sequence of class declarations followed
by a single expression. The expression plays the roleaofi to

start the program. Each class declaration contains a sequence of
method declarations, and each method is annotated with bitteer

or java. A method body consists of a single expression, which is
either a variable (i.e., a reference to a method argumettisy,
thenull keyword, an object creatiamew c, or a method call. Each
method call has one of three shapes:

e A method call of the formre.md(ey, ... &) is @ normal call to
the methodndin the object produced bs:.

A method callsuper var:c.md(ey,...e,) must appear only
within a method (as enforced by the type system). Vae
part of the call is intended to binis, which is implicit in
Java. An explicit target simplifies our evaluation rules, but
this could be inserted automatically by an elaboration step,
as in @.AssicJavAa. Similarly, the clas€ named in asuper

call must be the name of the containing class’s immediate su-
perclass. Againg could be inserted by elaboration, and our
type system ensures that the correis named.

A method callinner var:c.md(ey,...ey) elsee must appear
only within a method (again, as enforced by the type system).
As with super calls, var is intended to behis, and a class



c is named for the convenience of our evaluation rules. For
inner, the givenc must be the class containing timmer call,

4.2 BetaJava Evaluation

as opposed its superclass, and the type system ensures thighe relationse), and €5 capture the essence beta-sensitive

correlation. The extralsee at the end of arfnner call pro-
vides the expression to evaluate if, at run time, no extending
method is provided byar (in a subclass of).

The non-terminalg, €, andc’in Figure 9 are for auxiliary relations
in the evaluation rules, and they are not part of the concrete syntax.

4.1 BetaJava Type Checking

The type-checking rules for BraJava closely resemble those
of CLAsSsICJavA, building on a number of simple predicates
and relations that are defined in Figure 10. For example, the
CLASSESONCE(P) predicate checks that each class name is de-
fined only once. The<p relation associates each class in the pro-
gramP with the class that it extends, ardp captures the method
declarations oP.

The <p relation fills out the subclass relationship as the transitive
closure of<p. (The extension tol and L is used in the eval-
uation rules.) Two additional predicates check global properties:
CLASSESDEFINED(P) ensures that the class hierarchyPoforms

a tree, and ETENSIONSCONSISTENT(P) ensures that every dec-
laration of a method in a class derivation uses the same signature.

Finally, thec, relation combines the methods that a class declares
with the methods that it inherits from its superclasses. Zhee-

method dispatch (see Figure 12). TGQ and e'F’, relations find
ajava or betamethod only between classésandc” in a chain of

class extensions. These relations also accept a default expréession
to use if no method can be found. (These pieces are assembled as

[/, c"](¢) to the right ofek or €B.)

The two relations implement a two-phase search for a method. The
eE, relation first attempts to find beta method, and if the search

fails, it delegates t@jp to find ajava method. The=B relation uses
max<, to find the highesbeta method in a class derivation (i.e.,

closest to the root class), while, uses mir, to find the lowest
method (i.e., closest to the instantiated class).

Since itimplements the Java-like part of method seaf{;helation

is similar toep, except that it takes into account an upper bound
¢’ and a default expression. The upper bound corresponds to a
class with aninner call, where a legal target method must appear
in a subclass. If no method is found and the default expression is
used, then arbitrary “method” arguments are selected by the rela-
tion, with the constraint that the argument variables do not appear
in the expression.

Thee‘,% relation searches primarily foreetamethod below the up-

per boundt”. If no betamethod is founde‘F’, uses«ejp to search for
ajava method, instead. Meanwhile, the default expression passed

to €} corresponds to the default expression forimmer call, in

lation can be interpreted as a function from classes to method-tuplec@se neither kind of method is found.

sets, or as a function from class—method combinations to method
implementations. Specifically, for a clasand method nammnd,

€p locates the most specific implementationnod, which is the

one declared closest tin the class hierarchy. This relation is the
same as in CASSICJAVA, except that the method implementation’s
kindis included on the left-hand side of the relation.

