
Core 0

L1
D$

L1
I$

 L2 $

Core 1

L1
D$

L1
I$

 L2 $

Core 2

L1
D$

L1
I$

 L2 $

Core 3

L1
D$

L1
I$

 L2 $

Core 4

L1
D$

L1
I$

 L2 $

Core 5

L1
D$

L1
I$

 L2 $

Core 6

L1
D$

L1
I$

 L2 $

Core 7

L1
D$

L1
I$

 L2 $

Memory Controller for off-chip access

A single tile composed
of a core, L1 caches, and

a bank (slice) of the
shared L2 cache

The cache controller
forwards address requests
 to the appropriate L2 bank

and handles coherence
operations

Shared NUCA Cache

250P: Computer Systems
Architecture

Lecture 12: Virtual Memory, TLBs,
Intro to Cache-Coherence

Anton Burtsev
February, 2019

3

Virtual Memory

• Processes deal with virtual memory – they have the
 illusion that a very large address space is available to
 them

• There is only a limited amount of physical memory that is
 shared by all processes – a process places part of its
 virtual memory in this physical memory and the rest is
 stored on disk

• Thanks to locality, disk access is likely to be uncommon

• The hardware ensures that one process cannot access
 the memory of a different process

4

Virtual Memory and Page Tables

5

Address Translation

• The virtual and physical memory are broken up into pages

Virtual address

8KB page size

page offsetvirtual page
number

Translated to phys
page number

Physical memory

13

Physical address

page offsetphysical page
number

13

6

Memory Hierarchy Properties

• A virtual memory page can be placed anywhere in physical
 memory (fully-associative)

• Replacement is usually LRU (since the miss penalty is
 huge, we can invest some effort to minimize misses)

• A page table (indexed by virtual page number) is used for
 translating virtual to physical page number

• The memory-disk hierarchy can be either inclusive or
 exclusive and the write policy is writeback

7

TLB

• Since the number of pages is very high, the page table
 capacity is too large to fit on chip

• A translation lookaside buffer (TLB) caches the virtual
 to physical page number translation for recent accesses

• A TLB miss requires us to access the page table, which
 may not even be found in the cache – two expensive
 memory look-ups to access one word of data!

• A large page size can increase the coverage of the TLB
 and reduce the capacity of the page table, but also
 increases memory waste

8

TLB and Cache

• Is the cache indexed with virtual or physical address?
 To index with a physical address, we will have to first
 look up the TLB, then the cache  longer access time
 Multiple virtual addresses can map to the same
 physical address – can we ensure that these
 different virtual addresses will map to the same
 location in cache? Else, there will be two different
 copies of the same physical memory word

• Does the tag array store virtual or physical addresses?
 Since multiple virtual addresses can map to the same
 physical address, a virtual tag comparison can flag a
 miss even if the correct physical memory word is present

9

TLB and Cache

10

Virtually Indexed Caches

• 24-bit virtual address, 4KB page size  12 bits offset and
 12 bits virtual page number
• To handle the example below, the cache must be designed to use only 12
 index bits – for example, make the 64KB cache 16-way
• Page coloring can ensure that some bits of virtual and physical address match

abcdef abbdef

Page in physical
memory

Data cache that needs 16
index bits 64KB direct-mapped

or 128KB 2-way…

cdef

bdef

Virtually indexed
cache

Memory organization

12

Multiprocs -- Memory Organization - I

• Centralized shared-memory multiprocessor or
 Symmetric shared-memory multiprocessor (SMP)

• Multiple processors connected to a single centralized
 memory – since all processors see the same memory
 organization  uniform memory access (UMA)

• Shared-memory because all processors can access the
 entire memory address space

• Can centralized memory emerge as a bandwidth
 bottleneck? – not if you have large caches and employ
 fewer than a dozen processors

13

SMPs or Centralized Shared-Memory

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

14

Multiprocs -- Memory Organization - II

• For higher scalability, memory is distributed among
 processors  distributed memory multiprocessors

• If one processor can directly address the memory local
 to another processor, the address space is shared 
 distributed shared-memory (DSM) multiprocessor

• If memories are strictly local, we need messages to
 communicate data  cluster of computers or multicomputers

• Non-uniform memory architecture (NUMA) since local
 memory has lower latency than remote memory

15

Distributed Memory Multiprocessors

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

Cache-coherence

17

SMP/UMA/Centralized Memory Multiprocessor

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

18

SMPs

• Centralized main memory and many caches  many
 copies of the same data

• A system is cache coherent if a read returns the most
 recently written value for that word

Time Event Value of X in Cache-A Cache-B Memory
 0 - - 1
 1 CPU-A reads X 1 - 1
 2 CPU-B reads X 1 1 1
 3 CPU-A stores 0 in X 0 1 0

19

Cache Coherence

A memory system is coherent if:
• P writes to X; no other processor writes to X; P reads X
 and receives the value previously written by P

• P1 writes to X; no other processor writes to X; sufficient
 time elapses; P2 reads X and receives value written by P1

• Two writes to the same location by two processors are
 seen in the same order by all processors – write serialization

• The memory consistency model defines “time elapsed”
 before the effect of a processor is seen by others

20

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
 of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
 status of that block – all cache controllers monitor the
 shared bus so they can update the sharing status of the
 block, if necessary

 Write-invalidate: a processor gains exclusive access of
 a block before writing by invalidating all other copies
 Write-update: when a processor writes, it updates other
 shared copies of that block

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

