
Kill-Safe Synchronization Abstractions
“Well, it just so happens that your friend here is only mostly dead.

There’s a big difference between mostly dead and all dead.”
– Miracle Max inThe Princess Bride

Matthew Flatt
University of Utah

Robert Bruce Findler
University of Chicago

Abstract

When an individual task can be forcefully terminated at any time,
cooperating tasks must communicate carefully. For example, if two
tasks share an object, and if one task is terminated while it manipu-
lates the object, the object may remain in an inconsistent or frozen
state that incapacitates the other task. To support communication
among terminable tasks, language run-time systems (and operating
systems) provide kill-safe abstractions for inter-task communica-
tion. No kill-safe guarantee is available, however, for abstractions
that are implemented outside the run-time system.

In this paper, we show how a run-time system can support new
kill-safe abstractions without requiring modification to the run-time
system, and without requiring the run-time system to trust any new
code. Our design frees the run-time implementor to provide only a
modest set of synchronization primitives in the trusted computing
base, while still allowing tasks to communicate using sophisticated
abstractions.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs and
Features—Concurrent programming structures; D.4.1 [Operating
Systems]: Process Management—Synchronization

General Terms

Languages, Design

1 Introduction

Most modern programming languages offer support for multi-
ple tasks in the form of threads. Support for tasktermination
is less widely implemented and generally less understood, but
no less useful to programmers. The designers of Java, for ex-
ample, understood the need for termination, and they included

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’04, June 9–11, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-807-5/04/0006 ...$5.00

Thread.stop andThread.destroy in the language. Flaws in the
specification ofThread.stop forced its withdrawal, however, and
Thread.destroy has never been implemented. Meanwhile, var-
ious extensions of Java have provided termination in a more con-
trolled form [1, 2, 9, 10, 12], and termination of Java tasks is a
driving goal of the new JSR-121 standard [24].

Termination in any language becomes troublesome when tasks
share objects. Two tasks may share a queue, for example, and
they may require that terminating one task does not corrupt or per-
manently freeze the queue for the other task. In other words, the
tasks require akill-safequeue. Just asthread-safemeans that an ab-
straction’s operations appear atomic in the presence of interleaved
threads of execution,kill-safe means that abstraction’s operations
appear atomic in the presence of thread termination.

Java extensions such as JSR-121 do not allow a programmer to
implement kill-safe abstractions. Instead, such extensions restrict
sharing among terminable tasks to objects that are managed by the
run-time system “kernel,” so that only the kernel needs to imple-
ment kill safety. In particular, if one task is terminated while ma-
nipulating a kernel-maintained queue, the kernel delays termination
until it can leave the queue in a consistent state. On the one hand,
when the kernel implementor’s work is complete, application pro-
grammers need not worry about termination when using shared ob-
jects. On the other hand, application programmers are restricted to
the kernel’s abstractions for reliable communication.

In this paper, we show how to extend a run-time system (once and
for all) so that programmers can define kill-safe abstractions outside
the kernel. Furthermore, with our design, the set of cooperating
tasks that share an object need not be defined in advance, and the
cooperating tasks need not trust each other; the tasks must trust only
the implementation of the shared object.

Our design builds on the observation that termination of a thread
is much like indefinite suspension of the thread. By creating a
thread to manage a particular synchronization abstraction, and by
employing our new primitives to protect the thread, a programmer
can ensure that an abstraction instance is suspended when it might
otherwise be killed. In other words, when the instance is “killed”
as part of a task termination, it turns out to be “only mostly dead,”
and a surviving task that shares the instance can resurrect it. This
technique succeeds because our primitives allow a manager thread
to preserve its instance’s consistency across suspends and resumes,
and this consistency is the essence of kill-safety. At the same time, a
rogue task cannot escape termination through accomplices of equal
stature, because a resurrected task gains no more privileges than
those of its resurrector.

The latest version of MzScheme [5] implements our design for kill-
safe abstractions. MzScheme builds on the primitives of Concurrent
ML [21], which enable a programmer to construct synchronization
abstractions that have the same first-class status as built-in abstrac-
tions. By starting with Concurrent ML’s primitives, we ensure that
our model and implementation cover a large class of abstractions.
In general, MzScheme can express any abstraction that is express-
ible in Concurrent ML, and we believe that any such abstraction can
be made kill-safe.

Section 2 describes our model of task management and kill-safe
abstractions. Section 3 presents MzScheme’s task-control mech-
anisms, and Section 4 sketches the implementation of a kill-safe
queue. Section 5 reviews MzScheme’s embedding of Concurrent
ML primitives, mainly for readers who are not familiar with Con-
current ML. Section 6 presents a complete and realistic queue im-
plementation using the Concurrent ML primitives. This full imple-
mentation motivates a remaining detail of our design that is covered
in Section 7. Section 8 explores in more detail some of our design
choices. Sections 9 and 10 summarize related work and conclude.

2 Motivating Example

Consider the implementation of a web server with servlets. The
system administrator allows certain users to implement servlets, but
the administrator reserves the right to terminate any servlet-based
session that appears to misbehave (e.g., consumes too much mem-
ory).

For various reasons, the servlets for two active sessions might dis-
cover each other and wish to communicate. For example, the ses-
sions may share a collaborative document whose implementation is
specific to the pair of servlets. The servlet tasks trust the document
implementation, but they cannot trust each other to survive, because
the server might terminate one or the other session at any time. In
short, the servlets need to share a kill-safe document.

2.1 Existing Approaches

If the server and servlets are implemented as processes in a con-
ventional operating system, then they are strictly isolated, as in
Figure 1. Each task occasionally communicates across the task
boundary (drawn as a thick gray line in the figure) to the kernel
task, but a task does not communicate directly to other tasks or
cross into another task’s space (as indicated in the figure by thick
black lines). As a result, a misbehaving session is terminated eas-
ily. If two servlets need to communicate, however, they must use
the primitives provided by the kernel (depicted in the figure by a
telecast from the left task to the right task via the kernel task). The
kernel’s set of primitives is unlikely to include a document abstrac-
tion, so this architecture does not meet the needs of the servlet im-
plementors; the document must reside in one servlet or another, so
it will be terminated with the servlet.

If the server and servlet tasks are implemented as threads in a safe
programming language, the server can rely on abstract datatypes to
protect its data structures from misbehaving servlets. As illustrated
in Figure 2, task boundaries fade away, and servlets are free to set
up communication abstractions that better match their needs (as de-
picted in the figure by a close-range telecast in a task’s space). With
no boundaries between tasks, however, there is no guarantee that a
servlet will not be terminated while it is manipulating a shared doc-
ument, which means that the document is not kill-safe.

Figure 1.
OS (e.g., Unix)

Figure 2.
Safe run-time (e.g., JVM)

Figure 3.
Nested tasks

Figure 4.
Kill-safe (MzScheme)

A nested-task architecture can avoid the fixed set of kill-safe com-
munication primitives while providing control. As illustrated in
Figure 3, nesting effectively allows a programmer to extend the
kernel’s set of communication primitives by implementing a new
nested kernel. In this architecture, the servlets that share a docu-
ment must run as sub-tasks, controlled by a master servlet that im-
plements a document. The server administrator’s needs are met, be-
cause servlets can be controlled. The servlet implementors’ needs
are met for small groups of servlets, but not for large groups. Ses-
sions must be grouped for communication, so the more each session
communicates with other sessions, the more all sessions become
grouped together and controlled by a monolithic master servlet,
which defeats the purpose of servlets.

