

250P: Computer Systems
Architecture

Lecture 5: Advanced Pipelines

Anton Burtsev
January, 2019

2

Hazards

● Structural hazards

● Data hazards

● Control hazards

3

Control Hazards

• Simple techniques to handle control hazard stalls:
 for every branch, introduce a stall cycle (note: every
 6th instruction is a branch on average!)
 assume the branch is not taken and start fetching the
 next instruction – if the branch is taken, need hardware
 to cancel the effect of the wrong-path instructions
 predict the next PC and fetch that instr – if the prediction
 is wrong, cancel the effect of the wrong-path instructions
 fetch the next instruction (branch delay slot) and
 execute it anyway – if the instruction turns out to be
 on the correct path, useful work was done – if the
 instruction turns out to be on the wrong path,
 hopefully program state is not lost

4

Branch delay slot

5

Multicycle Instructions

6

Effects of Multicycle Instructions

• Potentially multiple writes to the register file in a cycle

• Frequent RAW hazards

• WAW hazards (WAR hazards not possible)

• Imprecise exceptions because of o-o-o instr completion

Note: Can also increase the “width” of the processor: handle
 multiple instructions at the same time: for example, fetch
 two instructions, read registers for both, execute both, etc.

7

Precise Exceptions

• On an exception:
 must save PC of instruction where program must resume
 all instructions after that PC that might be in the pipeline
 must be converted to NOPs (other instructions continue
 to execute and may raise exceptions of their own)
 temporary program state not in memory (in other words,
 registers) has to be stored in memory
 potential problems if a later instruction has already
 modified memory or registers

• A processor that fulfils all the above conditions is said to
 provide precise exceptions (useful for debugging and of
 course, correctness)

8

Dealing with these Effects

• Multiple writes to the register file: increase the number of
 ports, stall one of the writers during ID, stall one of the
 writers during WB (the stall will propagate)

• WAW hazards: detect the hazard during ID and stall the
 later instruction

• Imprecise exceptions: buffer the results if they complete
 early or save more pipeline state so that you can return to
 exactly the same state that you left at

9

Slowdowns from Stalls

• Perfect pipelining with no hazards  an instruction
 completes every cycle (total cycles ~ num instructions)
  speedup = increase in clock speed = num pipeline stages

• With hazards and stalls, some cycles (= stall time) go by
 during which no instruction completes, and then the stalled
 instruction completes

• Total cycles = number of instructions + stall cycles

• Slowdown because of stalls = 1/ (1 + stall cycles per instr)

10

Pipelining Limits

A B C

A B C

A B C D E F

A B C D E F

Assume that there is a dependence where the final result of the
first instruction is required before starting the second instruction

Gap between indep instrs: T + Tovh

Gap between dep instrs: T + Tovh

Gap between indep instrs:
 T/3 + Tovh

Gap between dep instrs:
 T + 3Tovh

Gap between indep instrs:
 T/6 + Tovh

Gap between dep instrs:
 T + 6Tovh

11

Problem 1

• For the following code sequence, show how the instrs
 flow through the pipeline:
 ADD R3  R1, R2
 LD R7  8[R6]
 ST R9  4[R8]
 BEZ R4, [R5]

12

Problem 1

• For the following code sequence, show how the instrs
 flow through the pipeline:
 ADD R3  R1, R2
 LD R7  8[R6]
 ST R9  4[R8]
 BEZ R4, [R5]

ADD ADD ADD ADD ADD

BEZ BEZ

ST ST ST ST

LD LD LD LD LD

13

Pipeline Summary

 RR ALU DM RW

ADD R3  R1, R2 Rd R1,R2 R1+R2 -- Wr R3

BEZ R1, [R5] Rd R1, R5 -- -- --
 Compare, Set PC

LD R6  8[R3] Rd R3 R3+8 Get data Wr R6

ST R6  8[R3] Rd R3,R6 R3+8 Wr data --

14

Problem 2

• Convert this C code into equivalent RISC assembly
 instructions

 a[i] = b[i] + c[i];

