
Fork, Exec, and Pipe



• Return the top 10 repeated commands?

Question



Fork returns twice on successOn success fork returns twice: once in the parent and once in the child. After calling fork,
the program can use the fork return value to tell whether executing in the parent or child.

•If the return value is 0 the program executes in the new child process.
•If the return value is greater than zero, the program executes
in the parent process and the return value is the process ID (PID) of the created child process.
•On failure fork returns -1.

Fork

Fork system call is used to create a separate, duplicate process.



Fork



Fork

If you just have a series of N fork statements one after the other, then the
total number of processes formed are 2^N.

You can visualize this in the form of a full binary tree, where the number of
serial fork statements is the height of the tree and the number of leaves is the
total number of processes formed.

1.f(n) = 2*f(n-1),n>1

2.1 ,n=1



• What is the limitation of fork()?

• How we can solve it?

Fork



Fork and Exec



The exec family of system calls

The exec family of system calls replaces the program executed by a process. When a process calls exec,
all code (text) and data in the process is lost and replaced with the executable of the new program.

Although all data is replaced, all open file descriptors remains open after calling exec unless explicitly set to close-on-exec.

In the below diagram a process is executing Program 1. The program calls exec to replace the program executed by the
process to Program 2.
When an exec() system call is invoked, the program specified in the parameter to exec() will replace the entire process—
including all threads.



The main difference between fork and exec is that fork creates a new process while preserving the parent process 
while exec creates a new process without preserving the parent process

fork vs exec



• A zombie process is a process that has terminated but has not been cleaned up yet. It is the responsibility of
the parent process to clean up its zombie children. The wait functions do this. If the child process has not
terminated at that point, the parent process will block in the wait call until the child process finishes. If the
child process finishes before the parent process calls wait, the child process becomes a zombie. When the
parent process calls wait, the zombie child’s termination status is extracted, the child process is deleted, and
the wait call returns immediately.

The child process is marked as defunct, and its status code is Z, for zombie.

zombie process



Interprocess communication (IPC) is the transfer of data among processes. For example, a
Web browser may request a Web page from a Web server, which then sends HTML data. This
transfer of data usually uses sockets in a telephone-like connection. In another example, you
may want to print the filenames in a directory using a command such as ls | lpr. The shell
creates an ls process and a separate lpr process, connecting the two with a pipe, represented
by the “|” symbol. A pipe permits one-way communication between two related processes.
The ls process writes data into the pipe, and the lpr process reads data from the pipe.

Inter-Process Communication: Pipes



We use the term pipe to mean connecting a data flow from one process to another. Generally
you attach, or pipe, the output of one process to the input of another. Most Linux users will
already be familiar with the idea of a pipeline, linking shell commands together so that the
output of one process is fed straight to the input of another. For shell commands, this is done
using the pipe character to join the commands, such as

Inter-Process Communication: Pipes

There are five types of interprocess communication:

➢ Shared memory permits processes to communicate by simply reading and writing to a specified memory
location.

➢ Mapped memory is similar to shared memory, except that it is associated with a file in the filesystem.
➢ Pipes permit sequential communication from one process to a related process.
➢ FIFOs are similar to pipes, except that unrelated processes can communicate because the pipe is given a

name in the filesystem.
➢ Sockets support communication between unrelated processes even on different computers.



The shell arranges the standard input and output of the two commands, so that

❑ The standard input to cmd1 comes from the terminal keyboard. 
❑ The standard output from cmd1 is fed to cmd2 as its standard input. 
❑ The standard output from cmd2 is connected to the terminal screen.



Process Pipes

Perhaps the simplest way of passing data between two programs is with the popen and pclose functions. 
These have the following prototypes



The purpose of the dup call is to open a new file descriptor, a little like the open call. The difference is that
the new file descriptor created by dup refers to the same file (or pipe) as an existing file descriptor. In the
case of dup, the new file descriptor is always the lowest number available, and in the case of dup2 it’s the
same as, or the first available descriptor greater than, the parameter file_descriptor_two.

File Descriptor Manipulation by close and dup







• Book: Advanced Linux Programming by By Mark Mitchell, Jeffrey Oldham, Alex Samuel

• Book: Beginning Linux Programming: Wrox

References