Figure 4 illustrates an architecture that meets the needs of both the
server administrator and servlet implementors. The small gray box
in the middle of the figure represents a kill-safe abstraction that the
kernel need not trust, but that can be loaded as needed by cooperat-
ing servlets.

This pattern cannot be implemented in existing systems—not even
systems that support nested tasks or shared memory. With nested
tasks, the gray-box task must be a sub-task of the left or right task,
and therefore subject to termination along with its parent task. With
shared memory, either the left or right task must cross into the
small box, and it might get terminated while manipulating struc-
tures there. Finally, the problem cannot be solved by allowing the
two tasks to enter the gray box and execute atomically, since the
two tasks could then collude to starve the rest of the system. For
the same reason, the termination of a task cannot be delayed until it
leaves the gray box.

2.2 Our Solution

Our solution requires either the left or right task to create the gray-
box task initially as a sub-task. Later, when the other task gains
access to the gray box, it “promotes” the box as its own sub-task.
As a result, the gray-box task becomes more resistant to termination
than either the left or right task alone, though no more resistant than
than the tasks combined.

If the left task is terminated, the box task is merely suspended.
When the right task later accesses the box, it resumes the box task,
and safely continues. If both the left and right tasks are terminated,
the box task becomes both suspended and inaccessible, and there-
fore effectively terminated. Thus, the system as a whole can protect
itself against malicious (or buggy) collaborations by terminating
both collaborators. Meanwhile, communication channels that are
provided by the box protect the left and right tasks from each other,
much as kernel-supplied channels protect tasks from each other.

This solution combines three lines of work:

• Our earlier work for nested tasks (i.e., the gray boxes) in
MzScheme [6] provides the base task model.

• The primitives of Concurrent ML [21] enable tasks to im-
plement communication abstractions that have the same first-
class status as kernel abstractions.

• New primitives allow modifying the task hierarchy without
threatening bystander tasks.

Technically, our extension of existing task and concurrency models
is modest, and the pattern that we show for kill-safety is a straight-
forward extension of Concurrent ML patterns—once our new prim-
itives are given. Our contribution lies in the synthesis of these el-
ements to provide a simple and expressive mechanism for kill-safe
abstractions. To our knowledge, it is the first such combination
to solve the servlet problem described in the previous section (and
other problems like it).

The servlet problem closely mirrors a problem in the implementa-
tion of DrScheme’s help system. Help pages are written in HTML,
and the help system works by running the PLT web server [7] plus
a browser that is connected to the server. Although the server
and browser could execute as different OS tasks and communi-
cate through TCP sockets (as web servers and browsers normally
do), production OSes make this architecture surprisingly fragile.
Therefore, DrScheme implements its own browser, and it runs
a web server and a browser directly in its own MzScheme vir-
tual machine. The two parties communicate through a socket-like
abstraction whose core is an asynchronous buffered queue. The
MzScheme kernel provides no such abstraction, and due to the way
that DrScheme is organized, adding an intermediate kernel layer
for the web browser and server would be prohibitively difficult.
Furthermore, both the server and browser take advantage of termi-
nation for internal tasks (e.g., to cancel a browser click), and those
tasks are involved in communication. Such terminations then wreak
havoc with the queue implementation.

In the new MzScheme, small adjustments to the queue implemen-
tation make it kill-safe as well as thread-safe. The help system
now works reliably with no additional changes to DrScheme, the
server, or the browser. At the same time, the kill-safe abstraction
does not (and cannot) compromise task control. In particular, when
testing DrScheme within DrScheme, we can terminate the inner
DrScheme, and it reliably terminates the associated help system,
including any queue-manager threads.

Kill-safe buffered queues are merely the tip of the abstraction ice-
berg, but we use this example in the following sections to illus-
trate essential techniques for kill-safe abstractions. SeeConcurrent
Programming in MLby John Reppy [21] for many other example
abstractions that can be made kill-safe using our technique.

2.3 Abandoned Approaches

Before arriving at MzScheme’s current primitives for kill-safe ab-
stractions, we explored two main alternatives.

Restricted atomic sections: As mentioned at the end of Sec-
tion 2.1, the kernel cannot allow a task to execute arbitrary code
atomically, otherwise it might starve the rest of the system. The
kernel might, however, allow a task to execute atomically for a
short period of time, or to execute code that provably terminates
in a short time. We abandoned this approach, because we could not
find a way to define “time” that makes sense to a programmer. Dy-
namic measurements in terms of clock ticks or program operations
were too sensitive to small program changes, and static methods,
based on limiting the code to certain primitive operations, proved
insufficiently expressive.

Transactions with rollbacks and commit points: Although
a transaction-oriented approach looked promising, and although
Rudys and Wallach have made progress in this direction [23], syn-
chronous channels encode directly the kind of transactions that
seem most useful for our purposes. We therefore abandoned this
direction and embraced the Concurrent ML primitives as our base.

3 Task Control in MzScheme

To provide a more concrete explanation of kill-safe abstractions, we
must first introduce some terminology and basic task constructs. In
this section, we present the constructs as they are implemented in
MzScheme.1

MzScheme’s support for tasks encompasses threads of execution,
task-specific state, per-task resource control, per-task GUI modal-
ities, and more. Instead of supplying a monolithic “process” con-
struct, however, MzScheme supports the many different facets of
a process through many specific constructs [6]. With respect to
kill-safe abstractions, the only relevant facets are threads of execu-
tion, resource control as it relates to thread termination, and thread-
specific state as it relates to determining the resource controller.

3.1 Threads

Thespawn procedure takes a function of no arguments and calls the
function in a new thread of execution. The thread terminates when
the function returns. Meanwhile,spawn returns a thread descriptor
to its caller.

(define t1 (spawn (lambda () (printf "Hello"))))
(define t2 (spawn (lambda () (printf "Nihao"))))
;; prints “Hello” and “Nihao”, possibly interleaved

3.2 Resource Control

A custodianis a resource controller in MzScheme. Whenever a
thread is created, a network socket is opened, a GUI window is
created, or any other primitive resource is allocated, it is placed
under the control of thecurrent custodian. A thread can create and
install a new custodian, but the newly created custodian is asub-
custodianthat is controlled by the current custodian.

The only operation on a custodian iscustodian-shutdown-all,
which suspends all threads, closes all sockets, destroys all GUI
windows, etc. that are controlled by the custodian, and prevents
any further resources allocated to the custodian. The shut-down

1Some functions are defined in the(lib "cml.ss") module.

command also propagates to any controlled sub-custodians. After
a custodian is shut down, it drops references to primitive resources,
and the memory for such objects can be reclaimed by the garbage
collector.2 Unlike other objects, a thread can have multiple cus-
todians (added withthread-resume, which we describe later, in
Section 3.3). A thread is suspended only when all of its controlling
custodians are shut down.

The make-custodian procedure creates a new custodian. The
parameterize form with current-custodian sets the current
custodian during the evaluation of an expression. In particular,
parameterize can be used to install a custodian while creating a
new thread, and the new thread is then controlled by the custodian.

(define cust (make-custodian))
(define (lots-of-work))
(parameterize ([current-custodian cust])

(spawn lots-of-work))
(custodian-shutdown-all cust) ; stopslots-of-work

When a thread is created, it inherits the current custodian from its
creating thread. Thus, assuming thatlots-of-work is not closed
over the original custodian,(custodian-shutdown-all cust)
reliably terminates the task that executeslots-of-work—no mat-
ter how many threads that it spawns, sockets that it opens, GUI
windows that it creates, or sub-custodians that it generates.