15

• Convert this C code into equivalent RISC assembly
 instructions

 a[i] = b[i] + c[i];

 LD R2, [R1] # R1 has the address for variable i
 MUL R3, R2, 8 # the offset from the start of the array
 ADD R7, R3, R4 # R4 has the address of a[0]
 ADD R8, R3, R5 # R5 has the address of b[0]
 ADD R9, R3, R6 # R6 has the address of c[0]
 LD R10, [R8] # Bringing b[i]
 LD R11, [R9] # Bringing c[i]
 ADD R12, R11, R10 # Sum is in R12
 ST R12, [R7] # Putting result in a[i]

Problem 2

16

D/R

ALU

DM

RW

IF

CYC-1

D/R

ALU

DM

RW

IF

CYC-2

D/R

ALU

DM

RW

IF

CYC-3

D/R

ALU

DM

RW

IF

CYC-4

D/R

ALU

DM

RW

IF

CYC-5

D/R

ALU

DM

RW

IF

CYC-6

D/R

ALU

DM

RW

IF

CYC-7

D/R

ALU

DM

RW

IF

CYC-8

• Show the instruction occupying each stage in each cycle (no bypassing)
 if I1 is R1+R2R3 and I2 is R3+R4R5 and I3 is R7+R8R9

Problem 3

17

D/R

ALU

DM

RW

IF
I1

CYC-1

D/R
I1

ALU

DM

RW

IF
I2

CYC-2

D/R
I2

ALU
I1

DM

RW

IF
I3

CYC-3

D/R
I2

ALU

DM
I1

RW

IF
I3

CYC-4

D/R
I2

ALU

DM

RW
I1

IF
I3

CYC-5

D/R
I3

ALU
I2

DM

RW

IF
I4

CYC-6

D/R
I4

ALU
I3

DM
I2

RW

IF
I5

CYC-7

D/R

ALU

DM
I3

RW
I2

IF

CYC-8

• Show the instruction occupying each stage in each cycle (no bypassing)
 if I1 is R1+R2R3 and I2 is R3+R4R5 and I3 is R7+R8R9

Problem 3

18

Bypassing: 5-Stage Pipeline

Source: H&P textbook

19

Problem 4

D/R

ALU

DM

RW

IF

CYC-1

D/R

ALU

DM

RW

IF

CYC-2

D/R

ALU

DM

RW

IF

CYC-3

D/R

ALU

DM

RW

IF

CYC-4

D/R

ALU

DM

RW

IF

CYC-5

D/R

ALU

DM

RW

IF

CYC-6

D/R

ALU

DM

RW

IF

CYC-7

D/R

ALU

DM

RW

IF

CYC-8

• Show the instruction occupying each stage in each cycle (with bypassing)
 if I1 is R1+R2R3 and I2 is R3+R4R5 and I3 is R3+R8R9.
 Identify the input latch for each input operand.

• Show the instruction occupying each stage in each cycle (with bypassing)
 if I1 is R1+R2R3 and I2 is R3+R4R5 and I3 is R3+R8R9.
 Identify the input latch for each input operand.

D/R

ALU

DM

RW

IF
I1

CYC-1

D/R
I1

ALU

DM

RW

IF
I2

CYC-2

D/R
I2

ALU
I1

DM

RW

IF
I3

CYC-3

D/R
I3

ALU
I2

DM
I1

RW

IF
I4

CYC-4

D/R
I4

ALU
I3

DM
I2

RW
I1

IF
I5

CYC-5

D/R

ALU

DM
I3

RW
I2

IF

CYC-6

D/R

ALU

DM

RW
I3

IF

CYC-7

D/R

ALU

DM

RW

IF

CYC-8

L3 L3 L4 L3 L5 L3

Problem 4

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

