250P: Computer Systems
Architecture

Lecture 6: Static ILP

Anton Burtsev
January, 2019

Static vs Dynamic Scheduling

* Arguments against dynamic scheduling:
» requires complex structures to identify independent
Instructions (scoreboards, issue gueue)
high power consumption
low clock speed
high design and verification effort
» the compiler can “easily” compute instruction latencies
and dependences — complex software is always
preferred to complex hardware (?)

ILP

* Instruction-level parallelism: overlap among instructions:
pipelining or multiple instruction execution

* What determines the degree of ILP?
» dependences: property of the program
» hazards: property of the pipeline

Loop Scheduling

* The compiler’s job is to minimize stalls

* Focus on loops: account for most cycles, relatively easy
to analyze and optimize

Assumptions

* Load: 2-cycles (1 cycle stall for consumer)
* FP ALU: 4-cycles (3 cycle stall for consumer; 2 cycle stall
If the consumer Is a store)
* One branch delay slot
* Int ALU: 1-cycle (no stall for consumer, 1 cycle stall if the
consumer is a branch)

£ 2007 Eleavier, Inc. Al rights resaned.

Time (in clock cycles)

CcC1 cCcz2 CC 3 CcC4 CCS5 CCe6
1M H [Reg > % DM Reg

BL—

M i Reg | > 3 om
- . el >3

IM [Reg

Loop Example

for (i=1000; i>0; i--)

x[i] = X[i] + s; Source code
Loop: L.D FO, O(R1) ; FO = array element
ADD.D F4, FO, F2 ; add scalar
S.D F4, O(R1) ; store result
DADDUI R1, R1,#-8 ;decrement address pointer Assembly code
BNE R1, R2, Loop ; branchif R1!=R2
NOP

Loop Example

for (i=1000; i>0; i--)

x[i] = X[i] + s; Source code

Loop: L.D FO, O(R1) ; FO = array element
ADD.D F4, FO, F2 ; add scalar
S.D F4, O(R1) ; store result

DADDUI R1,R1,#-8 ; decrement address pointer

BNE R1, R2, Loop ; branchif R1!=R2
NOP
Loop: L.D FO, O(R1) ; FO = array element

stall

ADD.D F4, FO, F2 . add scalar

stall

stall

S.D F4, O(R1) ; store result

DADDUI R1,R1,#-8 ; decrement address pointer

stall

BNE R1, R2, Loop ;branchif R1!=R2

stall

Assembly code

10-cycle
schedule

Smart Schedule

Loop: L.D FO, O(R1)

stall
Loop: L.D FO, O(R1)
QZ?'D 4 RO P2 —_— DADDUI R1, R1# -8
stall ADD.D F4, FO, F2
stall

[S);A[\)DDUI ':11’ OF({F;]# -8 BNE R1, R2, Loop

o SD F4,8(R1)
stall
BNE R1, R2, Loop
stall

* By re-ordering instructions, it takes 6 cycles per iteration instead of 10
* We were able to violate an anti-dependence easily because an
Immediate was involved
* Loop overhead (instrs that do book-keeping for the loop): 2
Actual work (the Id, add.d, and s.d): 3 instrs
Can we somehow get execution time to be 3 cycles per iteration?

Loop Unrolling

Loop: L.D FO, O(R1)
ADD.D F4, FO, F2
S.D F4, O(R1)
L.D F6, -8(R1)
ADD.D FS8, F6, F2
S.D F8, -8(R1)
L.D F10,-16(R1)
ADD.D F12, F10, F2
S.D F12, -16(R1)

L.D F14, -24(R1)
ADD.D F16, F14, F2
S.D F16, -24(R1)

DADDUI R1, R1, #-32
BNE R1,R2, Loop

* Loop overhead: 2 instrs; Work: 12 instrs
* How long will the above schedule take to complete?