The current custodian for a particular thread is not necessarily the
same as the thread’s controller. The thread’s controlling custodian
is determined when the thread is spawned, but the current custodian
(for controlling newly allocated resources) can be changed by the
thread at any time throughparameterize.

3.3 Thread Resumption

The thread-resume primitive is the key to implementing kill-
safe abstractions. Given a single thread argument, MzScheme’s
thread-resume function resumes the thread if it is suspended:

(define t (spawn lots-of-work))
(thread-suspend t) ; suspendslots-of-work
(thread-resume t) ; resumeslots-of-work

The thread-resume function can only resume a thread that has
a custodian. If a thread’s only custodian has been shut down, the
resume request has no effect.

(define cust (make-custodian))
(define t (parameterize ([current-custodian cust])

(spawn lots-of-work)))
(custodian-shutdown-all cust) ; stopslots-of-work
(thread-resume t) ; doesn’t resumelots-of-work

Thethread-resume function accepts an optional second argument
to provide a new custodian to the thread before attempting to re-
sume it. The optional argument can be either a custodian, in which
case it is added to the thread’s set of controllers, or another thread,
in which case this other thread’s custodians are added to the set of
controllers for the first thread.

(define cust (make-custodian))
(define cust2 (make-custodian))
(define t1 (parameterize ([current-custodian cust1])

(spawn lots-of-work)))
(define t2 (parameterize ([current-custodian cust2])

(spawn lots-of-work)))

2Shutting down a resource removes internal references, which
frees most of the memory associated with the resource.

(custodian-shutdown-all cust1) ; suspendst1
(thread-resume t1) ; doesn’t resumet1
(thread-resume t1 t2) ; resumest1 , addscust2
(custodian-shutdown-all cust2) ; stopst1 andt2

If the second argument tothread-resume is a thread, then in ad-
dition to adding a custodian to the first thread, the resume yokes the
first thread to second as follows:

• Whenever the second thread is resumed, the first thread is also
resumed.

• Whenever the second thread acquires a new custodian, the
first thread also acquires the custodian.

The overall effect of(thread-resume t1 t2) is to ensure that
t1 survives at least as long ast2—assuming thatt1 is suspended
only indirectly viacustodian-shutdown-all. This effect holds
because a custodian-based suspension oft1 will necessarily also
suspendt2 , sincet1 can only run out of custodians ift2 also runs
out. Meanwhile, if both are suspended andt2 is resumed, then so
is t1 .

The two-argumentthread-resume allows two threadst1 and
t2 share an object that embeds a threadt . In that case,
(thread-resume t t1) plus (thread-resume t t2) makes
the embedded threadt act as though it has no controlling custo-
dian, at least as far ast1 andt2 can tell, sincet runs whenevert1
or t2 runs. This combination is the key to implementing a kill-safe
version of the queue abstraction.

Furthermore, the two-argumentthread-resume does not enable a
set of processes to conspire and escape termination. The processes
may share their custodians, but after all of the custodians are shut
down, no thread created by the processes can execute without out-
side help. Indeed, in the absence of outside references, the process’s
threads will be garbage-collected.

4 Sketch for a Kill-Safe Queue

The primitive synchronization abstraction in MzScheme is a syn-
chronous channel [11, 15], which allows two tasks to rendezvous
and exchange a single value. This built-in abstraction is kill-safe, in
that the termination of a task on one end of the channel does not en-
danger the task on the other end of the channel—though, obviously,
no further communication will take place.

In this section, we consider the implementation of a kill-safe queue
(a.k.a. asynchronous buffered channel). Values sent into the queue
are parceled out one-by-one to receivers. A send to a queue never
blocks, except to synchronize access to the internal list of queued
items. A receive blocks only when the queue is empty, or to syn-
chronize internal access.

(define q (queue))
(queue-send q "Hello")
(queue-send q "Bye")
(queue-recv q) ; ⇒ "Hello"
(queue-recv q) ; ⇒ "Bye"

Figure 5 sketches an implementation of queues. Each queue con-
sists of a channelin-ch for putting items into the queue, a channel
out-ch for getting items out of the queue, and a manager thread
runningserve to pipe items fromin-ch to out-ch .

Even with only this sketch, we can see that the queue is not yet
kill-safe. Suppose that a threadt1 createsq by calling(queue).

Suppose further thatt1 is controlled by custodianc1 , and thatq is
made available to a threadt2 controlled by custodianc2 :

;; t1 , controlled byc1 ;; t2 , controlled byc2
(define q (queue))
(send-to-other q) (define q (get-from-other))
;; suspend threads of c1

;; stuck —q was suspended byc1
(queue-send q 10)

Sincet1 createsq , the queue’s internal threadmgr-t is controlled
by c1 . Suspending all threads ofc1 suspends botht1 andmgr-t .
As a result, the send int2 gets stuck—and a send into a buffered
queue should never get stuck.

We might attempt to fix the problem with a resume of the queue’s
thread before each queue operation. A simple resume is not enough,
however; between the time thatt2 resumesmgr-t and the time that
it performs its action on the queue, another thread might re-suspend
all threads ofc1 , thus re-suspendingmgr-t .

The solution is(thread-resume mgr-t t2), which not only re-
sumes the queue thread, but also addst2 ’s custodian,c2 , as a con-
troller of mgr-t . Afterward, a mere suspension ofc1 ’s threads
does not suspendmgr-t , since it is also controlled byc2 .

Sincemgr-t is not accessible outside the queue implementation,
it can be suspended only by shutting down both of its custodians,
c1 andc2 . In that case, then botht1 andt2 will be suspended
as well asmgr-t—which is precisely the desired behavior if the
custodians were shut down to terminate taskst1 andt2 . In other
words,mgr-t acquires no more priviledge to run than the sum of
t1 andt2 ’s priviledges.

If the suspension is not intended to terminate the task, and if
t2 is later resumed, thenmgr-t is also resumed, due to the
chaining installed by(thread-resume mgr-t t2). More gen-
erally, by guarding each queue operation with(thread-resume
mgr-t (current-thread)) we ensure thatmgr-t runs when-
ever a queue-using thread runs. Figure 6 shows revisions of the
queue implementation with these guards, which make it kill-safe.

This example demonstrates both how kill-safe abstractions are pos-
sible, and how abstractions can be made kill-safe with relative ease.
Nevertheless, it does not demonstrate the full power of our primi-
tives for defining kill-safe abstractions. For such a demonstration,
we must introduce MzScheme’s embedding of the Concurrent ML
primitives, so that we can build more flexible abstractions.

5 Review of Concurrent ML

This section provides a brief tutorial on MzScheme’s embedding of
the Concurrent ML [21] primitives. The tutorial is intended mainly
for readers who are unfamiliar with Concurrent ML.

The primitives support synchronization among tasks via first-class
events. A few kinds of events are built in, such as events for send-
ing or receiving values through a channel. More importantly, the
primitives enable the construction of entirely new kinds of events
that have the same first-class status as the built-in events.