Complete type-checking rules foreBaJava appear in Figure 11.
The rules include the following judgments:

Fo P programP is well-typed
P4 defn classdefnin programP has well-typed methods
P,ct, meth methodmethin classc has a well-typed body
Plrtee:t expressiore has typd in environment”
Prtse:t the type ofeis a subtype of in environment

To summarize the type rules, a program is well-typed if its class
definitions are well-typed and its final expression is well-typed in
an empty environment. A class definition is well-typed when its
methods are well-typed. A method is well-typed when its body is
well-typed in an environment that includes the method'’s arguments.
For expressions, aull or new ¢ expression is always well-typed,
andvar is well-typed if it is bound in the environment.

A call to a methodndis well-typed if thec;, relation finds a consis-
tent declaration ofnd in a particular class. In the case of a normal
method call, the class is determined by the type of the target object.
In the case of &uper call, the class is named in the call, and it
must be the superclass of the typetlo (where the type ofthis
effectively names the class where theper call appears). In the
case of arinner call, the clas€ is named in the cal must be the
type ofthis, and the most-specifimd for ¢ must have kindeta.

Using these two relations, the operational semantics faraBava

is defined as a contextual rewriting system on pairs of expressions
and stores. As in CASSICJAVA, a store is a mapping from gener-
atedvars to class-tagged records. Since therBJava model does

not include fields or field assignments, the store is technically un-
necessary, but we preserve it for consistency with £51CJAVA .

The complete evaluation rules are in Figure 13. Normal method
calls useeB with Object as the upper bound, which finds either
the firstbeta method or the lagtava method. Aninner call also
usesetF’, , but with the class named in the call as an exclusive upper
bound for finding a method. Auper call merely usesp, as in
CLAssIcJAvA, reflecting thasuper dispatch behaves as in Java.

The static and dynamic nature of method calls is apparent in the
model’s relations. For example, the use=pffor super calls relies

on no dynamic information, so it can be computed statically. Sim-
ilarly, the result ofetF’, for a method call can be precomputed if the
type of the object expression includebeta method; at run-time,

the class will be a subtype of the static type, but the subtype cannot
override thebetamethod. In contrast, the result feg in aninner

call cannot be pre-computed from just the object expression’s type.

4.3 BetaJava Soundness

For a well-typed program, evaluation can either produce a value,

loop indefinitely, or get stuck attempting to call a methochofi.

The last possibility would correspond to a run-time error in a Java

implementation. These type rules preclude a “method not under-
stood” run-time error, however, which is the essence of soundness
for an object-oriented language.



CLASSESONCE(P) iff (classc --- classc is in P) impliesc # ¢
OBJECTBUILTIN(P) iff class Objectis notinP
METHODSONCEPERCLASS(P) iff

(classc extendsc {--- tymdy --- to md, ---} is in P) impliesmd; # md
CLASsSeDEFINED(P) iff (cisinP)impliesc= Object or (classcis in P)

c<pc iff classcextendsc isinP

(mkind, (t1... th — to), (vary,...var),e) &pc iff
classc extendsc’ {--- kind ty md(t; vary,...tnvam){ e} ---}isinP

<p = transitive—reflexive closure okp plusc<p T andl <pc
<p = irreflexive restriction of<p

WELLFOUNDEDCLASSESP) iff <p is antisymmetric

EXTENSIONSCONSISTENT(P) iff
({m,kind, (t1... th — tg), (vary,...varm),€) &pcy)
and({mkind, (t] ... t) —t}), (var,...var,),€) &pcy)
implies(cy Zpcaor (ty... th —tg) = (t1... th = t))

(m,kind, (t1... th —to), (vary,...vam),e) ep ¢ iff

c=ming,({c|c <pcand(mkind,(t]... t) —t5), (vary,...var),€") &pc})
and(m,kind, (ty ... th — tg),(vary,...varm),e) &pc

Figure 10. Predicates and relations for BETA JAVA

Ptqdefn... PHydefn, POFce:t
Fo P whereP = defn, ... defn, e CLASSESONCE(P),
OBJECTBUILTIN (P), METHODSONCEPERCLASS(P),
CLASSEDEFINED(P), WELLFOUNDEDCLASSESP),
and EXTENSIONSCONSISTENT(P)

