
  

250P: Computer Systems
Architecture

Lecture 7: Static ILP (Continued)
Branch prediction

Anton Burtsev
January, 2019



2

Predication

• A branch within a loop can be problematic to schedule

• Control dependences are a problem because of the need
  to re-fetch on a mispredict

• For short loop bodies, control dependences can be
  converted to data dependences by using 
  predicated/conditional instructions



3

Predicated or Conditional Instructions

if (R1 == 0) 
   R2 = R2 + R4
else 
   R6 = R3 + R5
   R4 = R2 + R3

R7 = !R1 
R8 = R2 
R2 = R2 + R4   (predicated on R7)
R6 = R3 + R5   (predicated on R1)
R4 = R8 + R3   (predicated on R1) 



4

Predicated or Conditional Instructions

• The instruction has an additional operand that determines
  whether the instr completes or gets converted into a no-op

• Example: lwc  R1, 0(R2), R3    (load-word-conditional)
  will load the word at address (R2) into R1 if R3 is non-zero;
  if R3 is zero, the instruction becomes a no-op

• Replaces a control dependence with a data dependence
  (branches disappear) ; may need register copies for the
  condition or for values used by both directions

if (R1 == 0) 
   R2 = R2 + R4
else 
   R6 = R3 + R5
   R4 = R2 + R3

R7 = !R1 ;  R8 = R2 ;
R2 = R2 + R4   (predicated on R7)
R6 = R3 + R5   (predicated on R1)
R4 = R8 + R3   (predicated on R1) 



5

Complications

• Each instruction has one more input operand – more
  register ports/bypassing

• If the branch condition is not known, the instruction stalls
  (remember, these are in-order processors)

• Some implementations allow the instruction to continue
  without the branch condition and squash/complete later in
  the pipeline – wasted work

• Increases register pressure, activity on functional units

• Does not help if the br-condition takes a while to evaluate



6

Support for Speculation

• In general, when we re-order instructions, register renaming
  can ensure we do not violate register data dependences

• However, we need hardware support
 to ensure that an exception is raised at the correct point
 to ensure that we do not violate memory dependences

          st
          br

ld



7

Detecting Exceptions

• Some exceptions require that the program be terminated
  (memory protection violation), while other exceptions
  require execution to resume (page faults)

• For a speculative instruction, in the latter case, servicing 
  the exception only implies potential performance loss

• In the former case, you want to defer servicing the
  exception until you are sure the instruction is not speculative

• Note that a speculative instruction needs a special opcode
  to indicate that it is speculative



8

Program-Terminate Exceptions

• When a speculative instruction experiences an exception,
  instead of servicing it, it writes a special NotAThing value
  (NAT) in the destination register

• If a non-speculative instruction reads a NAT, it flags the
  exception and the program terminates (it may not be
  desirable that the error is caused by an array access, but
  the segfault happens two procedures later)

• Alternatively, an instruction (the sentinel) in the speculative
  instruction’s original location checks the register value and
  initiates recovery



9

Memory Dependence Detection
 (Advanced Load Address Table)

 In general, when we re-order instructions, register renaming
 can ensure we do not violate register data dependences

 However, we need hardware support
 to ensure that an exception is raised at the correct point
 to ensure that we do not violate memory dependences

          st
          br

ld



10

Memory Dependence Detection

• If a load is moved before a preceding store, we must
  ensure that the store writes to a non-conflicting address,
  else, the load has to re-execute

• When the speculative load issues, it stores its address in
  a table (Advanced Load Address Table in the IA-64)

• If a store finds its address in the ALAT, it indicates that a
  violation occurred for that address

• A special instruction (the sentinel) in the load’s original
  location checks to see if the address had a violation and 
  re-executes the load if necessary



Dynamic ILP techniques



12

Static vs Dynamic Scheduling

• Arguments against dynamic scheduling:
 requires complex structures to identify independent
    instructions (scoreboards, issue queue)

 high power consumption
 low clock speed
 high design and verification effort

 the compiler can “easily” compute instruction latencies
    and dependences – complex software is always
    preferred to complex hardware (?)