• sync : α-event→ α

The sync procedure takes aneventand blocks until the event is
ready to supply a value. Some primitives provide a source of events.
For example,thread-done-evt takes a thread descriptor and re-

;; queue : → α-queue
;; queue-send : α-queue α → void
;; queue-recv : α-queue→ α

;; Declare an opaqueq record with two fields; the constructor
;; is make-q , and the field selectors areq-in-ch andq-out-ch
(define-struct q (in-ch out-ch))
;; make-q : α-channel α-channel→ α-queue

(define (queue)
(define in-ch (channel)) ; to acceptsends into queue
(define out-ch (channel)) ; to supplyrecvs from queue
;; A manager thread loops withserve
(define (serve items)

;; Handlesends andrecvs
....
;; Loop with new queue items:
(serve new-items))

;; Create the manager thread
(spawn (lambda () (serve (list))))
;; Return a queue as an opaqueq record
(make-q in-ch out-ch))

(define (queue-send q v)
;; Sendv to (q-in-ch q)
....)

(define (queue-recv q)
;; Receive from(q-out-ch q)
....)

Figure 5. Implementation sketch for a queue

(define-struct q (in-ch out-ch mgr-t))
;; make-q : α-channel α-channel thread→ α-queue

(define (queue)
....
;; Create a manager thread
(define mgr-t (spawn (lambda () (serve (list)))))
;; Theq record now refers to the manager thread
(make-q in-ch out-ch mgr-t))

(define (queue-send q v)
;; Make sure the manager thread runs
(thread-resume (q-mgr-t q) (current-thread))
;; Sendv to (q-in-ch q)
....)

(define (queue-recv q)
;; Make sure the manager thread runs
(thread-resume (q-mgr-t q) (current-thread))
;; Receive from(q-out-ch q)
....)

Figure 6. A kill-safe queue, revises Figure 5

turns an event that is ready (with a void value) when the thread has
terminated.

;; thread-done-evt : thread→ void-event

(define t1 (spawn (lambda () (printf "Hello"))))
(define t2 (spawn (lambda () (printf "Nihao"))))
(sync (thread-done-evt t1)) ; waits untilt1 is done
(sync (thread-done-evt t2)) ; waits untilt2 is done
(printf "Bye")
;; prints “Hello” and “Nihao” interleaved, then “Bye”

• channel : → α-channel
channel-recv-evt : α-channel→ α-event
channel-send-evt : α-channel α → void-event

The channel procedure takes no arguments and returns a chan-
nel descriptor. A channel’s only purpose is to generate events;
thechannel-recv-evt andchannel-send-evt procedures cre-
ate events for receiving values from the channel and sending values
into the channel, respectively. The result of a receive event is a
value sent through the channel, and the result of a send event is
void. A send event is created with a specific value to put into the
channel, and the event is ready only when a receive event can ac-
cept the value simultaneously. Similarly, a receive event is ready
only when a send event can provide a value simultaneously.

(define c (channel))
(spawn (lambda () (sync (channel-send-evt c "Hello"))))
(sync (channel-recv-evt c)) ; ⇒ "Hello"

Multiple threads can attempt to send or receive through a particu-
lar channel concurrently. In that case, the system selects threads
arbitrarily (but fairly) to form a send–receive pair.

(define c (channel))
(spawn (lambda () (sync (channel-send-evt c "Hello"))))
(spawn (lambda () (sync (channel-send-evt c "Nihao"))))
(sync (channel-recv-evt c)) ; ⇒ "Hello" or "Nihao"
(sync (channel-recv-evt c)) ; ⇒ the other string,

; "Nihao" or "Hello"

• choice-evt : α-event ... α-event→ α-event

Thechoice-evt procedure takes any number of events and com-
bines them into a single event. The combining event is ready when
one of the original events is ready. If multiple events are ready,
one is chosen arbitrarily (but fairly), and the value produced by the
combining event is the value produced by the chosen event.

(define c1 (channel))
(define c2 (channel))
(spawn (lambda () (sync (channel-send-evt c1 "Hello"))))
(spawn (lambda () (sync (channel-send-evt c2 "Nihao"))))
(define cc (choice-evt (channel-recv-evt c1)

(channel-recv-evt c2)))
(sync cc) ; ⇒ "Hello" or "Nihao"
(sync cc) ; ⇒ the other string,"Nihao" or "Hello"

In the above example, even if both sending threads are ready when
the main thread first callssync, only one receive event incc is
chosen, and so it is matched with only one sending thread. The
other sending thread remains blocked until the second(sync cc).

• wrap-evt : α-event (α → β) → β-event

Thewrap-evt function takes an event and a transformer procedure
of one argument, and it produces a new event. The new event is
ready when the given event is ready, and its value is the result of the
transformer procedure applied to the original event’s value.

(define c1 (channel))
(define c2 (channel))
(spawn (lambda () (sync (channel-send-evt c1 "Hello"))))
(spawn (lambda () (sync (channel-send-evt c2 "Nihao"))))
(sync (choice-evt

(wrap-evt (channel-recv-evt c1)
(lambda (x) (list x "from 1")))

(wrap-evt (channel-recv-evt c2)
(lambda (x) (list x "from 2")))))

;; ⇒ (list "Hello" "from 1") or (list "Nihao" "from 2")

• guard-evt : (→ α-event) → α-event

An event created byguard-evt encapsulates a procedure that is
called whensync is applied to the event. The procedure’s result is
an event to use to in place of the guard event for thesync. For ex-
ample, assume thatcurrent-time produces the current time, and
thattime-evt produces an event that is ready at a given absolute
time. Then,guard-evt can be used to construct a timeout event.

;; current-time : → num
;; time-evt : num→ event

(define one-sec-timeout
(guard-evt (lambda ()

(time-evt (+ 1 (current-time))))))
(sync one-sec-timeout) ; ⇒ void, one second later
(sync one-sec-timeout) ; ⇒ void, another second later

The result fromguard-evt might be best described as an “event
generator” instead of an event, but this generator can be used
anywhere than an event can be used. Event generation is im-
portant for one-sec-timeout , which must construct an alarm
time based on the time thatone-sec-timeout is used, not when
one-sec-timeout is created.

• nack-guard-evt : (void-event→ α-event) → α-event

The nack-guard-evt function generalizesguard-evt. For
nack-guard-evt, the given guard procedure must accept a sin-
gle argument. The argument is a “Negative ACKnowledgment”
event that becomes ready if the guard-generated event is not cho-
sen bysync—usually because the event is combined with others
usingchoice-evt.

(sync (choice-evt
(wrap-evt one-sec-timeout

(lambda (void) "Hello"))
(nack-guard-evt

(lambda (nack)
;; Start a thread to watchnack
(spawn (lambda ()

(sync nack) (printf "nack")))
;; This event is never ready
(channel-recv-evt (channel))))))) ; ⇒ "Hello"

;; Meanwhile, “nack” is printed

Each timesync is applied to a NACK-guarded event, the guard
procedure is called with a newly generated NACK event. Thus, a
NACK event becomes ready only when a specific guard-generated
event is not chosen in a specificsync call.

We defer a complete definition of “not chosen” to Section 7, fol-
lowing a motivating example.

6 Queue: Complete and Improved

Having reviewed the Concurrent ML primitives, we are almost
ready to complete the implementation sketch of queues from Sec-
tion 4. First, however, we refine the queue abstraction to better
match the programming idioms of Concurrent ML. This refinement
helps demonstrate that our strategy for kill-safety applies to other
Concurrent ML abstractions. After showing the implementation of
the first improved queue abstraction, we improve the abstraction
one step further to demonstrate an additional key idiom.

