

250P: Computer Systems
Architecture

Lecture 5: Advanced Pipelines

Anton Burtsev
January, 2019

2

Hazards

● Structural hazards

● Data hazards

● Control hazards

3

Control Hazards

• Simple techniques to handle control hazard stalls:
 for every branch, introduce a stall cycle (note: every
 6th instruction is a branch on average!)
 assume the branch is not taken and start fetching the
 next instruction – if the branch is taken, need hardware
 to cancel the effect of the wrong-path instructions
 predict the next PC and fetch that instr – if the prediction
 is wrong, cancel the effect of the wrong-path instructions
 fetch the next instruction (branch delay slot) and
 execute it anyway – if the instruction turns out to be
 on the correct path, useful work was done – if the
 instruction turns out to be on the wrong path,
 hopefully program state is not lost

4

Branch delay slot

5

Multicycle Instructions

6

Effects of Multicycle Instructions

• Potentially multiple writes to the register file in a cycle

• Frequent RAW hazards

• WAW hazards (WAR hazards not possible)

• Imprecise exceptions because of o-o-o instr completion

Note: Can also increase the “width” of the processor: handle
 multiple instructions at the same time: for example, fetch
 two instructions, read registers for both, execute both, etc.

7

Precise Exceptions

• On an exception:
 must save PC of instruction where program must resume
 all instructions after that PC that might be in the pipeline
 must be converted to NOPs (other instructions continue
 to execute and may raise exceptions of their own)
 temporary program state not in memory (in other words,
 registers) has to be stored in memory
 potential problems if a later instruction has already
 modified memory or registers

• A processor that fulfils all the above conditions is said to
 provide precise exceptions (useful for debugging and of
 course, correctness)

8

Dealing with these Effects

• Multiple writes to the register file: increase the number of
 ports, stall one of the writers during ID, stall one of the
 writers during WB (the stall will propagate)

• WAW hazards: detect the hazard during ID and stall the
 later instruction

• Imprecise exceptions: buffer the results if they complete
 early or save more pipeline state so that you can return to
 exactly the same state that you left at

9

Slowdowns from Stalls

• Perfect pipelining with no hazards  an instruction
 completes every cycle (total cycles ~ num instructions)
  speedup = increase in clock speed = num pipeline stages

• With hazards and stalls, some cycles (= stall time) go by
 during which no instruction completes, and then the stalled
 instruction completes

• Total cycles = number of instructions + stall cycles

• Slowdown because of stalls = 1/ (1 + stall cycles per instr)

10

Pipelining Limits

A B C

A B C

A B C D E F

A B C D E F

Assume that there is a dependence where the final result of the
first instruction is required before starting the second instruction

Gap between indep instrs: T + Tovh

Gap between dep instrs: T + Tovh

Gap between indep instrs:
 T/3 + Tovh

Gap between dep instrs:
 T + 3Tovh

Gap between indep instrs:
 T/6 + Tovh

Gap between dep instrs:
 T + 6Tovh

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

