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1. File systems

Ben tries to understand the xv6 code of the filewrite() function (see the listing from the xv6
book below). He specifically looks at the definition of the max variable at line 5767 and tries
to understand the logic behind it.

5750 // Write to file f.

5751 int

5752 filewrite(struct file *f, char *addr, int n)

5753 {

5754 int r;

5755

5756 if(f->writable == 0)

5757 return -1;

5758 if(f->type == FD_PIPE)

5759 return pipewrite(f->pipe, addr, n);

5760 if(f->type == FD_INODE){

5761 // write a few blocks at a time to avoid exceeding

5762 // the maximum log transaction size, including

5763 // i-node, indirect block, allocation blocks,

5764 // and 2 blocks of slop for nonaligned writes.

5765 // this really belongs lower down, since writei()

5766 // might be writing a device like the console.

5767 int max = ((LOGSIZE-1-1-2) / 2) * 512;

5768 int i = 0;

5769 while(i < n){

5770 int n1 = n - i;

5771 if(n1 > max)

5772 n1 = max;

5773

5774 begin_op();

5775 ilock(f->ip);

5776 if ((r = writei(f->ip, addr + i, f->off, n1)) > 0)

5777 f->off += r;

5778 iunlock(f->ip);

5779 end_op();

5780

5781 if(r < 0)

5782 break;

5783 if(r != n1)

5784 panic("short filewrite");

5785 i += r;

5786 }

5787 return i == n ? n : -1;

5788 }

5789 panic("filewrite");

5790 }
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(a) (10 points) Explain the role of the max variable and why it is defined the way it is (provide
a detailed explanation for the formula and a high level explanation for why max is needed,
i.e., what will go wrong without it).

To make sure that all writes to the file system leave it in a consistent state, in case of
a power outage the filewrite() function splits large writes submitted by the user into
multiple file system transactions. The max variable limits the maximum size for each
transaction to make sure that it fits into the file system log. The file system log can
accomodate LOGSIZE blocks. To make sure that each transaction is smaller than the
LOGSIZE we need to count the number of blocks that can possibly be written by each
transaction.

A minimal (one byte) write to an inode (writei() function) might trigger writes to the
following blocks: 1) an allocation block that will be updated to reflect the fact tha the
indirect block for the inode is allocated if the write is the first write outside of the first 12
blocks covered by the direct blocks (an allocation has to write to the block that holds the
allocation bitmap), 2) a write to the indirect block itself, and 3) an update of the block
that holds the inode since now it has a pointer to the new indirect block. This means that
in the worst case a single write might trigger 3 additional block writes. Hence, the total
max blocks we can accomodate in one transaction is no more than LOGSIZE - 1 - 1 -

1.

Note, however, that each individual block write might trigger an allocation of the block,
hence in the worst case for each block written there will be an additional write to the
allocation block (we have to divide the remaining log blocks by half). And hence the
max number of blocks we can write should be: (LOGSIZE - 1 - 1 - 1)/2. Finally, the
write that can fit in n blocks might be misaligned and require updates to n + 1 blocks.
However if the write starts in the middle of a block it means that it was already allocated
by the previous write (xv6 does not have lseek() system call that allows users to write
into random locations in the file, hence the file is always written sequentially). Therefore,
we only need to subtract one block from the original size of the log, and the max number
of blocks we can allow to write without running of space in the log is: (LOGSIZE - 1 - 1

- 1 - 1)/2.

(b) (10 points) Finally, Ben thinks he understands the role of max, so he tries to explain it to
Alice. Alice, however, is a mature xv6 hacker and she immediately spots an error in Ben’s
logic. She is quick to point out the bug in the xv6 code arguing that the definition of max
above is incorrect. She quickly looks up the most recent version of xv6 and finds out that
the bug she spotted is fixed. The most recent version of xv6 defines the max like:

// write a few blocks at a time to avoid exceeding

// the maximum log transaction size, including

// i-node, indirect block, allocation blocks,

// and 2 blocks of slop for non-aligned writes.