;; queue : → α-queue
;; queue-send-evt : α-queue α → void-event
;; queue-recv-evt : α-queue→ α-event

(define-struct q (in-ch out-ch mgr-t))
;; make-q : α-channel α-channel thread→ α-queue

(define (queue)
(define in-ch (channel)) ; to acceptsends into queue
(define out-ch (channel)) ; to supplyrecvs from queue
;; A manager thread loops withserve
(define (serve items)

(if (null? items)
;; Nothing to supply arecv until we accept asend
(serve (list (sync (channel-recv-evt in-ch))))
;; Accept asend or supply arecv , whichever is ready
(sync (choice-evt

(wrap-evt
(channel-recv-evt in-ch)
(lambda (v)

;; Accepted asend ; enqueue it
(serve (append items (list v)))))

(wrap-evt
(channel-send-evt out-ch (car items))
(lambda (void)

;; Supplied arecv ; dequeue it
(serve (cdr items))))))))

;; Create the manager thread
(define mgr-t (spawn (lambda () (serve (list)))))
;; Return a queue as an opaqueq record
(make-q in-ch out-ch mgr-t))

(define (queue-send-evt q v)
(guard-evt
(lambda ()

;; Make sure the manager thread runs
(thread-resume (q-mgr-t q) (current-thread))
;; Channel send
(channel-send-evt (q-in-ch q) v))))

(define (queue-recv-evt q)
(guard-evt
(lambda ()

;; Make sure the manager thread runs
(thread-resume (q-mgr-t q) (current-thread))
;; Channel receive
(channel-recv-evt (q-out-ch q)))))

Figure 7. Implementation of a kill-safe queue

6.1 Queue Actions as Events

Our original queue sketch providedqueue-send andqueue-recv
functions that block until the corresponding action completes. We
should instead providequeue-send-evt and queue-recv-evt
functions that generate events. With events, a programmer can in-
corporate queues in future synchronization abstractions, which may
need to select among multiple blocking actions.

(define q (queue))
(sync (queue-send-evt q "Hello"))
(sync (queue-send-evt q "Bye"))
(sync (queue-recv-evt q)) ; ⇒ "Hello"
(sync (queue-recv-evt q)) ; ⇒ "Bye"

Figure 7 shows the complete implementation of improved, kill-safe
queues:

• The queue function creates a thread to manage the internal

list of values. Access to the internal list is thus implicitly
single-threaded, avoiding race conditions.

• When the queue is neither empty nor full, the queue-managing
thread useschoice-evt to select among the send and receive
actions. If both actions become enabled at once, one or the
other is chosen atomically and fairly.

• In the manager thread,wrap-evt meshes withchoice-evt
to implement a dispatch for whichever action becomes ready.

• The queue-send-evt function guards its result event with
a use ofthread-resume. The guard ensures that the man-
ager thread runs to service the send. Thequeue-recv-evt
similarly guards its result.

If a queue becomes unreachable, its manager thread is garbage
collected. More generally, when a thread becomes permanently
blocked because all objects that can unblock it become unreach-
able, the thread itself becomes unreachable, and its resources can
be reclaimed by the garbage collector.

To a consumer of the abstraction, the values produced byqueue ,
queue-recv-evt , andqueue-send-evt have the same first-class
status as values produced bychannel, channel-recv-evt, and
channel-send-evt. For example, queue send and receive events
can be multiplexed with other events (usingchoice-evt) in build-
ing additional abstractions.

6.2 Selective Dequeue

In DrScheme’s help system, aqueue is used in place of a socket
that listens for connections. Thequeue abstraction might also be
useful for handling messages to GUI objects, such as a mouse-click
messages and refresh messages. A GUI message queue, however,
must support a selective dequeuing. For example, a task might
wish to handle only refresh messages posted to the queue, leaving
mouse-click messages intact.

Unfortunately, selective dequeue cannot be implemented by de-
queuing a message, applying a predicate, and then re-posting the
message if the predicate fails; re-posting the unwanted message
changes its order in the queue with respect to other messages.

To support selective dequeue, we must modify the server so that it
accepts dequeue requests with a corresponding predicate, and then
satisfies a request only when an item in the queue matches the pred-
icate. On the client side, the selective receive event must be guarded
so that it sends a request to the server, then accepts a result through
a newly created channel. The new channel ties together the request
and the result, so that a result is sent to the correct receiver.

Figure 8 shows a revision of the queue implementation to sup-
port selective dequeue. The manager thread still acceptssends
throughin-ch , but it no longer supplies queued items to a fixed
out-ch channel. Instead, the manager thread accepts receive re-
quests throughreq-ch , and it keeps a list of the requests. While
the manager waits for sends and additional receive requests, it also
services requests for which a matching item is available.

One problem with this implementation is that the manager thread
executes an arbitrary predicate procedure that is supplied by a
client of the queue. A client could supply a predicate that does
not return or that suspends the current thread, thus incapacitat-
ing the server thread. One solution to this problem is to change
msg-queue-recv-evt so that it accepts only simple predicates,

;; msg-queue : → α-msg-queue
;; msg-queue-send-evt : α-msg-queue α → void-event
;; msg-queue-recv-evt : α-msg-queue (α → bool) → α-event

(define-struct q (in-ch req-ch mgr-t))
;; make-q : α-channel α–req-channel thread→ α-queue

(define-struct req (pred out-ch))
;; make-req : (α → bool) α-channel→ α-req

(define (msg-queue)
(define in-ch (channel))
(define req-ch (channel))
(define never-evt (channel-recv-evt (channel)))
(define (serve items reqs)

(sync (apply
choice-evt
;; Maybe accept asend
(wrap-evt
(channel-recv-evt in-ch)
(lambda (v)

;; Accepted asend ; enqueue it
(serve (append items (list v)) reqs)))

;; Maybe accept arecv request
(wrap-evt
(channel-recv-evt req-ch)
(lambda (req)

;; Accepted arecv request; add it
(serve items (cons req reqs))))

;; Maybe service arecv request inreqs
(map (make-service-evt items reqs) reqs))))

(define (make-service-evt items reqs)
(lambda (req)

;; Search queue items usingpred
(find-first-item (req-pred req) items
(lambda (item)

;; Found an item; try to servicereq
(wrap-evt
(channel-send-evt (req-out-ch req) item)
(lambda (void)

;; Serviced, so remove item and request
(serve (remove item items)

(remove req reqs)))))
(lambda ()

;; No matching item to servicereq
never-evt))))

(define mgr-t
(spawn (lambda () (serve (list) (list)))))

(make-q in-ch req-ch mgr-t))

(define (msg-queue-send-evt q v)
;; Same asqueue-send-evt in Figure 7
....)

(define (msg-queue-recv-evt q pred)
(guard-evt
(lambda ()

(define out-ch (channel))
;; Make sure the manager thread runs
(thread-resume (q-mgr-t q) (current-thread))
;; Request for an item matchingpred with reply toout-ch
(sync (channel-send-evt (q-req-ch q)

(make-req pred out-ch)))
;; Result arrives onout-ch
(channel-recv-evt out-ch))))

Figure 8. Queue with selective dequeue, first attempt

such asodd? andeven?, that are known to be harmless. We show
how to allow arbitrary predicates in Section 8.1.

Even if we constrainpred , the implementation of selective de-
queue contains a space leak. The following example illustrates the
problem:

(define q (msg-queue))
(sync (msg-queue-send-evt q 1))
(sync (msg-queue-send-evt q 2))
(sync (choice-evt

(msg-queue-recv-evt q odd?)
(msg-queue-recv-evt q even?)))