P this:c,vary:ty,...vam:ithFs e: tg

P ckmy, kind o md(ty vary, ...ty vary){ e} Plice:d

Prkse:c whered <pc

Pl e newc:c PlrEenull:c PRI Fevar:twherel (var) =t
Prce:c PBlksep:ty... Plsenity
Pl e emd(ey,...en) i to where(md,kind, (t1 ... th —to), (vary,...varm),e) €p C
Plrser:ity ... Pllkgen:ity

wherel (var) =c/, ¢ <pc
and(md,kind, (t1 ... ty — tg), (vary,...varm),e) €p C

PI Fe supervar:c.md(er,...en) : to

Plrtser:ty... PRPlksen:ty, PlEksep:itp

wherel (var) =c

PT"Fe inner var.c.md(e,, .. en) elseep : to and(md,beta, (t1... th — tg), (var,...varm),e) €p C

Figure 11. Type-checking rules for BETA JAVA




{m,var,...var, &) e{; [c,c")(¢) iff
E=min<,({T}U{c| ¢ <pcandc<pc”and(mkind,(t; ...
and({m,kind, (t; ... th — tg), (vary,...vamn),& e&pt
or (€= T,é=¢, andvary,...var notine))
(m,vary,...var, & e [c,c"]|(&) iff
¢=max, ({L}uU{c|c <pcandc<pc” and{mbeta,(t]...
and({m,beta, (t1... th — to), (vary,...vam),&) &pc
or (€= L and(m,vary,...varn,§ ) [c/,c"](&)))

th — ), (vary,...var)),€") epc})

t) — th), (vary,...varh), &) &pc})

Figure 12. Relations for BETAJAVA evaluation

v = null E
| var

[
E.md(e,...e)

|

| vmd(v,...vE.e,...e)

| supervicmd(y,...v,E,e,...€)

| inner v.c.md(y,...v,E,e,...e) elsee

PF (E[newc],X) —y; (E[var],Z[var — (c)])
wherevar ¢ dom(X)

P (Elvarmd(vy,...vn)],Z) +—p; (E[€[vam « vp]...[var « vi]fthis « var]],Z)
whereZ (var) = (c) and(md,vary, ...varm,€) €8 [c,Object](L)

P+ (E[supervar.c.md(vy,...vn)],Z) ——1; (E[e[vam < vp]...[var < vi][this — var]],X)
where(md,java, (... th — to), (vary,...vam),e) €p C

P+ (E[inner var.c.md(vy, ... vn) else€],%) —y; (E[elvam — vq|...[vary — vi][this — var]], Z)
whereZ (var) = (co) and(md,vary,...vam,e) €8 [co,c](€)

Figure 13. Evaluation rules for BETAJAVA

Theorem 1 (Type Soundness): IfF, P where P =
defn, ... defn, e, then either

e Pk (e,0) ——p; (v,X) for somevand;

e P + (g0 ——bj (€,%) implies
Pr(€,Z) oy (€¢,Y) for someé’ and
3 or

e PF (e,0) —y; (E[null.md(vy,...vn)],Z) for
someE, md, vy, ...vn, andZ.

Java-like object systef. The object system is used primarily to
implement DrScheme’s graphical interface.

5.1 Base Implementation

Classes and objects in MzScheme are dynamically typed, which
means that a method call from outside an object typically requires
a dynamic method-name lookup. Self asuber calls within an

object, however, are always resolved at class-construction time. A

. . . self call uses a virtual method table indirection, arsliper call is

The main lemma in support of this theorem states that each g girect function call. In short, these calls are implemented as in a
step taken in the evaluation preserves the type correctness of thestatically typed object-oriented language, such as Java.
expression-store pair (relative to the program) [26]. Specifically,
for a configuration on the left-hand side of an evaluation step, there ¢|asses are values in MzScheme, and the superclass position in a
exists a type environment that establishes the expression's type agjass declaration can be an arbitrary expression. Consequently, a
somet. This environment must be consistent with the store. mixin can be defined by placingdassexpression within a proce-

