Discussion #2

Harishankar Vishwanathan



Overview

* Setup a Programming Environment
* HW2 Overview

* Exec

* Pipes



Programming Environments

* Passwordless SSH setup

* https://medium.com/@jakewies/accessing-remote-machines-using-ssh-
55a0fdf5e9d8

* VS Code

e Remote Development extension

e Other options:

* If you are on linux use something like ssh-fs to mount a remote directory to a
local path. Then use your favourite text editor.

* VVim on the server.


https://medium.com/@jakewies/accessing-remote-machines-using-ssh-55a0fdf5e9d8
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack

HW?2 overview

* https://www.ics.uci.edu/~aburtsev/238P/hw/hw2-shell/hw2-
shell.html



https://www.ics.uci.edu/~aburtsev/238P/hw/hw2-shell/hw2-shell.html

Exec

* Replaces the calling process’s memory with a new memory image
loaded from a file stored in the file system.

* The file must have a particular format (ELF format), which specifies
which part of the file holds instructions, which part is data, at which
instruction to start, etc. xv6 uses the ELF format

* When exec succeeds, it does not return to the calling program;

instead, the instructions loaded from the file start executing at the
entry point declared in the ELF header



Exec

char *argv[3];

argv[0] = "echo";
argv[l] = "hello";
argv[2] = 0;
exec("/bin/echo"”, argv);
printf("exec error\n");



Pipes

e Classic Inter Process Communication mechanism in UNIX.
* Nothing but a buffer in kernel memory.

* Exposed to processes as a pair of file descriptors, one for reading
and one for writing

* Writing data to one end makes it available for reading from the other
end.



Pipes

int p[2];

char *argv[2]; ‘ ’ o) / '
K L[OMM

"wC" ; CJ '

0; V

argv[0]
argv[1]

pipe(p);

if(fork() == 0) {
close(0);
dup(p[0]);
close(p[0]);
close(p[1]);
exec("/bin/wc", argv);

} else {
close(p[0]);
write(p[1], "hello world\n", 12);
close(p[1]);