// this really belongs lower down, since writei()

// might be writing a device like the console.

int max = ((MAXOPBLOCKS-1-1-2) / 2) * 512;
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Explain what is the bug that Alice has found, i.e., why the fix above is important and
what can go wrong with the old definition?

Alice has previously looked at the logging implementation in xv6, hence she knows that
xv6 allows concurrent transactions of MAXOPBLOCKS (10 blocks) each. She realizes
that if multiple transactions of (LOGSIZE - 1 - 1 - 1 - 1)/2 happen in parallel they
might exhaust the space in the log. Hence, she suspects that the definition of max should
be changed to limit the maximum write size based on the size of individual transaction,
not the entire log.
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2. Processes and boot

(a) (10 points) Explain how the first xv6 process and the boot shell process are created upon
boot.

The first process is created inside the userinit() function, that is called from main().
userinit() allocates a new process from the process table and initializes it’s user memory.
Specifically it loads a small stub of code (initcode.S) that is already compiled in the kernel.
This stub contains a short sequence of code that will execute the exec() system call passing
”/init” as an argument. Exec will replace the memory of the first process with the memory
image of the init program. Init will fork creating the boot shell.

(b) (5 points) At what point the first process starts executing? I.e., what is the function in
the xv6 kernel that starts execution of the first process.

While the userinit() allocates the first process and initializes its memory it does not start
running until the kernel finish initialization and enters the scheduler from the mpmain()
function. The scheduler enters the scheduling loop, finds the first RUNNABLE process
in the process list and context switches into it. At this process the first process starts
running and invokes the exec("/init") system call.
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3. Anatomy of a process and context switching

Ben decides to implement user-level threads. His plan is to create a new thread data structure
that describes a thread. He then thinks he can allocate a new stack for each thread and
implement a function u thread create() which creates a new thread. The u thread create()

has the following signature (it’s exactly like the thread create() function in our Homework
4 “Kernel Threads” assignment, but just takes an additional thread argument):

int u_thread_create(struct thread *t, void (*fn)(void *), void *arg, void *stack);

The u thread create() call creates a new user thread that runs inside the same process (in
contrast to the kernel thread implementation, the u thread create() doesn’t invoke a single
system call, but instead just executes the function that is passed as an argument (fn) on the
already allocated stack (stack). The function pointed by the fn pointer takes a void pointer
as an argument (it’s passed inside u thread create() as arg). The new user thread runs until
it explicitly yields execution back to the parent with the u yield() call. The u yield() call
doesn’t do a single system call, but saves execution of the thread on the stack and switches
back to the parent process (i.e., it continues execution at the line immediately following the
u thread create() invocation.

Ben can then create and run multiple user threads like this (the u yield to() function yields
execution back to a specific thread pointed by the struct thread argument):

#include <stdio.h>

#include <stdlib.h>

void do_work(void *arg) {

int i;

for (i = 0; i < 2; i++) {

printf("I’m in %s\n", (char *)arg);

u_yield();

}

};

int main(int argc, char *argv[]) {

void *stack1, *stack2;

struct thread t1, t2;

char a1[] = "Thread 1";

char a2[] = "Thread 2";

stack1 = malloc(4096);

stack2 = malloc(4096);

u_thread_create(&t1, do_work, (void*)a1, stack1);

u_thread_create(&t2, do_work, (void*)a2, stack2);

while(t1.state == RUNNABLE || t2.state == RUNNABLE) {

if (t1.state == RUNNABLE)

u_yield_to(&t1);

if (t2.state == RUNNABLE)

u_yield_to(&t2);
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}

printf("Threads finished\n");

return 0;

}

(a) (5 points) What output the program above will produce (assume that Ben got everything
right and standard output is connected to the terminal).

The program will produce

I’m in Thread 1

I’m in Thread 2

I’m in Thread 1

I’m in Thread 2

...

Threads finished

(b) (5 points) Ben times execution of his program by adding the uptime() system call at the
beginning and the end of the main() function, but doesn’t see any improvement compared
to a normal program (no user-level threads, just run do work() twice). He then changes
do work() to compute factorial and other computationally intensive functions instead of
simply printing on the console, and yet he sees no performance improvement. Explain
why the performance stays the same although multiple user-level threads are running?

