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More Cache Basics

* L1 caches are split as instruction and data; L2 and L3
are unified

* The L1/L2 hierarchy can be inclusive, exclusive, or
non-inclusive

* On a write, you can do write-allocate or write-no-allocate

* On a write, you can do writeback or write-through;
write-back reduces traffic, write-through simplifies coherence

* Reads get higher priority; writes are usually buffered

* L1 does parallel tag/data access; L2/L.3 does serial tag/data



Techniques to Reduce Cache Misses

* Victim caches
* Better replacement policies — pseudo-LRU, NRU, DRRIP

* Cache compression



Victim Caches

* A direct-mapped cache suffers from misses because
multiple pieces of data map to the same location

* The processor often tries to access data that it recently
discarded — all discards are placed in a small victim cache
(4 or 8 entries) — the victim cache is checked before going
to L2

* Can be viewed as additional associativity for a few sets
that tend to have the most conflicts



Replacement Policies

* Pseudo-LRU: maintain a tree and keep track of which
side of the tree was touched more recently; simple bit ops

* NRU: every block in a set has a bit; the bit is made zero
when the block is touched: if all are zero, make all one:
a block with bit set to 1 is evicted

* DRRIP: use multiple (say, 3) NRU bits; incoming blocks
are set to a high number (say 6), so they are close to
being evicted; similar to placing an incoming block near
the head of the LRU list instead of near the tall



Tolerating Miss Penalty

* Out of order execution: can do other useful work while
waiting for the miss — can have multiple cache misses
-- cache controller has to keep track of multiple
outstanding misses (non-blocking cache)

* Hardware and software prefetching into prefetch buffers
— aggressive prefetching can increase contention for buses



Stream Buffers

* Simplest form of prefetch: on every miss, bring in
multiple cache lines

* When you read the top of the queue, bring in the next line

i Sequential lines

Stream bhuffer




Stride-Based Prefetching

* For each load, keep track of the last address accessed
by the load and a possibly consistent stride

* FSM detects consistent stride and issues prefetches
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Prefetching

* Hardware prefetching can be employed for any of the
cache levels

* It can introduce cache pollution — prefetched data is
often placed in a separate prefetch buffer to avoid
pollution — this buffer must be looked up in parallel
with the cache access

* Aggressive prefetching increases “coverage”, but leads
to a reduction Iin “accuracy” - wasted memory bandwidth

* Prefetches must be timely: they must be issued sufficiently
In advance to hide the latency, but not too early (to avoid
pollution and eviction before use)



Intel Montecito Cache
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Shared Vs. Private Caches in Multi-Core

* What are the pros/cons to a shared L2 cache?
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Shared Vs. Private Caches in Multi-Core

* Advantages of a shared cache:
" Space is dynamically allocated among cores
" No waste of space because of replication
" Potentially faster cache coherence (and easier to
locate data on a miss)

* Advantages of a private cache:
" small L2 - faster access time
" private bus to L2 - less contention
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UCA and NUCA

* The small-sized caches so far have all been uniform cache
access: the latency for any access is a constant, no matter
where data is found

* For a large multi-megabyte cache, it is expensive to limit

access time by the worst case delay: hence, non-uniform
cache architecture
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Large NUCA

Issues to be addressed for

Non-Uniform Cache Access:

* Mapping
* Migration
e Search

* Replication
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Shared NUCA Cache
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Memory Controller for off-chip access

A single tile composed
of a core, L1 caches, and
a bank (slice) of the
shared L2 cache

The cache controller
forwards address requests
to the appropriate L2 bank

and handles coherence
operations



Virtual Memory

* Processes deal with virtual memory — they have the
llusion that a very large address space is available to
them

* There is only a limited amount of physical memory that is
shared by all processes — a process places part of its
virtual memory in this physical memory and the rest is
stored on disk

* Thanks to locality, disk access is likely to be uncommon

* The hardware ensures that one process cannot access
the memory of a different process
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Virtual Memory and Page Tables
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Address Translation

* The virtual and physical memory are broken up into pages

8KB page size

o

virtual page page offset
number

Translated to phys
page number l

Physical address
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physical page  page offset
number

Physical memory
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Memory Hierarchy Properties

* A virtual memory page can be placed anywhere in physical
memory (fully-associative)

* Replacement is usually LRU (since the miss penalty is
huge, we can invest some effort to minimize misses)

* A page table (indexed by virtual page number) is used for
translating virtual to physical page number

* The memory-disk hierarchy can be either inclusive or
exclusive and the write policy is writeback
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TLB

* Since the number of pages is very high, the page table
capacity Is too large to fit on chip

* A translation lookaside buffer (TLB) caches the virtual
to physical page number translation for recent accesses

* ATLB miss reqguires us to access the page table, which
may not even be found in the cache — two expensive
memory look-ups to access one word of data!

* A large page size can increase the coverage of the TLB
and reduce the capacity of the page table, but also
Increases memory waste
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TLB and Cache

* |s the cache indexed with virtual or physical address?

» To index with a physical address, we will have to first
look up the TLB, then the cache = longer access time

» Multiple virtual addresses can map to the same
physical address — can we ensure that these
different virtual addresses will map to the same
location in cache? Else, there will be two different
copies of the same physical memory word

* Does the tag array store virtual or physical addresses?
» Since multiple virtual addresses can map to the same
physical address, a virtual tag comparison can flag a
miss even If the correct physical memory word is present
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TLB and Cache
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Virtually Indexed Caches

 24-bit virtual address, 4KB page size - 12 bits offset and
12 bits virtual page number

* To handle the example below, the cache must be designed to use only 12
index bits — for example, make the 64KB cache 16-way

* Page coloring can ensure that some bits of virtual and physical address match

abcdef abbdef

Virtually indexed
cache

<+ cdef

<+« Dpdef

Data cache that needs 16
index bits 64KB direct-mapped
or 128KB 2-way... 23




Thank you!
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