13

ILP

• Instruction-level parallelism: overlap among instructions:
  pipelining or multiple instruction execution

• What determines the degree of ILP?
 dependences: property of the program
 hazards: property of the pipeline



Branch prediction



15

Pipeline without Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-target

PC + 4

In the 5-stage pipeline, a branch completes in two cycles 
If the branch went the wrong way, one incorrect instr is fetched 
One stall cycle per incorrect branch



16

Pipeline with Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-target

In the 5-stage pipeline, a branch completes in two cycles 
If the branch went the wrong way, one incorrect instr is fetched 
One stall cycle per incorrect branch

Branch
Predictor



17

1-Bit Bimodal Prediction

• For each branch, keep track of what happened last time
  and use that outcome as the prediction

• What are prediction accuracies for branches 1 and 2 below:

     while (1) {
            for (i=0;i<10;i++) {                     branch-1
                …
            }
            for (j=0;j<20;j++) {                     branch-2
               …
            }
     }



18

2-Bit Bimodal Prediction

• For each branch, maintain a 2-bit saturating counter:
   if the branch is taken: counter = min(3,counter+1)
   if the branch is not taken: counter = max(0,counter-1)

• If (counter >= 2), predict taken, else predict not taken

• Advantage: a few atypical branches will not influence the
  prediction (a better measure of “the common case”)

• Especially useful when multiple branches share the same
  counter (some bits of the branch PC are used to index
  into the branch predictor)

• Can be easily extended to N-bits (in most processors, N=2)



19

Bimodal 1-Bit Predictor

Branch PC

10 bits

Table of
1K entries

Each
entry is

a bit

The table keeps track of what the branch did last time



20

Correlating Predictors

• Basic branch prediction: maintain a 2-bit saturating
  counter for each entry (or use 10 branch PC bits to index
  into one of 1024 counters) – captures the recent 
  “common case” for each branch

• Can we take advantage of additional information?
 If a branch recently went  01111, expect 0; if it
    recently went  11101, expect 1; can we have a
    separate counter for each case?
 If the previous branches went  01, expect 0; if the
    previous branches went 11, expect 1; can we have
    a separate counter for each case?

Hence, build correlating predictors



21

Global Predictor

Branch PC

10 bits
Table of

16K entries

Each
entry is
a 2-bit

sat.
counterThe table keeps track of the common-case

 outcome for the branch/history combo

Global history

CAT



22

Local Predictor

Branch PC

Table of
16K entries

of 2-bit
saturating
counters

Table of 64 entries of 14-bit
histories for a single branch

10110111011001

Use 6 bits of branch PC to
index into local history table

14-bit history
indexes into

next level

Also a two-level predictor that only
uses local histories at the first level



23

Local Predictor

Branch PC

6 bits
Table of

1K entries

Each
entry is
a 2-bit

sat.
counter

The table keeps track of the common-case
 outcome for the branch/local-history combo

Local history
10 bit entries

XOR

64 entries

10 bits



24

Local/Global Predictors

• Instead of maintaining a counter for each branch to
  capture the common case,

 Maintain a counter for each branch and surrounding pattern
 If the surrounding pattern belongs to the branch being
     predicted, the predictor is referred to as a local predictor
 If the surrounding pattern includes neighboring branches,
     the predictor is referred to as a global predictor



25

Tournament Predictors

• A local predictor might work well for some branches or
  programs, while a global predictor might work well for others

• Provide one of each and maintain another predictor to
  identify which predictor is best for each branch

Tournament
Predictor

Branch PC

Table of 2-bit
saturating counters

Local
Predictor

Global
Predictor

M
U
X

Alpha 21264:
1K entries in level-1
1K entries in level-2

4K entries
12-bit global history

4K entries

Total capacity: ?



  

Thank you!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