Scheduled and Unrolled Loop

Loop: L.D FO, O(R1)
L.D F6, -8(R1)
L.D F10,-16(R1)
L.D F14, -24(R1)
ADD.D F4, F0, F2
ADD.D F8, F6, F2
ADD.D F12, F10, F2
ADD.D F16, F14, F2
S.D F4, O(R1)
S.D F8, -8(R1)
DADDUI R1, R1, #-32
S.D F12, 16(R1)
BNE R1,R2, Loop
S.D F16, 8(R1)

* Execution time: 14 cycles or 3.5 cycles per original iteration

11

Loop Unrolling

* Increases program size
* Requires more registers
* To unroll an n-iteration loop by degree k, we will need (n/k)

iterations of the larger loop, followed by (n mod k) iterations
of the original loop

12

Automating Loop Unrolling

* Determine the dependences across iterations: in the
example, we knew that loads and stores in different iterations
did not conflict and could be re-ordered

* Determine if unrolling will help — possible only if iterations
are independent

* Determine address offsets for different loads/stores
* Dependency analysis to schedule code without introducing

hazards; eliminate name dependences by using additional
registers

13

Superscalar Pipelines

Integer pipeline FP pipeline

Handles L.D, S.D, ADDUI, BNE Handles ADD.D

* What is the schedule with an unroll degree of 4?7

14

Superscalar Pipelines

Loop: LD FO,0(R1)
L.D F6,-8(R1)
L.D F10,-16(R1) ADD.D
L.D F14,-24(R1) ADD.D
L.D F18,-32(R1) ADD.D
S.D F4,0(R1) ADD.D
S.D F8,-8(R1) ADD.D
S.D F12,-16(R1)
DADDUI R1,R1# -40
S.D F16,16(R1)
BNE R1,R2,Loop
S.D F20,8(R1)

Integer pipeline FP pipeline

F4,F0,F2
F8,F6,F2
F12,F10,F2
F16,F14,F2
F20,F18,F2

* Need unroll by degree 5 to eliminate stalls

* The compiler may specify instructions that can be issued as one packet
* The compiler may specify a fixed number of instructions in each packet:

Very Large Instruction Word (VLIW)

15

Software Pipeline?!

e
DADDUI
o
DADDUI
e
DADDUI
e
DADDUI
Loop: LD FO,O(R1) ADD.D
ADD.D F4, FO, F2
SD F4,0(R1) DADDUI
DADDUI R1, R1# -8
BNE R1, R2, Loop ADD.D
DADDUI 16

Software Pipeline

Original iter 1

Original iter 2

Original iter 3
Original iter 4

New iter 1

New iter 2 ‘

New iter 3

New iter 4

17

Software Pipelining

Loop: L.D FO, O(R1) Loop: S.D F4, 16(R1)
ADD.D F4, FO, F2 ADD.D F4, FO, F2
S.D F4, O(R1) —p L.D FO, O(R1)
DADDUI R1, R1,# -8 DADDUI R1, R1,# -8
BNE R1, R2, Loop BNE R1, R2, Loop

* Advantages: achieves nearly the same effect as loop unrolling, but

without the code expansion — an unrolled loop may have inefficiencies
at the start and end of each iteration, while a sw-pipelined loop is

almost always in steady state — a sw-pipelined loop can also be unrolled
to reduce loop overhead

* Disadvantages: does not reduce loop overhead, may require more
registers

18

Predication

* A branch within a loop can be problematic to schedule

* Control dependences are a problem because of the need
to re-fetch on a mispredict

* For short loop bodies, control dependences can be
converted to data dependences by using
predicated/conditional instructions

19

Predicated or Conditional Instructions

If (R1==0)
R2=R2 + R4
else
R6 =R3 +R5
R4 = R2 + R3

R7 =R1
R8 = R2
R2 = R2 + R4 (predicated on R7)
R6 = R3 + R5 (predicated on R1)
R4 = R8 + R3 (predicated on R1)

20

Predicated or Conditional Instructions

* The instruction has an additional operand that determines
whether the instr completes or gets converted into a no-op

* Example: lwc R1, 0(R2), R3 (load-word-conditional)
will load the word at address (R2) into R1 if R3 is non-zero
If R3 Is zero, the instruction becomes a no-op

* Replaces a control dependence with a data dependence
(branches disappear) ; may need register copies for the
condition or for values used by both directions

if (R1==0) R7=IR1; R8=R2;
RZ=R2+R4| _ ~ |R2=R2+R4 (predicated on R7)

else R6 = R3 + R5 (predicated on R1)
R6 = R3 +R5 R4 = R8 + R3 (predicated on R1)
R4 =R2 + R3

21

Complications

* Each instruction has one more input operand — more
register ports/bypassing

* If the branch condition is not known, the instruction stalls
(remember, these are in-order processors)

* Some implementations allow the instruction to continue
without the branch condition and squash/complete later in
the pipeline — wasted work

* Increases register pressure, activity on functional units

* Does not help if the br-condition takes a while to evaluate

22

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