Thesync call sends two requests to the server. One is serviced, and
the program continues. Meanwhile, a leftover request remains with
the server. The request will never be successfully serviced, because
nosync waits on the associatedout-ch . Still, the request is stuck
in the internalreqs list, and leftover requests can pile up over time,
degrading performance and wasting resources. A similar problem
occurs if the thread making a request is terminated.

To avoid this problem, the server needs to know when a
client sync has abandoned a dequeue request. Figure 9
shows hownack-guard-evt can provide this information. The
msg-queue-recv-evt function now sends the manager a “gave
up” event in addition to a result channel. The manager thread uses
the new event to keep the request list clean.

Themsg-queue example illustrates a particular Concurrent ML id-
iom: a client–server protocol where the client sends a request to
the server, but may withdraw the request before it can be satisfied.
Withdrawal reliably prevents acceptance and vice-versa, due to the
rendezvous associated with a channel transfer (i.e., the sender and
receiver must simultaneously agree to the transfer of a result).

The request idiom poses an extra challenge for kill-safety. A client
can be terminated at any point in the request cycle, so we must
definenack-guard-evt so that it handles this possibility. The next
section completes our explanation of MzScheme’s primitives with
a suitable definition ofnack-guard-evt.

7 Termination and NACKs

Recall that the event provided to a guard procedure by
nack-guard-evt becomes ready if the guard-generated event is
not chosen. MzScheme extends the Concurrent ML definition of
“not chosen” so that it includes all of the following cases, which
cover all of the ways that a thread can abandon an event:

• Thesync call chooses an event other than the one returned by
the guard.

• Control escapes from thesync call through an exception or
continuation jump. The exception or jump may have been
triggered through a break signal (discussed further in Sec-
tion 8.2), by another guard involved in the samesync, or even
by the guard procedure that received the NACK event. Con-
tinuation jumps back into a guard are always blocked by our
definition of nack-guard-evt, so multiple escapes are not
possible.

• The syncing thread terminates (i.e., it is suspended and un-
reachable).

In the code from Figure 9, the event produced by
msg-queue-recv-evt can be used in an arbitrary client

context, so all of the above cases are possible. For example, the
context might begin async on the event in a particular thread,
then terminate the thread during thesync. If the guard procedure
is executing at the time of termination, and if termination occurs
before the nestedsync completes a send to(q-req-ch q),
then the server never becomes aware of the request, so the
server is left in a consistent state. If termination occurs after the
nestedsync but before the outersync chooses the guard’s result
(channel-recv-evt out-ch), the server has already received
gave-up-evt , and therefore knows to abandon the request
(becausegave-up-evt becomes ready). Finally, if termination
occurs after a successful outersync on (channel-recv-evt
out-ch), then the server has completed the request, so termination
does not affect the server.

MzScheme’snack-guard-evt corresponds to Concurrent ML’s
withNack. An earlier version [19] of Concurrent ML offered
wrapAbort, instead, and a later presentation [21] explains how
withNack can be implemented withwrapAbort. Our definition
of “not chosen” does not allow such an implementation, and thus
strengthens the argument thatwithNack is the right operation to
designate as primitive.

8 Beyond Kill-Safety

To further explain our design choices, we show in the following sec-
tions how custodians and events solve problems besides kill-safety,
and how they interact with cooperative termination.

8.1 Custodians and Events At Work, Again

As noted in Section 6.2, our initial implementation of selective de-
queue is unsafe; the server executes arbitrary predicate procedures
that are supplied by clients, which might damage the server thread.
For example, a thread can provide a predicate to the server that sus-
pends the current thread, thus disabling the queue.

(define q (msg-queue))
(sync (msg-queue-send-evt q 1))
(spawn (lambda ()

(define (die x)
(thread-suspend (current-thread)))

(sync (msg-queue-recv-evt q die))))
(sync (msg-queue-recv-evt q odd?)) ; probably stuck

To avoid this problem, the server can run the predicate in a new
thread, which prevents the predicate from harming the server
thread. Moreover, the new thread should be executed under a custo-
dian that is supplied by the client thread (as part of a request), which
means that the predicate-running thread can execute only when the
client is still allowed to execute. This arrangement is analogous to
a remote procedure call, except that “remoteness” is implemented
by using another process’s custodian.

The server cannot simply wait in turn for each remote thread to
complete its work, because a predicate might not terminate. Instead,
the server mustsync on an event that corresponds to completion
of the remote thread. When the event delivers a list of acceptable
items, they can be added to the request. In later iterations, a remote
thread is started for the request only if the list of known acceptable
items becomes empty.

To implement this change, we modify onlymake-service-evt
andmsg-queue-recv-evt as shown in Figure 10. The change to
msg-queue-recv-evt adds a custodian and empty list (of known

(define-struct req (pred out-ch gave-up-evt))
;; make-req : (α → bool) α-channel void-event→ α-req

(define (msg-queue)
....
(define (serve items reqs)

....
;; Addmake-abandon-evt events
(append
(map (make-service-evt items reqs) reqs)
(map (make-abandon-evt items reqs) reqs)))))

....
(define (make-abandon-evt items reqs)

(lambda (req)
;; Event to detect that the receiver gives up
(wrap-evt (req-gave-up-evt req)

(lambda (void)
;; Receiver gave up; remove request
(serve items (remove req reqs))))))

....

(define (msg-queue-recv-evt q pred)
(nack-guard-evt
(lambda (gave-up-evt)

(define out-ch (channel))
(thread-resume (q-mgr-t q) (current-thread))
;; As before, but also send the servergave-up-evt
(sync (channel-send-evt

(q-req-ch q)
(make-req pred out-ch gave-up-evt)))

(channel-recv-evt out-ch))))

Figure 9. Revision to Figure 8

acceptable items) to the request. The newmake-service-evt
checks whether a particular request has at least one known ac-
ceptable item. If the request has none, thenservice-evt uses
ok-items-evt to call the predicate remotely on the current list of
items; if those items are received from the remote call, the request’s
list is updated. Otherwise, the request has known acceptable items,
and make-service-evt creates an event to service the request
with the first acceptable item. When an item is delivered in this
way, it is removed from the current list of queued items, and also
removed from every remaining request’s list of acceptable items.

This example illustrates how custodians and Concurrent ML’s prim-
itives complement each other beyond kill-safety. These additional
uses increase our confidence that the combination is general, and
therefore a good approach to the specific problem of kill-safety.

8.2 Cooperative Termination

Cooperative terminationallows a thread to execute clean-up actions
(e.g., flush a file buffer, update a shared GUI display) before ter-
minating. Cooperative termination is useful for many of the same
reasons as uncooperative termination, though only when a process
can be trusted to exit quickly.

MzScheme’sbreak-thread function enables cooperative termi-
nation. This function takes a thread descriptor and sends the thread
a break signal. The signal is analogous to a Unix process signal, but
the break signal is manifest in the target thread as an asynchronous
exception, much as in Concurrent Haskell [14].

