250P: Computer Systems Architecture

Lecture 1: Introduction

Anton Burtsev January, 2019

Class details

- Graduate
 - 55 students
- Instructor: Anton Burtsev
- Meeting time: 3:30pm-4:50pm (Mon/Wed)
 - Discussions: 8:00pm-8:50pm (Mon)
- 2 TAs
- Web page
 - https://www.ics.uci.edu/~aburtsev/250P/

More details

- 6-7 small homeworks
- Midterm
- Final
- Grades are curved
 - Homework: 50%, midterm exam: 25%, final exam: 25% of your grade.
 - You can submit late homework 3 days after the deadline for 60% of your grade

This course

- Book: Hennessy and Patterson's
 - Computer Architecture, A Quantitative Approach, 6th Edition
- Topics
 - Measuring performance/cost/power
 - Instruction level parallelism, dynamic and static
 - Memory hierarchy
 - Multiprocessors
 - Storage systems and networks

Course organization

- Lectures
 - High level concepts and abstractions
- Reading
 - Hennessy and Patterson
 - Bits of additional notes
- Homeworks

Computer technology

- Performance improvements:
 - Improvements in semiconductor technology
 - Feature size, clock speed
 - Improvements in computer architectures
 - Enabled by high-level language compilers, general operating systems
 - Lead to RISC architectures
- Together have enabled:
 - Lightweight computers
 - Productivity-based managed/interpreted programming languages

Single processor performance

Points to note

- The 52% growth per year is because of faster clock speeds and architectural innovations (led to 25x higher speed)
- Clock speed increases have dropped to 1% per year in recent years
- The 22% growth includes the parallelization from multiple cores
- End of Dennard scaling
- End of Moore's Law: transistors on a chip double every 18-24 months

Clock speed growth

Current trends in architecture

- Cannot continue to leverage Instruction-Level parallelism (ILP)
 - Single processor performance improvement ended in 2003

- End of Dennard scaling
- End of Moore's Law

Dennard scaling

- In 1974 Robert Dennard observed that
 - power density was constant for a given area of silicon even as you increased the number of transistors because of smaller dimensions of each transistor

 I.e., transistors could go faster but use less power

Moore's Law

- In 1965 Gordon Moore predicted that
 - the number of transistors per chip would double every year
 - which was amended in 1975 to every two years
- That prediction lasted for about 50 years
 - But no longer holds

Example:

- In 2010 the most recent Intel microprocessor had 1,170,000,000 transistors
- If Moore's Law had continued
 - In 2016 we would have 18,720,000,000 transistors
- Instead, the equivalent Intel microprocessor has just 1,750,000,000 transistors
 - Off by a factor of 10 from what Moore's Law predicts

What can help performance?

- Note: no increase in clock speed
 - In a clock cycle, can do more work -- since transistors are faster, transistors are more energyefficient, and there's more of them
- Better architectures:
 - finding more parallelism in one thread, better branch prediction, better cache policies, better memory organizations, more thread-level parallelism, etc.

Current trends in architecture

- Cannot continue to leverage Instruction-Level parallelism (ILP)
 - Single processor performance improvement ended in 2003
 - End of Dennard scaling
 - End of Moore's Law
- New models for performance:
 - Data-level parallelism (DLP)
 - Thread-level parallelism (TLP)
 - Request-level parallelism (RLP)
- These require explicit restructuring of the application

Parallelism

- Classes of parallelism in applications:
 - Data-Level Parallelism (DLP)
 - Task-Level Parallelism (TLP)
- Classes of architectural parallelism:
 - Instruction-Level Parallelism (ILP)
 - Vector architectures/Graphic Processor Units (GPUs)
 - Thread-Level Parallelism
 - Request-Level Parallelism

Flynn's Taxonomy

- Single instruction stream, single data stream (SISD)
- Single instruction stream, multiple data streams (SIMD)
 - Vector architectures
 - Multimedia extensions
 - Graphics processor units
- Multiple instruction streams, single data stream (MISD)
 - No commercial implementation
- Multiple instruction streams, multiple data streams (MIMD)
 - Tightly-coupled MIMD
 - Loosely-coupled MIMD

CPU

- 1 CPU socket
 - 4 cores
 - 2 logical (HT) threads each

Memory

Memory abstraction

WRITE(addr, value) $\rightarrow \varnothing$

Store *value* in the storage cell identified by *addr*.

 $READ(addr) \rightarrow value$

Return the *value* argument to the most recent WRITE call referencing *addr*.

What does CPU do internally?

CPU execution loop

- CPU repeatedly reads instructions from memory
- Executes them
- Example

```
ADD EDX, EAX, EBX
// EDX = EAX + EBX
```


Embedded/IoT

- Arduino Flora
- Atmega32u4 8bit RISC
- 32K flash
- 2.5K RAM
- running at 16MHz

ATmega32U4 8-bit RISC microcontroller

Personal Mobile Device

- Qualcomm Snapdragon
 - 1 GHz to 2.7 GHz
 - 2-4 cores
 - 11 stage integer pipeline with 3-way decode and 4-way out-of-order speculative issue superscalar execution

Pipelining

Desktop/Server

- Broadwell
 - 14-19 stage pipeline
 - 2-22 cores

Warehouse-Scale

Google datacenter

I/O Devices

Multi-socket machines

Dell R830 4-socket server

Dell Poweredge R830 System Server with 2 sockets on the main floor and 2 sockets on the expansion

http://www.dell.com/support/manuals/us/en/19/poweredge-r830/r830_om/supported-configurations-for-the-poweredge-r830-system?guid=guid-01303b2b-f884-4435-b4e2-57bec2ce225a&lang=en-us

Intel Broadwell (16+ cores)

SIMD: Nvidia V100

 Volta GV100 Full GPU with 84 SM Units Thank you!