User threads that Ben created run inside the same process, hence the kernel schedules
them on the same CPU and only one of them can run at every given moment in time.
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(c) (15 points) Provide code for the u thread create() and u yield() functions (you can
use pseudocode for C and ASM as long as semantics of operations is clear).

We provide a complete working solution below, obviously a much simpler draft is be
accepted. Below we provide examples for two possible implementations:

Implementation #1

#define RUNNABLE 1

#define EXITED 2

struct thread {

void *ebp;

void *esp;

int state;

};

struct thread parent;

struct thread *current;

void _uswitch(void *from, void *to) __attribute__((returns_twice));

__asm__ (" .text \n\t"

" .align 16 \n\t"

" .globl _uswitch \n\t"

// 8(%esp): thread_to, 4(%esp): thread_from

"_uswitch: \n\t"

" mov 4(%esp), %eax \n\t" // load thread_from into eax

" mov 8(%esp), %ecx \n\t" // load thread_to into ecx

" push %ebx \n\t" // save callee saved registers: ebx, edi, esi

" push %edi \n\t"

" push %esi \n\t"

" movl %ebp, 0(%eax) \n\t" // save EBP

" movl %esp, 4(%eax) \n\t" // save ESP

// Thread state is saved, switch

" mov 0(%ecx), %ebp \n\t" // load thread_to’s ebp into ebp

" mov 4(%ecx), %esp \n\t" // load thread_to’s esp into esp

" pop %esi \n\t" // restore callee saved registers

" pop %edi \n\t"

" pop %ebx \n\t"

" ret \n\t" // return

);

void uexit(void) {

current->state = EXITED;

_uswitch(current, &parent);

}

void u_thread_create(struct thread *t, void *fnc, void*arg, void *stack) {
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current = t;

t->state = RUNNABLE;

t->esp = stack + 4096;

// push the argument on the stack

t->esp -= sizeof(void*);

*(void**)t->esp = arg;

// when fnc returns, return into uexit()

t->esp -= sizeof(void*);

*(void**)t->esp = uexit;

// The new thread will return into fnc from _uswitch

t->esp -= sizeof(void*);

*(void**)t->esp = fnc;

// Fake the return stack for _uswitch_save

t->esp -= sizeof(void*);

*(void**)t->esp = 0; // ebx

t->esp -= sizeof(void*);

*(void**)t->esp = 0; // edi

t->esp -= sizeof(void*);

*(void**)t->esp = 0; // esi

_uswitch(&parent, t);

}

void u_yield() {

_uswitch(current, &parent);

}

void u_yield_to(struct thread *t) {

current = t;

_uswitch(&parent, t);

}



Operating Systems Final - Page 10 of 16

Implementation #2

#define RUNNABLE 1

#define EXITED 2

struct thread {

void *eip;

void *ebp;

void *esp;

int state;

};

struct thread parent;

struct thread *current;

void _uswitch(void *from, void *to) __attribute__((returns_twice));

void _uswitch_save(void *from, void *to) __attribute__((returns_twice));

__asm__ (" .text \n\t"

" .align 16 \n\t"

" .globl _uswitch_save \n\t"

// 8(%esp): thread_to, 4(%esp): thread_from

"_uswitch_save: \n\t"

" mov 4(%esp), %eax \n\t" // load thread_from into eax

" mov 8(%esp), %ecx \n\t" // load thread_to into ecx

" push %ebx \n\t" // save callee registers

" push %edi \n\t"

" push %esi \n\t"

" push %ecx \n\t" // push thread_to as second arg

" push %eax \n\t" // load thread_from as first arg

" call _uswitch \n\t"

" add $0x8,%esp \n\t" // release space used for args

" pop %esi \n\t" // restore callee registers

" pop %edi \n\t"

" pop %ebx \n\t"

" ret \n\t"

);

__asm__ (" .text \n\t"

" .align 16 \n\t"

" .globl _uswitch \n\t"

"_uswitch: \n\t"