(define t (spawn lots-of-work))
(break-thread t) ; possibly interruptslots-of-work

(define-struct req (pred out-ch gave-up-evt
cust ok-items))

;; make-req : (α → bool) α-channel void-event
;; custodian α-list→ α-req

(define (msg-queue)
....
(define (make-service-evt items reqs)

(lambda (req)
(if (null? (req-ok-items req))

;; Look for items acceptable topred
(wrap-evt
(ok-items-evt req items)
(lambda (ok-items)

;; Got a list of acceptable items, so updatereq
(serve items

(cons (new-ok-items req ok-items)
(remove req reqs)))))

;; Use first acceptable item to servicereq
(wrap-evt
(channel-send-evt (req-out-ch req)

(car (req-ok-items req)))
(lambda (void)

;; Serviced, so remove item and request
(define item (car (req-ok-items req)))
(serve (remove item items)

(map
(remove-ok-item item)
(remove req reqs))))))))

(define (ok-items-evt req items)
;; New thread runspred and delivers a list toitems-ch
(define items-ch (channel))
(parameterize ([current-custodian (req-cust req)])

(spawn
(lambda ()

(define ok-items (filter (req-pred req) items))
(sync (channel-send-evt items-ch ok-items)))))

(channel-recv-evt items-ch))
(define (remove-ok-item item)

;; Given areq , removeitem from its list of acceptable items
(lambda (req)

(new-ok-items req
(remove item (req-ok-items req)))))

(define (new-ok-items req ok-items)
(make-req (req-pred req) (req-out-ch req)

(req-gave-up-evt req) (req-cust req)
ok-items))

....

(define (msg-queue-recv-evt q pred)
(nack-guard-evt
(lambda (gave-up-evt)

(define out-ch (channel))
(thread-resume (q-mgr-t q) (current-thread))
;; Include a custodian and an initially empty list of
;; known acceptable items
(sync (channel-send-evt

(q-req-ch q)
(make-req pred out-ch gave-up-evt

(current-custodian) (list))))
;; Result arrives onout-ch
(channel-recv-evt out-ch))))

Figure 10. Revision to Figure 9 for arbitrary predicates

Since breaks are for cooperative termination, a thread is allowed to
disable breaks by usingparameterize with break-enabled. If a
break signal is sent to a thread when breaks are disabled, the signal

;; swap-channel : → α-swap-channel
;; swap-evt : α-swap-channel α → α

(define-struct sc (ch))
;; make-sc : α-req-channel→ α-swap-channel

(define-struct req (v ch))
;; make-req : α α-channel→ α-req

(define (swap-channel) (make-sc (channel)))

(define (swap-evt sc v)
(guard-evt
(lambda ()

(define in-ch (channel))
(choice-evt
;; Maybe act as server and receivereq
(wrap-evt
(channel-recv-evt (sc-ch sc))
(lambda (req)

;; Reply toreq
(sync (channel-send-evt (req-ch req) v))
(req-v req)))

;; Maybe act as client and sendreq
(wrap-evt
(channel-send-evt (sc-ch sc) (make-req v in-ch))
(lambda (void)

;; Receive answer toreq
(sync (channel-recv-evt in-ch))))))))

Figure 11. A break-safe implementation of swap channels

is delayed until breaks are re-enabled in the thread. A break signal
has no effect if the target thread has a delayed break already.

MzScheme automatically disables breaks in certain contexts, so that
many synchronization abstractions are naturally break-safe. One
such abstraction is a swap channel [21, pg. 59], as shown in Fig-
ure 11. A swap channel is like a channel, except that both syn-
chronizing threads provide a value to the other. Implementing this
two-way channel with one-way channels requires two phases. In
the first phase, the thread that is elected to act as the client sends
its value to the other thread, which is elected as the server. In the
second phase, the server thread sends its value back to the client
thread. The client and server threads are elected throughsync’s
non-deterministic choice.

When two threads complete the first phase, they are committed to
the swap. In other words, a break should not interrupt the second
phase. In Figure 11’s implementation ofswap-evt , a break cannot
interrupt the second phase, because the second phase is in a wrap
procedure. MzScheme implicitly disables breaks from time that
sync chooses an event until the event’s wrap procedure completes.

Although the body of a wrap procedure may explicitly re-enable
events, this example also illustrates why breaks are not implicitly
enabled bysync, unlike Concurrent Haskell’stakeMVar. If sync
implicitly enabled breaks, then the second phase of a swap might
be skipped after the threads have committed to swapping.

For cases where a programmer would like to re-enable breaks while
sync blocks, MzScheme provides a separatesync/enable-break
function. This function enables breaks such that either a break
exception is raised or an event is chosen, but not both. (Merely
wrapping a sync with parameterize to enable breaks does

not achievesync/enable-break’s exclusive-or behavior. With
parameterize andsync, the break may occur after an event is
chosen but before breaks are re-disabled, thus allowing both choice
and a break.) In our experience,sync/enable-break’s exclusive-
or guarantee is important for building break-safe code on top of
synchronization abstractions.

In the same way that a synchronization abstraction is re-
sponsible for providing an appropriate commit point—so that
events can be combined with others throughchoice-evt—
each synchronization abstraction is responsible for preserving
sync/enable-break’s exclusive-or guarantee. For example,
adding (parameterize ([break-enabled #t]) #f) to Fig-
ure 11 after(sync (channel-send-evt (req-ch req) v))
would defeat sync/enable-break’s exclusive-or guarantee,
though without damaging the swap abstraction in any other way.

Many kill-safe synchronization abstractions are naturally break-
safe, too. For example, the queue implementations of Figure 7 and
Figure 10 interact perfectly with cooperative termination, including
sync/enable-break.

Unfortunately, sync/enable-break’s exclusive-or guarantee is
not preserved by a kill-safe version of the swap abstraction. In the
kill-safe implementation, which is shown in Figure 12, a manager
thread pairs swapping clients and delivers a value to each client.
From the manager perspective, two clients are committed to swap as
soon as they are both known; from the client perspective, the swap
commits when the manager delivers a value. The mismatch means
that a client may be interrupted between the time that the manager
commits the swap and the time that the clients receive values, thus
defeating an exclusive-or guarantee forsync/enable-break (al-
though a break still does not damage the abstraction in any other
way).

This example illustrates how break-safety is not necessarily easier
than kill-safety, and vice-versa. Although break-safety seems intu-
itively easier, because a thread can disable breaks during sensitive
operations, continuing to execute after a break introduces concerns
that are absent with immediate termination. Future work may sug-
gest a way to reconcile these forms of termination, or, in the case of
swap channels, they may be irreconcilable due to the limitations of
channel rendezvous [17].

9 Related Work

Many systems provide a mechanism for cooperative interruption
of a process, such as thread cancellation in Posix [16], alerts in
Modula-3 [8], and asynchronous exceptions in Haskell [14] or
MzScheme [5]. For applications like our servlets example, how-
ever, forced termination is necessary, and our work is concerned
with kill-safety with respect to forced termination.

Some previous work addresses the interaction between termination
and synchronization for specific primitives. Examples include work
on monitors in Pilot [18] and remote pointers in Luna [10]. To our
knowledge, no previous work addresses the problem of termination
with respect toprogrammer-definedsynchronization abstractions.
Indeed, the problem makes sense only after programmers are given
significant abstraction capability, which is why our work depends
on Concurrent ML [19, 20, 21].

