

238P: Operating Systems

Lecture 5: Address translation

Anton Burtsev
January, 2018

Two programs one memory

Very much like car sharing

What are we aiming for?

● Illusion of a private address space
● Identical copy of an address space in multiple

programs
– Remember fork()?

● Simplifies software architecture
– One program is not restricted by the memory layout of

the others

Two processes, one memory?

Two processes, one memory?

This is called segmentation

All addresses are logical address
● They consist of two parts

● Segment selector (16 bit) + offset (32 bi

● Segment selector (16 bit)
● Is simply an index into an array (Descriptor Table)
● That holds segment descriptors

– Base and limit (size) for each segment

Elements of that array are segment
descriptors

● Base address
● 0 – 4 GB

● Limit (size)
● 0 – 4 GB

● Access rights
● Executable, readable, writable
● Privilege level (0 - 3)

Segment descriptors

● Offsets into segments (x in our example) or
“Effective addresses” are in registers

● Logical addresses are translated into physical
● Effective address + DescriptorTable[selector].Base

● Logical addresses are translated into physical
● Effective address + DescriptorTable[selector].Base

● Logical addresses are translated into physical
● Effective address + DescriptorTable[selector].Base

● Logical addresses are translated into physical
● Effective address + DescriptorTable[selector].Base

Same picture

● Offsets (effective addresses) are in registers
● Effective address + DescriptorTable[selector].Base
● But where is the selector?

Right! Segment registers

● Hold 16 bit segment selectors
● Pointers into a special table
● Global or local descriptor table

● Segments are associated with one of three
types of storage
● Code
● Data
● Stack

Programming model

● Segments for: code, data, stack, “extra”
● A program can have up to 6 total segments
● Segments identified by registers: cs, ds, ss, es, fs, gs

● Prefix all memory accesses with desired segment:
● mov eax, ds:0x80 (load offset 0x80 from data into eax)

● jmp cs:0xab8 (jump execution to code offset 0xab8)

● mov ss:0x40, ecx (move ecx to stack offset 0x40)

Segmented programming (not real)

static int x = 1;

int y; // stack

if (x) {

 y = 1;

 printf (“Boo”);

} else

 y = 0;

ds:x = 1; // data

ss:y; // stack

if (ds:x) {

 ss:y = 1;

 cs:printf(ds:“Boo”);

} else

 ss:y = 0;

Programming model, cont.

● This is cumbersome, so infer code, data
and stack segments by instruction type:
● Control-flow instructions use code segment

(jump, call)
● Stack management (push/pop) uses stack
● Most loads/stores use data segment

● Extra segments (es, fs, gs) must be used
explicitly

Code segment

● Code
● CS register
● EIP is an offset inside the segment stored in CS

● Can only be changed with
● procedure calls,
● interrupt handling, or
● task switching

Data segment

● Data
● DS, ES, FS, GS
● 4 possible data segments can be used at the same

time

Stack segment

● Stack
● SS

● Can be loaded explicitly
● OS can set up multiple stacks
● Of course, only one is accessible at a time

Segmentation works for isolation, i.e., it does
provide programs with illusion of private memory

Segmentation is ok... but

What if process needs more
memory?

What if process needs more
memory?

You can relocate P2

Or even swap it out to disk

Problems with segments

● But it's inefficient
● Relocating or swapping the entire process takes

time

● Memory gets fragmented
● There might be no space (gap) for the swapped out

process to come in
● Will have to swap out other processes

Paging

Pages

Pages

Paging idea

● Break up memory into 4096-byte chunks called
pages
● Modern hardware supports 2MB, 4MB, and 1GB pages

● Independently control mapping for each page of
linear address space

● Compare with segmentation (single base + limit)
● many more degrees of freedom

● Result:
● EAX = 55

Page translation

Page translation

Page directory entry (PDE)

● 20 bit address of the page table

Page directory entry (PDE)

● 20 bit address of the page table
● Wait... 20 bit address, but we need 32 bits

Page directory entry (PDE)

● 20 bit address of the page table
● Wait... 20 bit address, but we need 32 bits

● Pages 4KB each, we need 1M to cover 4GB
● Pages start at 4KB (page aligned boundary)

Page directory entry (PDE)

● Bit #1: R/W – writes allowed?
● But allowed where?

Page directory entry (PDE)

● Bit #1: R/W – writes allowed?
● But allowed where?
● One page directory entry controls 1024 Level 2

page tables
– Each Level 2 maps 4KB page

● So it's a region of 4KB x 1024 = 4MB

Page directory entry (PDE)

● Bit #2: U/S – user/supervisor
● If 0 – user-mode access is not allowed
● Allows protecting kernel memory from user-level

applications

Page translation

Page table entry (PTE)

● 20 bit address of the 4KB page
● Pages 4KB each, we need 1M to cover 4GB

● Bit #1: R/W – writes allowed?
● To a 4KB page

● Bit #2: U/S – user/supervisor
● If 0 user-mode access is not allowed

● Bit #5: A – accessed
● Bit #6: D – dirty – software has written to this page

Page translation

Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many

entries per page?

Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many

entries per page?

● 1k

Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many

entries per page?

● 1k
● How large of an address space can 1 page represent?

Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many

entries per page?

● 1k
● How large of an address space can 1 page represent?

● 1k entries * 1page/entry * 4K/page = 4MB

Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many

entries per page?

● 1k
● How large of an address space can 1 page represent?

● 1k entries * 1page/entry * 4K/page = 4MB
● How large can we get with a second level of

translation?

Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many entries

per page?

● 1k
● How large of an address space can 1 page represent?

● 1k entries * 1page/entry * 4K/page = 4MB
● How large can we get with a second level of translation?

● 1k tables/dir * 1k entries/table * 4k/page = 4 GB
● Nice that it works out that way!

