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Predication

• A branch within a loop can be problematic to schedule

• Control dependences are a problem because of the need
  to re-fetch on a mispredict

• For short loop bodies, control dependences can be
  converted to data dependences by using 
  predicated/conditional instructions
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Predicated or Conditional Instructions

if (R1 == 0) 
   R2 = R2 + R4
else 
   R6 = R3 + R5
   R4 = R2 + R3

R7 = !R1 
R8 = R2 
R2 = R2 + R4   (predicated on R7)
R6 = R3 + R5   (predicated on R1)
R4 = R8 + R3   (predicated on R1) 



4

Predicated or Conditional Instructions

• The instruction has an additional operand that determines
  whether the instr completes or gets converted into a no-op

• Example: lwc  R1, 0(R2), R3    (load-word-conditional)
  will load the word at address (R2) into R1 if R3 is non-zero;
  if R3 is zero, the instruction becomes a no-op

• Replaces a control dependence with a data dependence
  (branches disappear) ; may need register copies for the
  condition or for values used by both directions

if (R1 == 0) 
   R2 = R2 + R4
else 
   R6 = R3 + R5
   R4 = R2 + R3

R7 = !R1 ;  R8 = R2 ;
R2 = R2 + R4   (predicated on R7)
R6 = R3 + R5   (predicated on R1)
R4 = R8 + R3   (predicated on R1) 
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Complications

• Each instruction has one more input operand – more
  register ports/bypassing

• If the branch condition is not known, the instruction stalls
  (remember, these are in-order processors)

• Some implementations allow the instruction to continue
  without the branch condition and squash/complete later in
  the pipeline – wasted work

• Increases register pressure, activity on functional units

• Does not help if the br-condition takes a while to evaluate
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Support for Speculation

• In general, when we re-order instructions, register renaming
  can ensure we do not violate register data dependences

• However, we need hardware support
 to ensure that an exception is raised at the correct point
 to ensure that we do not violate memory dependences

          st
          br

ld
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Detecting Exceptions

• Some exceptions require that the program be terminated
  (memory protection violation), while other exceptions
  require execution to resume (page faults)

• For a speculative instruction, in the latter case, servicing 
  the exception only implies potential performance loss

• In the former case, you want to defer servicing the
  exception until you are sure the instruction is not speculative

• Note that a speculative instruction needs a special opcode
  to indicate that it is speculative
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Program-Terminate Exceptions

• When a speculative instruction experiences an exception,
  instead of servicing it, it writes a special NotAThing value
  (NAT) in the destination register

• If a non-speculative instruction reads a NAT, it flags the
  exception and the program terminates (it may not be
  desirable that the error is caused by an array access, but
  the segfault happens two procedures later)

• Alternatively, an instruction (the sentinel) in the speculative
  instruction’s original location checks the register value and
  initiates recovery
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Memory Dependence Detection
 (Advanced Load Address Table)

 In general, when we re-order instructions, register renaming
 can ensure we do not violate register data dependences

 However, we need hardware support
 to ensure that an exception is raised at the correct point
 to ensure that we do not violate memory dependences

          st
          br

ld
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Memory Dependence Detection

• If a load is moved before a preceding store, we must
  ensure that the store writes to a non-conflicting address,
  else, the load has to re-execute

• When the speculative load issues, it stores its address in
  a table (Advanced Load Address Table in the IA-64)

• If a store finds its address in the ALAT, it indicates that a
  violation occurred for that address

• A special instruction (the sentinel) in the load’s original
  location checks to see if the address had a violation and 
  re-executes the load if necessary



Dynamic ILP techniques
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Static vs Dynamic Scheduling

• Arguments against dynamic scheduling:
 requires complex structures to identify independent
    instructions (scoreboards, issue queue)

 high power consumption
 low clock speed
 high design and verification effort

 the compiler can “easily” compute instruction latencies
    and dependences – complex software is always
    preferred to complex hardware (?)
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ILP

• Instruction-level parallelism: overlap among instructions:
  pipelining or multiple instruction execution

• What determines the degree of ILP?
 dependences: property of the program
 hazards: property of the pipeline



Branch prediction
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Pipeline without Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-target

PC + 4

In the 5-stage pipeline, a branch completes in two cycles 
If the branch went the wrong way, one incorrect instr is fetched 
One stall cycle per incorrect branch
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Pipeline with Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-target

In the 5-stage pipeline, a branch completes in two cycles 
If the branch went the wrong way, one incorrect instr is fetched 
One stall cycle per incorrect branch

Branch
Predictor



17

1-Bit Bimodal Prediction

• For each branch, keep track of what happened last time
  and use that outcome as the prediction

• What are prediction accuracies for branches 1 and 2 below:

     while (1) {
            for (i=0;i<10;i++) {                     branch-1
                …
            }
            for (j=0;j<20;j++) {                     branch-2
               …
            }
     }
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2-Bit Bimodal Prediction

• For each branch, maintain a 2-bit saturating counter:
   if the branch is taken: counter = min(3,counter+1)
   if the branch is not taken: counter = max(0,counter-1)

• If (counter >= 2), predict taken, else predict not taken

• Advantage: a few atypical branches will not influence the
  prediction (a better measure of “the common case”)

• Especially useful when multiple branches share the same
  counter (some bits of the branch PC are used to index
  into the branch predictor)

• Can be easily extended to N-bits (in most processors, N=2)
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Bimodal 1-Bit Predictor

Branch PC

10 bits

Table of
1K entries

Each
entry is

a bit

The table keeps track of what the branch did last time
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Correlating Predictors

• Basic branch prediction: maintain a 2-bit saturating
  counter for each entry (or use 10 branch PC bits to index
  into one of 1024 counters) – captures the recent 
  “common case” for each branch

• Can we take advantage of additional information?
 If a branch recently went  01111, expect 0; if it
    recently went  11101, expect 1; can we have a
    separate counter for each case?
 If the previous branches went  01, expect 0; if the
    previous branches went 11, expect 1; can we have
    a separate counter for each case?

Hence, build correlating predictors
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Global Predictor

Branch PC

10 bits
Table of

16K entries

Each
entry is
a 2-bit

sat.
counterThe table keeps track of the common-case

 outcome for the branch/history combo

Global history

CAT
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Local Predictor

Branch PC

Table of
16K entries

of 2-bit
saturating
counters

Table of 64 entries of 14-bit
histories for a single branch

10110111011001

Use 6 bits of branch PC to
index into local history table

14-bit history
indexes into

next level

Also a two-level predictor that only
uses local histories at the first level
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Local Predictor

Branch PC

6 bits
Table of

1K entries

Each
entry is
a 2-bit

sat.
counter

The table keeps track of the common-case
 outcome for the branch/local-history combo

Local history
10 bit entries

XOR

64 entries

10 bits
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Local/Global Predictors

• Instead of maintaining a counter for each branch to
  capture the common case,

 Maintain a counter for each branch and surrounding pattern
 If the surrounding pattern belongs to the branch being
     predicted, the predictor is referred to as a local predictor
 If the surrounding pattern includes neighboring branches,
     the predictor is referred to as a global predictor
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Tournament Predictors

• A local predictor might work well for some branches or
  programs, while a global predictor might work well for others

• Provide one of each and maintain another predictor to
  identify which predictor is best for each branch

Tournament
Predictor

Branch PC

Table of 2-bit
saturating counters

Local
Predictor

Global
Predictor

M
U
X

Alpha 21264:
1K entries in level-1
1K entries in level-2

4K entries
12-bit global history

4K entries

Total capacity: ?



  

Thank you!
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