

250P: Computer Systems
Architecture

Lecture 2: Understanding Power
and Performance

Anton Burtsev
January, 2019

Where Are We Heading?

● Modern trends:
● Clock speed improvements are slowing

– power constraints
● Difficult to further optimize a single core for performance
● Multi-cores: each new processor generation will

accommodate more cores
● Need better programming models and efficient execution for

multi-threaded applications
● Need better memory hierarchies
● Need greater energy efficiency

Power Consumption Trends

● Dyn power  activity x capacitance x voltage2 x frequency

● Capacitance per transistor and voltage are decreasing, but number of transistors
is increasing at a faster rate; hence clock frequency must be kept steady

● Leakage power is also rising; is a function of transistor count, leakage current, and
supply voltage
● P = Voltage x Current = V x I

● Power consumption is already between 100-150W in high-performance
processors today

● Energy = power x time = (dynpower + lkgpower) x time

Power Vs. Energy

● Energy is the ultimate metric: it tells us the true “cost” of
performing a fixed task

● Power (energy/time) poses constraints; can only work fast

enough to max out the power delivery or cooling solution

● If processor A consumes 1.2x the power of processor B, but
finishes the task in 30% less time, its relative energy is 1.2 X
0.7 = 0.84; Proc-A is better, assuming that 1.2x power can
be supported by the system

Reducing Power and Energy

● Can gate off transistors that are inactive (reduces leakage)

● Design for typical case and throttle down when activity exceeds
a threshold

● DFS: Dynamic frequency scaling -- only reduces frequency and
dynamic power, but hurts energy

● DVFS: Dynamic voltage and frequency scaling – can reduce
voltage and frequency by (say) 10%; can slow a program by
(say) 8%, but reduce dynamic power by 27%, reduce total
power by (say) 23%, reduce total energy by 17%

● (Note: voltage drop  slow transistor  freq drop)

DFS and DVFS

● DFS

● DVFS

Metrics to Evaluate Performance

Measuring Performance

● Two primary metrics:
● wall clock time (response time for a program) and
● throughput (jobs performed in unit time)

● To optimize throughput, must ensure that there
is minimal waste of resources

Benchmark Suites

● Performance is measured with benchmark
suites: a collection of programs that are likely
relevant to the user

● SPEC CPU 2006: cpu-oriented programs (for
desktops)

● SPECweb, TPC: throughput-oriented (for servers)
● EEMBC: for embedded processors/workloads

Summarizing Performance

● Consider 25 programs from a benchmark set – how do we
capture the behavior of all 25 programs with a single
number?
 P1 P2 P3

 Sys-A 10 8 25

 Sys-B 12 9 20

 Sys-C 8 8 30

● Sum of execution times (AM)
● Sum of weighted execution times (AM)
● Geometric mean of execution times (GM)

Sum of Weighted Exec Times –
Example

●We fixed a reference machine X and ran 4 programs A,
B, C, D on it such that each program ran for 1 second

●The exact same workload (the four programs execute the
same number of instructions that they did on machine X)
is run on a new machine Y and the execution times for
each program are 0.8, 1.1, 0.5, 2

●With AM of normalized execution times, we can conclude
that Y is 1.1 times slower than X – perhaps, not for all
workloads, but definitely for one specific workload (where
all programs run on the ref-machine for an equal #cycles)

Summarizing Performance

● Consider 25 programs from a benchmark set – how do we
capture the behavior of all 25 programs with a single
number?
 P1 P2 P3

 Sys-A 10 8 25

 Sys-B 12 9 20

 Sys-C 8 8 30

● Sum of execution times (AM)
● Sum of weighted execution times (AM)
● Geometric mean of execution times (GM)

GM Example

Computer-A Computer-B Computer-C
P1 1 sec 10 secs 20 secs
P2 1000 secs 100 secs 20 secs

Conclusion with GMs: (i) A=B
 (ii) C is ~1.6 times faster

• For (i) to be true, P1 must occur 100 times for every
 occurrence of P2

• With the above assumption, (ii) is no longer true

 Hence, GM can lead to inconsistencies

Summarizing Performance

● GM: does not require a reference machine, but does
not predict performance very well
● So we multiplied execution times and determined that sys-A

is 1.2x faster…but on what workload?

● AM: does predict performance for a specific workload,
but that workload was determined by executing
programs on a reference machine
● Every year or so, the reference machine will have to be

updated

CPU Performance Equation

● Clock cycle time = 1 / clock speed

● CPU time = clock cycle time x cycles per instruction x number of
instructions

● Influencing factors for each:
● clock cycle time: technology and pipeline
● CPI: architecture and instruction set design
● instruction count: instruction set design and compiler

● CPI (cycles per instruction) or IPC (instructions per cycle) can not be
accurately estimated analytically

An Alternative Perspective - I

• Each program is assumed to run for an equal number
 of cycles, so we’re fair to each program

• The number of instructions executed per cycle is a
 measure of how well a program is doing on a system

• The appropriate summary measure is sum of IPCs or
 AM of IPCs = 1.2 instr + 1.8 instr + 0.5 instr
 cyc cyc cyc

• This measure implicitly assumes that 1 instr in prog-A
 has the same importance as 1 instr in prog-B

An Alternative Perspective - II

• Each program is assumed to run for an equal number
 of instructions, so we’re fair to each program

• The number of cycles required per instruction is a
 measure of how well a program is doing on a system

• The appropriate summary measure is sum of CPIs or
 AM of CPIs = 0.8 cyc + 0.6 cyc + 2.0 cyc
 instr instr instr

• This measure implicitly assumes that 1 instr in prog-A
 has the same importance as 1 instr in prog-B

AM and HM

• Note that AM of IPCs = 1 / HM of CPIs and
 AM of CPIs = 1 / HM of IPCs

• So if the programs in a benchmark suite are weighted
 such that each runs for an equal number of cycles, then
 AM of IPCs or HM of CPIs are both appropriate measures

• If the programs in a benchmark suite are weighted such
 that each runs for an equal number of instructions, then
 AM of CPIs or HM of IPCs are both appropriate measures

Thank you!

20

AM vs. GM

• GM of IPCs = 1 / GM of CPIs

• AM of IPCs represents thruput for a workload where each
 program runs sequentially for 1 cycle each; but high-IPC
 programs contribute more to the AM

• GM of IPCs does not represent run-time for any real
 workload (what does it mean to multiply instructions?); but
 every program’s IPC contributes equally to the final measure

21

Speedup Vs. Percentage

• “Speedup” is a ratio = old exec time / new exec time

• “Improvement”, “Increase”, “Decrease” usually refer to
 percentage relative to the baseline
 = (new perf – old perf) / old perf

• A program ran in 100 seconds on my old laptop and in 70
 seconds on my new laptop

 What is the speedup?
 What is the percentage increase in performance?
 What is the reduction in execution time?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

