250P: Computer Systems
Architecture

Lecture 3: Basic MIPS Architecture

Anton Burtsev
October, 2019

Basic MIPS Architecture

* Now that we understand clocks and storage of states,
 we’ll design a simple CPU that executes:

* basic math (add, sub, and, or, slt)
* memory access (lw and sw)
e branch and jump instructions (beq and))

Implementation Overview

* We need memory
 to store instructions
* to store data
e for now, let's make them separate units

* We need registers, ALU, and a whole lot of control logic

* CPU operations common to all instructions:
* use the program counter (PC) to pull instruction out
of instruction memory
* read register values

View from 30,000 Feet

Add

Add

Note: we haven't bothered
showing multiplexors

- PC t#»| Address Instruction

Instruction
memory

—

el

L &

Data
Register #
Registers

Register #

Register #

i

What is the role of the Add units?

Explain the inputs to the data memory unit

Explain the inputs to the ALU
Explain the inputs to the register unit

Y

Address

Data

Data
memory

Source: H&P textbook

Clocking Methodology

Add

Add

Address Instruction

Instruction
memory

—

Data
Register #
Registers

Register #

Register #

"

* Which of the above units need a clock?
* What is being saved (latched) on the rising edge of the clock?
* Keep in mind that the latched value remains there for an entire Cycs!e

Y

Address

Data

Data
memory

Source: H&P textbook

Implementing R-type Instructions

* |nstructions of the form add $rl, $r2, $r3
* Explain the role of each signal

-

9 |Read ALU operation
=™ register 1 \ i
egisie Read
——ie —_—
Register) 5 | Read data 1
numbers | register 2 i g
: Data
5 | write Registers .
| register
\ g Read
- data 2
Data Write "
Data
RegWrite

a. Registers b. ALU

Source: H&P textbook

6

Implementing Loads/Stores

* Instructions of the form Iw $rl, 8($r2) and sw $rl, 8(%$r2)
* Explain the role of each signal

> Data

i 2 | Read
ea
regisler1 Read
Hegis’zer< 9 |Read data 1
numbers | register 2
5 | write Registers
3 : register Read
Write data 2
Data —
Data
RegWrite
a. Registers

Where does this input come from?

ALU operation

Zero
ALU Ay

result

MemWrite
Address Read —
data
Data
Write memory.
data
MemRead

a. Data memory unit Source: H&P textbook

Implementing J-type Instructions

* Instructions of the form beq $r1, $r2, offset

PC +4 from instruction datapath —

—_— Branch
Add target
Shift
left 2
Ree_ad ALU operation
Instruction register 1 Read)
Read data 1
register 2 To branch
Write Registers control logic
register Read J
Write el |
data
RegWrite
1o Sign-

~ | extend

Source: H&P textbook

View from 10,000 Feet

PCSrc
| M
>Add = u
X
ALU

o i >Add result

Read ALUSrc ALU operati
F{ead : c peraton

gt L address Lo dREEI:': . MemWrite
Read ata MemtoReg
Instruction register 2
.. Registers g Read

er_te e S Address s

Instruction register ata
memory)
- Write
fak | write Data
RegWrite " |data memory
MemRead
EE i Sign- 32 ;
* | extend

Source: H&P textbook

View from 5,000 Feet

& —t

Read
address

Instruction
[31-=0]

Instruction
memory

by

|
Instruction [31-26] |

f
/

Branch

b

—

ALU
>A‘ddresult

. RegDst
5 \
|

| MemRead

| MemtoReg

& |Cuntml ALUOp

| MemWrite

)

[ALUSrc

II'K / RegWrite

Instruction [25-21]
L 5

Instruction [20-16]

Instruction [15-11]
» "

Read
" | register 1 Raaq
| Read data 1
g | register 2
M| |write Read
Y | register data 2
] A Write
data Registers

Instruction [15-0]

32

16 Sign- | *

Zero

>ALL| ALU
result

f

“wg=0O

extend/

Instruction [5-0]

7\

> data Memory

Read
Address data

Write Data

[AL L
.cuntrul}.‘

L.

-

Cxecz

Source: H&P textbook

10

Latches and Clocks in a Single-Cycle Design

PC

Instr
Mem

Reg
File

ALU

Addr

Data

Memory

I

The entire instruction executes in a single cycle
Green blocks are latches
At the rising edge, a new PC is recorded
At the rising edge, the result of the previous cycle Is recorded
At the falling edge, the address of LW/SW is recorded so

we can access the data memory in the 2nd half of the cycle

11

T

T

PC

Multi-Stage Circuit

* Instead of executing the entire instruction in a single
cycle (a single stage), let's break up the execution into
multiple stages, each separated by a latch

Reg
File

The Assembly Line

Unpipelined Start and finish a job before moving to the next

» [ime

Break the job into smaller stages

Pipelined

13

Performance Improvements?

* Does it take longer to finish each individual job?
* Does it take shorter to finish a series of jobs?

* What assumptions were made while answering
these questions?

* Is a 10-stage pipeline better than a 5-stage pipeline?

14

Quantitative Effects

As a result of pipelining:

Time In ns per instruction goes up

Each instruction takes more cycles to execute
But... average CPI remains roughly the same
Clock speed goes up

Total execution time goes down, resulting in lower average
time per instruction

Under ideal conditions, speedup

= ratio of elapsed times between successive instruction completions
= number of pipeline stages = increase in clock speed

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