. . dure that accepts a superclass argument. DrScheme uses this form
The soundness proof forl@ssicJava [13] is easily adapted o 4 mixin extensively. For example, the “autosave” behavior for a
BETAJAVA. The super rule is unchanged, so the the proof that eyt editor is implemented as a mixin, so that autosaving can be
a method is found is also unchanged. The normal- ianer- added to any class that implements the text-editor interface. Add-

call forms use the new method-finding relatieB, but €p finds ontools for DrScheme introduce new mixins to extend DrScheme’s
a method anytime that, finds one, and if different implementa-  pehavior.

tions are found, then ETENSIONSCONSISTENT(P) ensures that

the types are consistent. The autosave mixin must extend the editoos-close method,

which is called when the editor’s window is closed, so that the au-
tosave timer is disabled. In previous versions of DrScheme, only
Java-style methods were available, so a mixin that overrides
closewas obligated to call the superclass method. Failing to call
MzScheme is the base language for the PLT Scheme programmingthe superclass method in a tool-introduced extension would create a
suite, which includes DrScheme [11]. MzScheme extends the stan-
dard Scheme language [19] with numerous constructs, including a

5 Implementation and Experience

2Technically, the object system is an external library.



| allow override allow augment

new method public pubment
override existing override overment
augment existin augride augment

Figure 14. Method keywords in MzScheme

down a class hierarchy, nor is there a way to caé-next-method
as asuper-like call and annner-like call in the same method.

Beta [20] inspired gbeta [9]. In gbeta, methods are treated as a
sequence of method bodies (which gbeta caligins); aninner

statement goes from the current method body to the next one in the
sequence. By default, the methods are ordered from the first dec-
laration of the method to the last augmentation, but a programmer
can control the order through specific merging operators [10]. For
example, the programmer can name an individual method body and
later add a new body immediately before or after the named one. A

bug or resource leak in DrScheme's core, and such a leak appearegh.ogrammer can also place a newly declared body at the beginning
in practice. Fixing the bug was trivial, but discovering the bug was nf the method'’s sequence. Clearly, ataandinner declarations

difficult, because the mixin implementor naturally concentrated on
testing the mixin's owron-closebehavior. Many otheon-...meth-

cannot emulate such general merging operations, but gbeta’s merg-
ing operations also cannot implement our semantics. In particular,

ods in DrScheme have the same protocol, with the same danger ofypeta offers no way to ensure that a behavior is never overridden

errors.

5.2 Adding Inner

An inner method call is implemented in MzScheme using an aux-
illary method table, as described in Section 3.2. Overall, to im-
plement a prototype combination béta andinner, we added or

changed roughly 100 lines of Scheme macro code in the 2800-line

implementation of MzScheme'’s object system. Our production ver-
sion added another 150 lines of code.

Before addingnner to MzScheme, each method was declared as
eitherpublic or override. A public declaration indicates that the
method is new in the class, whereagerride indicates that the
method should be declared already in the superclass (in which cas
super can be used). This distinction is statically apparent in Java,
but not in MzScheme, due to MzScheme'’s form of classes as val-
ues.

After addinginner to MzScheme, a method declaration must de-
clare whether the method is new, overriding, or augmenting, an
also whether subclasses are allowed to override or augment th
method. We defined a different keyword for each combination, as
shown in Figure 14. For example, tipegbment keyword means
“new pulic method, allow aumentonly.”

We are converting many of DrSchemeis-...methods fronpublic

to pubment, thus eliminating the potential for bugs in DrScheme’s
core due to a missing call to a superclass method in an add-on tool
We expect also to simplify the set of methods in our classes, much
asbetamethods eliminated the need fopaintinnermethod in the
example of Section 2.

6 Related Work

Smalltalk [16] was the first language to popularize extension as
overriding behavior. This branch of extension has inspired many
languages, including C++ [25] and Java [17]. Although many of

(as guaranteed by obeta).