Why do we need paging?

● Compared to segments pages provide fine-
grained control over memory layout
● No need to relocate/swap the entire segment

– One page is enough
–

● You're trading flexibility (granularity) for
overhead of data structures required for
translation

Example 1: Ultimate flexibility

● Each byte can be relocated anywhere in
physical memory

● What's the overhead of page tables?
● Imagine we use array instead of page tables (for

simplicity)

Example 1: Ultimate flexibility

● Each byte can be relocated anywhere in physical
memory

● What's the overhead of page tables?
● Imagine we use array instead of page tables (for

simplicity)
● We need 4 bytes to relocate each other byte

– 4 bytes describe 32bit address
● Therefore, we need array of 4 bytes x 4B entries

– 16GBs

Example 2: Reasonable flexibility

● Each 4K bytes (a page) can be relocated
anywhere in physical memory

● What's the overhead of page tables?
● Again, imagine we use array instead of page tables

(for simplicity)

Example 2: Reasonable flexibility

● Each 4K bytes (a page) can be relocated anywhere in
physical memory

● What's the overhead of page tables?
● Again, imagine we use array instead of page tables (for

simplicity)
● We need 4 bytes to relocate each 4KB page

– 4 bytes describe 32bit address
● Therefore, we need array of 4 bytes x 1M entries

– If we split 4GB address space, into 4GB pages, we need 1M pages
● We need 4MB array

Example 3: Less flexibility

● Each 1M bytes (a 1MB page) can be relocated anywhere in
physical memory

● What's the overhead of page tables?
● Again, imagine we use array instead of page tables (for simplicity)
● We need 4 bytes to relocate each 1MB page

– 4 bytes describe 32bit address
● Therefore, we need array of 4 bytes x 4K entries

– If we split 4GB address space, into 1MB pages, we need 4K pages
● We need 16KB array

– Wow! That's much less than 4MB required for 4KB pages

But why do we need page tables

● Instead of arrays?

But why do we need page tables

… Instead of arrays?
● Page tables represent sparse address space more

efficiently
● An entire array has to be allocated upfront
● But if the address space uses a handful of pages
● Only page tables (Level 1 and 2 need to be allocated to

describe translation)

● On a dense address space this benefit goes away
● I'll assign a homework!

Recap: complete address
translation

But what about isolation?

● Two programs,
one memory?

But what about isolation?

● Two programs,
one memory?

● Each process has
its own page table
● OS switches

between them

TLB

● Walking page table is slow
● Each memory access is 240 (local) - 360 (one QPI

hop away) cycles on modern hardware
● L3 cache access is 50 cycles

cr3

TLB

● CPU caches results of page table walks
● In translation lookaside buffer (TLB)

Virt Phys

0xf0231000 0x1000

0x00b31000 0x1f000

0xb0002000 0xc1000

­ ­

TLB invalidation

● TLB is a cache (in CPU)
● It is not coherent with memory
● If page table entry is changes, TLB remains the

same and is out of sync

cr3 Virt Phys

0xf0231000 0x1000

0x00b31000 0x1f000

0xb0002000 0xc1000

­ ­

Same
Virt Addr.

No
Change!!!

TLB invalidation

● After every page table update, OS needs to
manually invalidate cached values
● Flush TLB

– Either one specific entry
– Or entire TLB, e.g., when CR3 register is loaded
– This happens when OS switches from one process to

another
● This is expensive

– Refilling the TLB with new values takes time

Tagged TLBs

● Modern CPUs have “tagged TLBs”,
● Each TLB entry has a “tag” – identifier of a process
● No need to flush TLBs on context switch

● On Intel this mechanism is called
● Process-Context Identifiers (PCIDs)

Virt Phys Tag

0xf0231000 0x1000 P1

0x00b31000 0x1f000 P2

0xb0002000 0xc1000 P1

Compared to segments pages
allow ...

● Emulate large virtual address space on a
smaller physical memory
● In our example we had only 12 physical pages
● But the program can access all 1M pages in its 4GB

address space
● The OS will move other pages to disk

Compared to segments pages
allow ...

● Share a region of memory across multiple
programs
● Communication (shared buffer of messages)
● Shared libraries

More paging tricks

● Protect parts of the program
● E.g., map code as read-only

– Disable code modification attacks
– Remember R/W bit in PTD/PTE entries!

● E.g., map stack as non-executable
– Protects from stack smashing attacks
– Non-executable bit

When would you disable paging?

When would you disable paging?

● Imagine you're running a memcached
● Key/value cache

● You serve 1024 byte values (typical) on
10Gbps connection
● 1024 byte packets can leave every 835ns, or 1670

cycles (2GHz machine)
● This is your target budget per packet

●

When would you disable paging?

● Now, to cover 32GB RAM with 4K pages
● You need 64MB space
● 64bit architecture, 3-level page tables

● Page tables do not fit in L3 cache
● Modern servers come with 32MB cache

● Every cache miss results in up to 3 cache misses
due to page walk (remember 3-level page tables)
● Each cache miss is 250 cycles

● Solution: 1GB pages

Page translation for 4MB pages

Questions?

References

More paging tricks

● Determine a working set of a program?

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

● Iterative copy of a working set?
● Used for virtual machine migration

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

● Iterative copy of a working set?
● Used for virtual machine migration
● Use “dirty” bit

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

● Iterative copy of a working set?
● Used for virtual machine migration
● Use “dirty” bit

● Copy-on-write memory, e.g. lightweigh fork()?

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

● Iterative copy of a working set?
● Used for virtual machine migration
● Use “dirty” bit

● Copy-on-write memory, e.g. lightweight fork()?
● Map page as read/only

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 77
	Slide 78
	Slide 80
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98

