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Basic MIPS Architecture

* Now that we understand clocks and storage of states,
 we’ll design a simple CPU that executes:

* basic math (add, sub, and, or, slt)
* memory access (lw and sw)
e branch and jump instructions (beq and ))



Implementation Overview

* We need memory
 to store instructions
* to store data
e for now, let's make them separate units

* We need registers, ALU, and a whole lot of control logic

* CPU operations common to all instructions:
* use the program counter (PC) to pull instruction out
of instruction memory
* read register values



View from 30,000 Feet
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What is the role of the Add units?

Explain the inputs to the data memory unit

Explain the inputs to the ALU
Explain the inputs to the register unit
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Clocking Methodology
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* Which of the above units need a clock?
* What is being saved (latched) on the rising edge of the clock?
* Keep in mind that the latched value remains there for an entire Cycs!e
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Implementing R-type Instructions

* |nstructions of the form add $rl, $r2, $r3
* Explain the role of each signal
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Implementing Loads/Stores

* Instructions of the form Iw $rl, 8($r2) and sw $rl, 8(%$r2)
* Explain the role of each signal
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Implementing J-type Instructions

* Instructions of the form beq $r1, $r2, offset

PC +4 from instruction datapath —
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View from 10,000 Feet
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View from 5,000 Feet
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Latches and Clocks in a Single-Cycle Design
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The entire instruction executes in a single cycle
Green blocks are latches
At the rising edge, a new PC is recorded
At the rising edge, the result of the previous cycle Is recorded
At the falling edge, the address of LW/SW is recorded so

we can access the data memory in the 2nd half of the cycle
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PC

Multi-Stage Circuit

* Instead of executing the entire instruction in a single
cycle (a single stage), let's break up the execution into
multiple stages, each separated by a latch

Reg
File




The Assembly Line

Unpipelined  Start and finish a job before moving to the next

» [ime

Break the job into smaller stages

Pipelined
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Performance Improvements?

* Does it take longer to finish each individual job?
* Does it take shorter to finish a series of jobs?

* What assumptions were made while answering
these questions?

* Is a 10-stage pipeline better than a 5-stage pipeline?
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Quantitative Effects

As a result of pipelining:

Time In ns per instruction goes up

Each instruction takes more cycles to execute
But... average CPI remains roughly the same
Clock speed goes up

Total execution time goes down, resulting in lower average
time per instruction

Under ideal conditions, speedup

= ratio of elapsed times between successive instruction completions
= number of pipeline stages = increase in clock speed
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