Discussion 8

Harishankar Vishwanathan

Agenda

- Midterm review
Questions 1 through 5

Question 1

- A program to:

Read bytes from the standard input

Fork

Execute itself with the exec() system call

Redirect all bytes it reads to its child creating an endless pipeline.

Question 1

char buf[1];

pipe(p); else if (pid > @) {
read (0, buf, 1); close(1);
pid = fork(); dup(p[1]);
write(p[1], buf, 1);
if (pid == 0) { close(p[1]);
close(0); }
dup(p[@]);
close(p[9]);
close(p[1]);

execv(argv[@], argv);

Question 2

int bar(int x, int y) {
printf(1, "x:%d, y:%d\n", x, y);
return Xx;

}

int foo(int a, int b, int c) {
return bar(a + b, c);

}

main() {
foo(1, 2, 3);
exit(9);

Question 2

int bar(int x, int y) {
printf(1, "x:%d, y:%d\n", X, y);
return Xx;

}

int foo(int a, int b, int c) {
return bar(a + b, c);

}

main() {
foo(1, 2, 3);
exit(9);

}

Fake return PC

0ld EBP

3 (3rd argument to foo)

2 (2nd argument to foo)

1 (1st argument to foo)
Return address in main

0ld EBP (of main)

3 (2nd argument to bar)

3 (= 1+2) (1st argument to bar)
Return address in foo

0ld EBP (of foo)

3 (4th argument to printf)
3 (3rd argument to printf)
Address of "x:%d, y:%d\n" (2nd argument to printf)
1 (1st argument to printf)

Question 3

Page Directory Page (at physical address 9x1000)

PDE ©: PPN=0x2, PTE_P, PTE_U, PTE W
. all other PDEs are zero

The Page Table Page (physical address ©x2000)
PTE ©: PPN=0x3, PTE_P, PTE_U, PTE_W

PTE 1: PPN=0x4, PTE_P, PTE_U, PTE_W

. all other PTEs are zero

Question 3

0x1000 0x2000
ox2 PlUlW L—"T ox3 PlU|W

x4 PlU|W

Question 3

0x1000

ox2

PlU|W

0x2000

o0x3

PlU|W

ox4

PlU|W

Phy: 0x0 to OxFFF

Phy: 0x1000 to Ox1FFF

Vir:

Vir:

Ox3000 to Ox3FFF
0x4000 to Ox4FFF

Question 4

Construct the page table that maps the following virtual addresses

- 0to4MB to physical addresses 0 to 4MB
- 2GB to 2GB+4MB to physical addresses 0 to 4MB

Question 4

0 to 4MB to physical addresses 0 to 4MB

0

0x1000

0x2000

PlU|W

J—

0x2000

0x0

0x1000

0x2000

Ox3FFF

PlU|W
PlU|W

PlU|W

PlU|W

1024 PTEs

Question 4

2GB to 2GB+4MB to physical addresses 0 to 4MB

512

0x1000

0x3000

PlU|W

0x3000

0x0

0x1000

0x2000

Ox3FFF

PlU|W
PlU|W

PlU|W

PlU|W

1024 PTEs

Question 4

2GB to 2GB+4MB to physical addresses 0 to 4MB

0x1000 0x2000

J—

0 9X2000 PlU|W Ox0 P|U|
0x1000

512 0x3000 PlU|W 0x2000

Ox3FFF PlU|W

PlU|W
PlU|W

PlU|W

PlU|W

Question 5

How many times fork() in the program
above executes successfully running on
the xv6 kernel?

NPROC is 64000
main() {
while (1) {
fork();
}

Asking you to estimate, trying to be
as specific as possible.

Answer include SEVERAL details
(both implementation and
conceptual)

Marks will be deducted based on
the main ideas missed in the
estimate.

Question 5

- Estimate available memory (or no. of pages available) before kernel
starts init and shell

- Estimate no. of pages per process, typically

- Calculate number of forks in the forkbomb

Question 5

- Estimate available memory (or no. of pages available) before kernel

starts init and shell
- Assume a kernel end virtual address
- Calculate first virtual address of first page donated to the kernel memory allocator (hw)
- Calculate the size of the kernel page tables
- It maps 4 regions (kmap), 65536 pages
- X page directories, Y page tables.
- Until now: size of kernel image + size of page tables

Question 5

- Estimate no. of pages per process, typically

- 1 page per region: text, data, (quard), stack
- 1 page directory page
- 1 page table page for mapping the different regions

- Every process maps the kernel
- Calculate the number of pages for mapping KERNBASE:KERNBASE+PHYSTOP

(to 0:PHYSTOP)

- Add page table pages and page directory entries if needed

- 1 page for the kernel stack

Question 5

- Calculate number of forks in the forkbomb
Init, shell, fork