The idea of managing a resource through a designated thread ap-
pears in many contexts, notably in microkernels [4]. Argus’s

(define-struct sc (ch mgr-t))
;; make-sc : α-req-channel thread→ α-swap-channel

(define-struct req (v ch gave-up))
;; make-req : α α-channel void-event→ α-req

(define (swap-channel)
(define ch (channel))
(define (serve-first)

;; Get first thread for swap
(sync (wrap-evt

(channel-recv-evt ch)
serve-second)))

(define (serve-second a)
;; Try to get second thread for swap
(sync
(choice-evt
;; Possibility 1 — got second thread, so swap
(wrap-evt
(channel-recv-evt ch)
(lambda (b)

;; Send each thread the other’s value
(send-eventually (req-ch a) (req-v b))
(send-eventually (req-ch b) (req-v a))
(serve-first)))

;; Possibility 2 — first gave up, so start over
(wrap-evt
(req-gave-up a)
(lambda (void) (serve-first))))))

(define (send-eventually ch v)
;; Spawn a thread, in casech ’s thread isn’t ready
(spawn (lambda ()

(sync (channel-send-evt ch v)))))
(make-sc ch (spawn serve-first)))

(define (swap-evt sc v)
(nack-guard-evt
(lambda (gave-up)

(define in-ch (channel))
(thread-resume (sc-mgr-t sc) (current-thread))
(sync
(wrap-evt
(channel-send-evt (sc-ch sc)

(make-req v in-ch gave-up))
(lambda (void) in-ch))))))

Figure 12. A kill-safe implementation of swap channels

guardians [13] reflect a similar idea in the area of persistent, dis-
tributed computing. Our specific use of the thread-manager pattern
is typical of Concurrent ML programs, but also reminiscent of the
J-Kernel [9] approach, which creates a thread when crossing a trust
boundary to defend against termination. We extend this idea by
adding a mechanism to adjust a thread’s execution capability rela-
tive to other threads.

MzScheme does not provide a way to revoke access to an object, as
in Luna [10]. It also provides no way to disable code that is asso-
ciated with a task, as in Rudys et al.’s soft termination [22]. Given
a mechanism for disabling code, we conjecture that code fragments
could be connected to the custodian hierarchy to prevent a shared
abstraction’s code from being disabled prematurely.

The architectures in Figure 1 and 2 (in Section 2) illustrate a trade-
off between ease of communication and ease of termination, but
they are merely the extremes. A variation of the OS-style archi-
tecture can improve communication by enriching the kernel’s set

of primitives, as in KaffeOS [1], Alta [2], SPIN [3], J-Kernel [9],
Luna [10], and Nemesis [12]. In each case, however, the system
offers a fixed set of kill-safe primitives to applications, and our goal
is to allow programmer-defined kill-safe abstractions.

10 Conclusion

Many real-world programming tasks require concurrency. Never-
theless, certain programming models make correct concurrency dif-
ficult, so that programmers speak ofthread-safeimplementations
and work hard to ensure that an abstraction is thread-safe. Lan-
guages that are specifically designed for concurrency, (e.g., Erlang,
Concurrent ML) can encourage thread-safe implementations, mak-
ing them the rule rather than the exception. Indeed, in such lan-
guages, concurrency tends to simplify implementations, rather than
complicate them.

Many real-world programming tasks with concurrency also ben-
efit from termination. Nevertheless, programming systems have
not been designed to encourage (or even enable)kill-safe abstrac-
tions. We have taken a step in this direction, extending constructs
for thread-safe abstractions to enable kill-safe abstractions, thus in-
creasing the potential of termination to simplify implementations.

Acknowledgements
We would like to thank John Reppy and the anonymous reviewers
for their comments and suggestions.

The code in this paper is available at the following URL:

http : //www.cs.utah.edu/plt/kill−safe/

11 References

[1] G. Back, W. Hsieh, and J. Lepreau. Processes in KaffeOS:
Isolation, resource management, and sharing in Java. InProc.
USENIX Conference on Operating Systems Design and Im-
plementation, pages 333–346, Oct. 2000.

[2] G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and J. Lepreau.
Java operating systems: Design and implementation. InPro-
ceedings of the USENIX 2000 Technical Conference, pages
197–210, San Diego, CA, June 2000.

[3] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fi-
uczynski, D. Becker, S. Eggers, and C. Chambers. Extensi-
bility, safety and performance in the SPIN operating system.
In Proc. ACM Symposium on Operating Systems Principles,
pages 267–284, Dec. 1995.

[4] D. L. Black, D. B. Golub, D. P. Julin, R. F. Rashid, R. P.
Draves, R. W. Dean, A. Forin, J. Barrera, H. Tokuda, G.-
R. Malan, and D. Bohman. Microkernel operating system
architecture and Mach.Journal of Information Processing,
14(4):442–453, 1991.

[5] M. Flatt. PLT MzScheme: Language Manual, 2004.
www.mzscheme.org.

[6] M. Flatt, R. B. Findler, S. Krishnamurthi, and M. Felleisen.
Programming languages as operating systems (or revenge
of the son of the Lisp machine). InProc. ACM Interna-
tional Conference on Functional Programming, pages 138–
147, Sept. 1999.

[7] P. Graunke, S. Krishnamurthi, S. V. D. Hoeven, and
M. Felleisen. Programming the Web with high-level program-
ming languages. InProc. European Symposium on Program-

ming, volume 2028 ofLecture Notes in Computer Science.
Springer-Verlag, 2001.

[8] S. P. Harbison.Modula-3. Prentice Hall, 1991.

[9] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, and
T. von Eicken. Implementing multiple protection domains
in Java. InProc. of USENIX Annual Technical Conference,
pages 259–270, June 1998.

[10] C. Hawblitzel and T. von Eicken. Luna: a flexible Java pro-
tection system. InProc. USENIX Conference on Operating
Systems Design and Implementation, Oct. 2002.

[11] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, Englewood Cliffs, NJ, 1985.

[12] I. M. Leslie, D. McAuley, R. J. Black, T. Roscoe, P. R.
Barham, D. M. Evers, R. Fairburns, and E. A. Hyden. The
design and implementation of an operating system to sup-
port distributed multimedia applications.IEEE Journal on
Selected Areas in Communications, 14(7):1280–1297, Sept.
1996.

[13] B. Liskov and R. Scheifler. Guardians and actions: Linguistics
support for robust, distributed systems.ACM Transactions on
Computing Systems, 5(3):381–404, 1983.

[14] S. Marlow, S. L. Peyton Jones, A. Moran, and J. H. Reppy.
Asynchronous exceptions in Haskell. InProc. ACM Confer-
ence on Programming Language Design and Implementation,
pages 274–285, 2001.

[15] R. Milner. Communication and Concurrency. International
Series in Computer Science. Prentice Hall, 1989.

[16] National Institute of Standards and Technology (U.S.).
POSIX: portable operating system interface for computer en-
vironments, Sept. 1988.

[17] P. Panangaden and J. H. Reppy. The essence of Concur-
rent ML. In F. Nielson, editor,ML with Concurrency: De-
sign, Analysis, Implementation and Application, Monographs
in Computer Science, pages 5–29. Springer-Verlag, 1997.

[18] D. Redell, Y. Dalal, T. Horsley, H. Lauer, W. Lynch,
P. McJones, H. Murray, and S. Purcell. Pilot: An operating
system for a personal computer.Communications of the ACM,
23(2):81–92, Feb. 1980.

[19] J. H. Reppy. Synchronous operations as first-class values. In
Proc. ACM Conference on Programming Language Design
and Implementation, pages 250–259, 1988.

[20] J. H. Reppy.Higher–Order Concurrency. PhD thesis, Cornell
University, 1992.

[21] J. H. Reppy. Concurrent Programming in ML. Cambridge
University Press, 1999.

[22] A. Rudys, J. Clements, and D. S. Wallach. Termination in
language-based systems.ACM Transactions on Information
and System Security, 5(3):138–168, 2002.

[23] A. Rudys and D. S. Wallach. Transactional rollback for
language-based systems. InProc. International Conference
on Dependable Systems and Networks, June 2002.

[24] Soper, P., specification lead. JSR 121: Application isolation
API specification, 2003.http://www.jcp.org/.

