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Virtual Memory

• Processes deal with virtual memory – they have the
  illusion that a very large address space is available to
  them

• There is only a limited amount of physical memory that is
  shared by all processes – a process places part of its
  virtual memory in this physical memory and the rest is
  stored on disk

• Thanks to locality, disk access is likely to be uncommon

• The hardware ensures that one process cannot access
  the memory of a different process
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Virtual Memory and Page Tables
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Address Translation

• The virtual and physical memory are broken up into pages

Virtual address

8KB page size

page offsetvirtual page
number

Translated to phys 
page number

Physical memory

13

Physical address

page offsetphysical page
number

13
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Memory Hierarchy Properties

• A virtual memory page can be placed anywhere in physical
  memory (fully-associative)

• Replacement is usually LRU (since the miss penalty is
  huge, we can invest some effort to minimize misses)

• A page table (indexed by virtual page number) is used for
  translating virtual to physical page number

• The memory-disk hierarchy can be either inclusive or
  exclusive and the write policy is writeback
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TLB

• Since the number of pages is very high, the page table
  capacity is too large to fit on chip

• A translation lookaside buffer (TLB) caches the virtual
  to physical page number translation for recent accesses

• A TLB miss requires us to access the page table, which
  may not even be found in the cache – two expensive
  memory look-ups to access one word of data!

• A large page size can increase the coverage of the TLB
  and reduce the capacity of the page table, but also
  increases memory waste
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TLB and Cache

• Is the cache indexed with virtual or physical address?
 To index with a physical address, we will have to first
    look up the TLB, then the cache  longer access time
 Multiple virtual addresses can map to the same
    physical address – can we ensure that these
    different virtual addresses will map to the same
    location in cache? Else, there will be two different
    copies of the same physical memory word

• Does the tag array store virtual or physical addresses?
 Since multiple virtual addresses can map to the same
    physical address, a virtual tag comparison can flag a
    miss even if the correct physical memory word is present
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TLB and Cache
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Virtually Indexed Caches

• 24-bit virtual address, 4KB page size  12 bits offset and 
  12 bits virtual page number
• To handle the example below, the cache must be designed to use only 12
   index bits – for example, make the 64KB cache 16-way
• Page coloring can ensure that some bits of virtual and physical address match

abcdef abbdef

Page in physical
memory

Data cache that needs 16
index bits 64KB direct-mapped

or 128KB 2-way…

cdef

bdef

Virtually indexed
cache



Memory organization
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Multiprocs -- Memory Organization - I

• Centralized shared-memory multiprocessor   or
  Symmetric shared-memory multiprocessor (SMP)

• Multiple processors connected to a single centralized
  memory – since all processors see the same memory
  organization  uniform memory access (UMA)

• Shared-memory because all processors can access the
  entire memory address space

• Can centralized memory emerge as a bandwidth
  bottleneck? – not if you have large caches and employ
  fewer than a dozen processors
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SMPs or Centralized Shared-Memory

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System
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Multiprocs -- Memory Organization - II

• For higher scalability, memory is distributed among
  processors  distributed memory multiprocessors

• If one processor can directly address the memory local
  to another processor, the address space is shared 
  distributed shared-memory (DSM) multiprocessor

• If memories are strictly local, we need messages to
  communicate data  cluster of computers or multicomputers

• Non-uniform memory architecture (NUMA) since local
  memory has lower latency than remote memory
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Distributed Memory Multiprocessors

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network



Cache-coherence
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SMP/UMA/Centralized Memory Multiprocessor

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System
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SMPs

• Centralized main memory and many caches  many
  copies of the same data

• A system is cache coherent if a read returns the most
  recently written value for that word

Time       Event        Value of X in   Cache-A        Cache-B         Memory
  0                                                           -                    -                     1
  1       CPU-A reads X                           1                    -                     1
  2       CPU-B reads X                           1                    1                    1
  3       CPU-A stores 0 in X                    0                   1                    0
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Cache Coherence

A memory system is coherent if:
• P writes to X; no other processor writes to X; P reads X
  and receives the value previously written by P

• P1 writes to X; no other processor writes to X; sufficient
  time elapses; P2 reads X and receives value written by P1

• Two writes to the same location by two processors are
  seen in the same order by all processors – write serialization

• The memory consistency model defines “time elapsed”
  before the effect of a processor is seen by others
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Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
  of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
  status of that block – all cache controllers monitor the
  shared bus so they can update the sharing status of the
  block, if necessary

 Write-invalidate: a processor gains exclusive access of
    a block before writing by invalidating all other copies
 Write-update: when a processor writes, it updates other
    shared copies of that block



  

Thank you!
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