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Where Are We Heading?

●  Modern trends:
● Clock speed improvements are slowing

– power constraints
● Difficult to further optimize a single core for performance
● Multi-cores: each new processor generation will 

accommodate more cores
● Need better programming models and efficient execution for 

multi-threaded applications
● Need better memory hierarchies
● Need greater energy efficiency



Power Consumption Trends

● Dyn power   activity x capacitance x voltage2 x frequency

● Capacitance per transistor and voltage are decreasing, but number of transistors 
is increasing at a faster rate; hence clock frequency must be kept steady

● Leakage power is also rising; is a function of transistor count, leakage current, and 
supply voltage
● P = Voltage x Current = V x I

● Power consumption is already between 100-150W in high-performance 
processors today

●  Energy = power x time = (dynpower + lkgpower) x time



Power Vs. Energy

● Energy is the ultimate metric:  it tells us the true “cost” of  
performing a fixed task

● Power (energy/time) poses constraints; can only work fast

enough to max out the power delivery or cooling solution

● If processor A consumes 1.2x the power of processor B, but 
finishes the task in 30% less time, its relative energy is 1.2 X 
0.7 = 0.84; Proc-A is better, assuming that 1.2x power can 
be supported by the system



Reducing Power and Energy

● Can gate off transistors that are inactive (reduces leakage)

● Design for typical case and throttle down when activity exceeds 
a threshold

● DFS: Dynamic frequency scaling  -- only reduces frequency and 
dynamic power, but hurts energy 

● DVFS: Dynamic voltage and frequency scaling – can reduce 
voltage and frequency by (say) 10%;  can slow a program by 
(say) 8%, but reduce dynamic power by 27%, reduce total 
power by (say) 23%, reduce total energy by 17%  

● (Note: voltage drop  slow transistor  freq drop)



DFS and DVFS

● DFS

● DVFS



  

Metrics to Evaluate Performance



  

Measuring Performance

● Two primary metrics: 
● wall clock time (response time for a program) and
● throughput (jobs performed in unit time)

● To optimize throughput, must ensure that there 
is minimal waste of resources



  

Benchmark Suites

● Performance is measured with benchmark 
suites: a collection of programs that are likely 
relevant to the user

● SPEC CPU 2006: cpu-oriented programs (for 
desktops)

● SPECweb, TPC: throughput-oriented (for servers)
● EEMBC: for embedded processors/workloads



Summarizing Performance

● Consider 25 programs from a benchmark set – how do we 
capture the behavior of all 25 programs with a single 
number?
                             P1        P2           P3

            Sys-A       10          8            25

            Sys-B       12          9            20

            Sys-C        8           8            30

● Sum of execution times (AM)
● Sum of weighted execution times (AM)
● Geometric mean of execution times (GM)



Sum of Weighted Exec Times – 
Example 

●We fixed a reference machine X and ran 4 programs  A, 
B, C, D on it such that each program ran for 1 second

●The exact same workload (the four programs execute the 
same number of instructions that they did on machine X) 
is run on a new machine Y and the execution times for 
each program are 0.8, 1.1, 0.5, 2

●With AM of normalized execution times, we can conclude 
that Y is 1.1 times slower than X – perhaps, not for all 
workloads, but definitely for one specific workload (where 
all programs run on the ref-machine for an equal #cycles)



Summarizing Performance

● Consider 25 programs from a benchmark set – how do we 
capture the behavior of all 25 programs with a single 
number?
                             P1        P2           P3

            Sys-A       10          8            25

            Sys-B       12          9            20

            Sys-C        8           8            30

● Sum of execution times (AM)
● Sum of weighted execution times (AM)
● Geometric mean of execution times (GM)



GM Example

Computer-A    Computer-B     Computer-C
P1                       1 sec               10 secs             20 secs
P2                     1000 secs         100 secs           20 secs

Conclusion with GMs: (i) A=B 
                                    (ii) C is ~1.6 times faster

• For (i) to be true, P1 must occur 100 times for every
  occurrence of P2

• With the above assumption, (ii) is no longer true

             Hence, GM can lead to inconsistencies



Summarizing Performance

●  GM: does not require a reference machine, but does 
not predict performance very well
● So we multiplied execution times and determined that sys-A 

is 1.2x faster…but on what workload?

● AM: does predict performance for a specific workload, 
but that workload was determined by executing 
programs on a reference machine
● Every year or so, the reference machine will have to be 

updated



CPU Performance Equation

● Clock cycle time = 1 / clock speed

● CPU time = clock cycle time x cycles per instruction x number of 
instructions

● Influencing factors for each:
● clock cycle time: technology and pipeline
● CPI: architecture and instruction set design
● instruction count: instruction set design and compiler

● CPI (cycles per instruction) or IPC (instructions per cycle) can not be 
accurately estimated analytically



An Alternative Perspective - I

• Each program is assumed to run for an equal number 
  of cycles, so we’re fair to each program

• The number of instructions executed per cycle is a 
  measure of how well a program is doing on a system

• The appropriate summary measure is sum of IPCs or
  AM of IPCs = 1.2 instr + 1.8 instr + 0.5 instr  
                            cyc            cyc           cyc

• This measure implicitly assumes that 1 instr in prog-A 
  has the same importance as 1 instr in prog-B



An Alternative Perspective - II

• Each program is assumed to run for an equal number 
  of instructions, so we’re fair to each program

• The number of cycles required per instruction is a 
  measure of how well a program is doing on a system

• The appropriate summary measure is sum of CPIs or
  AM of CPIs = 0.8 cyc + 0.6 cyc + 2.0 cyc  
                           instr        instr          instr

• This measure implicitly assumes that 1 instr in prog-A 
  has the same importance as 1 instr in prog-B



AM and HM

• Note that AM of IPCs = 1 / HM of CPIs  and
                  AM of CPIs = 1 / HM of IPCs

• So if the programs in a benchmark suite are weighted
  such that each runs for an equal number of cycles, then
  AM of IPCs or HM of CPIs are both appropriate measures

• If the programs in a benchmark suite are weighted such
  that each runs for an equal number of instructions, then
  AM of CPIs or HM of IPCs are both appropriate measures



  

Thank you!
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AM vs. GM

• GM of IPCs = 1 / GM of CPIs

• AM of IPCs represents thruput for a workload where each
  program runs sequentially for 1 cycle each; but high-IPC
  programs contribute more to the AM

• GM of IPCs does not represent run-time for any real
  workload (what does it mean to multiply instructions?); but
  every program’s IPC contributes equally to the final measure
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Speedup Vs. Percentage

• “Speedup” is a ratio = old exec time / new exec time

• “Improvement”, “Increase”, “Decrease” usually refer to
   percentage relative to the baseline 
   = (new perf – old perf) / old perf

• A program ran in 100 seconds on my old laptop and in 70
  seconds on my new laptop

 What is the speedup?
 What is the percentage increase in performance?
 What is the reduction in execution time?
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