// 8(%esp): thread_to, 4(%esp): thread_from

" movl 4(%esp), %eax \n\t" // load thread_from into eax

" movl 0(%esp), %ecx \n\t" // load return address into esi

" movl %ecx, 0(%eax) \n\t" // EIP (our return address)

" movl %ebp, 4(%eax) \n\t" // EBP

" movl %esp, 8(%eax) \n\t" // ESP
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" addl $4, 8(%eax) \n\t" // return address + 4

// Thread state is saved, switch

" mov 8(%esp), %eax \n\t"

" mov 4(%eax), %ebp \n\t"

" mov 8(%eax), %esp \n\t"

" jmp *0(%eax) \n\t"

);

void uexit(void) {

current->state = EXITED;

_uswitch_save(current, &parent);

}

void u_thread_create(struct thread *t, void *fnc, void*arg, void *stack) {

current = t;

t->state = RUNNABLE;

t->eip = fnc;

t->esp = stack + 4096;

t->esp -= sizeof(void*);

*(void**)t->esp = arg;

t->esp -= sizeof(void*);

*(void**)t->esp = uexit;

_uswitch_save(&parent, t);

}

void u_yield() {

_uswitch_save(current, &parent);

}

void u_yield_to(struct thread *t) {

current = t;

_uswitch_save(&parent, t);

}
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4. Memory management

(a) (5 points) In the question above (user-level threads) Ben’s code allocates memory for two
stacks with malloc(), but it never calls free(). Is Ben’s code causes a memory leak in
the system? Support your argument.

Not really. While the memory remains allocated until the process exits, the kernel cleans
up all memory allocated by the process immediately after it terminates.
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5. Fork, and console synchronization

Ben writes the following program.

int main(int argc, char *argv[])

{

int pid = fork();

char *msg = "aaa\n";

if (pid == 0) {

msg = "bbb\n";

write(1, msg, 4);

sleep(1);

}

write(1, msg, 4);

sleep(1);

wait();

exit();

}

(a) (5 points) What are the possible outputs of the above program?

• aaa bbb bbb

• bbb aaa bbb

• bbb bbb aaa

(b) (10 points) Ben argues with Alice that there will never be an output with interleaving
characters? E.g., “ababba” Is Ben correct? Explain your answer?

Yes. Ben is correct. The write() call follows the following call sequence, write() ->
filewrite() -> consolewrite(). The function consolewrite() acquires the console
lock such that only one thread can be writing to the console. So, there won’t be any
interleaving characters.
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6. Synchronization

Alice creates a program to test her understanding of multithreaded locks. Below is a part of
the program that describes her locking implementation.

struct mutex_lock m1;

struct mutex_lock m2;

void do_work(void *arg){

mutex_lock(&m1);

mutex_lock(&m2);

//do something

mutex_unlock(&m2);

mutex_unlock(&m1);

}

void do_work2(void *arg){

mutex_lock(&m2);

mutex_lock(&m1);

//do something

mutex_unlock(&m1);

mutex_unlock(&m2);

}

int main(int argc, char *argv[])

{

...

mutex_init(&m1);

mutex_init(&m2);

t1 = thread_create(do_work2, (void*)&b1, s1);

t2 = thread_create(do_work, (void*)&b2, s2);

...

}

(a) (5 points) Assuming the program compiles, do you see anything wrong with her locking
strategy? Explain your answer.

Yes, the locking order is incorrect. Thread1 acquires lock in the following order: m1
followed by m2, whereas Thread2 acquires the lock m2 followed by m1. When these two
threads are run in parallel, there is a possibility of a deadlock as thread1 can acquire m1
and wait for m2 and thread2 can acquire m2 and wait for m1.
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7. CS238P. I would like to hear your opinions about CS238P, so please answer the following
questions. (Any answer, except no answer, will receive full credit.)

(a) (1 point) Grade CS238P on a scale of 0 (worst) to 10 (best)?

(b) (2 points) Any suggestions for how to improve CS238P?

(c) (1 point) What is the best aspect of CS238P?

(d) (1 point) What is the worst aspect of CS238P?
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