As far we know, no one has created a simple extension to a Beta-
like language that allows method overriding auper without al-
lowing Beta method to be overridden. We also have found no work
adding a simplénner extension to a Java-like language.

Cook, in his Ph.D. thesis [7], develops a semantic model of inheri-
tance and uses it in the analysis of various programming languages,
including Smalltalk and Beta. He observes that the underlying in-
heritance mechanisms of Beta and Smalltalk are the same. The dif-
ference is in the combination of inherited structure with local def-

initions: Smalltalk and Beta have inverted inheritance hierarchies,
with Beta’s superpatterns acting as subclasses and subpatterns as

superclasses. Cook's model can express method refinement as ei-

ther overriding and augmenting, but not both behaviors combined.

Clark [6] describes a functional language with primitives for object-
oriented programming. In his language, an extension of a class
is a function of the shadowed definitions availablesuper plus

g the shadowing definitions available to the superclasarier. He
chriefly addresses the issue of whether a subclass definition should

shadow a superclass definition or vice versa, but only to define the
choice as one or the other.

Bracha and Cook [5] propose mixins as a method of combin-
ing the inheritance mechanisms of Java and Beta. By choosing
the correct composition of mixins, a programmer can achieve ei-
ther Java-like or Beta-like behavior from methods. Ancona and

‘Zucca [3, 2] similarly demonstrate formally how overriding op-

erators can be expressed in a mixin-based framework, but these
systems do not allow both accessing behavior from a previously
composed mixin’s method and accessing behavior from a succes-
sively composed mixin’s method; the mixin composition operator
determines which will occur. Furthermore, a tedious programming
pattern is required to simulate Java-style and Beta-style extension,
which is only a slight improvement over the programming pattern
required in Java to achieve Beta-style refinement.

Duggan [8] describes a language with mixins that inclusigzser

these languages added additional features such as multiple inheriandinner constructs, but thiner construct does not correspond

tance and mixins, they all maintained overriding as the only form
of method refinement.

CLOS [18] is another language on the Smalltalk branch of method
extension, but it supports anner-like call through an:around
qualifier andcall-next-method Normally, call-next-methodacts

like superin Java. In the case whepall-next-methods used in

the least specificaround method, the most specific method with-
out a qualifier will be called. This pattern simulates a sirigter

call, but there is no way to simulate multigtener calls that move

directly to Beta’snner. Duggan’s system includes an operation to
combine two mixins, and in the case that the mixins both define a
particular method, one definition will override the other. Titn@er
keyword allows the overriding definition to make use of the over-
ridden one. Thusnner provides access to a method of a combined
mixin, rather than a method of a subclass. (Blper construct,
meanwhile, has the traditional meaning, referring to the base mixin
from which a mixin inherits.)



Bettini et al. [4] present an extension to Java based ord¢ue- [4] L. Bettini, S. Capecchi, and B. Venneri. Extending Java to
rator design pattern. By relying explicitly on a delegation-style of dynamic object behaviors. IRroc. Workshop on Object-
method refinement instead of a more specific method-refinement Oriented Developmentsolume 82. Elsevier, 2003.

construct, a class can retain primary control of a method. Their sys- [5]
tem is not a simple extension of Java, but rather requires a program-
mer to adopt a drastically different way of thinking about classes in
order to use their extension. Also, it is unclear how their extension
would work for methods whose return type is rotd.

G. Bracha and W. Cook. Mixin-based inheritance. Pliroc.
Joint ACM Conf. on Object-Oriented Programming, Systems,
Languages and Applications and the European Conference
on Object-Oriented Programmin@ct. 1990.

[6] A. Clark. A layered object-oriented programming language.
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reusing domain-specific programming languages. Piac.
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7 Conclusion and Future Work ume 1850 ot NCS pages 179-200, Berlin Heidelberg, 2000.
Springer-Verlag.

Programmers benefit by having both Java-style method overriding 9
and Beta-style method augmentation within a single programming (9]
language. We have shown why such a combination is beneficial,
we have demonstrated that our formulation of the combination is
sound, and we have shown that it can be implemented with rela-
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