

250P: Computer Systems
Architecture

Lecture 14: Synchronization

Anton Burtsev
March, 2019

2

Coherence and Synchronization

• Topics: synchronization primitives (Sections 5.4-5.5)

3

Constructing Locks

• Applications have phases (consisting of many instructions)
 that must be executed atomically, without other parallel
 processes modifying the data

• A lock surrounding the data/code ensures that only one
 program can be in a critical section at a time

• The hardware must provide some basic primitives that
 allow us to construct locks with different properties

• Lock algorithms assume an underlying cache coherence
 mechanism – when a process updates a lock, other
 processes will eventually see the update

Race conditions

● Example:
● Disk driver maintains a list of outstanding requests
● Each process can add requests to the list

1 struct list {

2 int data;

3 struct list *next;

4 };

...

6 struct list *list = 0;

...

9 insert(int data)

10 {

11 struct list *l;

12

13 l = malloc(sizeof *l);

14 l->data = data;

15 l->next = list;

16 list = l;

17 }

List implementation
(no locks)

● List
● One data element
● Pointer to the next element

1 struct list {

2 int data;

3 struct list *next;

4 };

...

6 struct list *list = 0;

...

9 insert(int data)

10 {

11 struct list *l;

12

13 l = malloc(sizeof *l);

14 l->data = data;

15 l->next = list;

16 list = l;

17 }

List implementation
(no locks)

● Global head

1 struct list {

2 int data;

3 struct list *next;

4 };

...

6 struct list *list = 0;

...

9 insert(int data)

10 {

11 struct list *l;

12

13 l = malloc(sizeof *l);

14 l->data = data;

15 l->next = list;

16 list = l;

17 }

List implementation
(no locks)

● Insertion
● Allocate new list element

1 struct list {

2 int data;

3 struct list *next;

4 };

...

6 struct list *list = 0;

...

9 insert(int data)

10 {

11 struct list *l;

12

13 l = malloc(sizeof *l);

14 l->data = data;

15 l->next = list;

16 list = l;

17 }

List implementation
(no locks)

● Insertion
● Allocate new list element
● Save data into that element

1 struct list {

2 int data;

3 struct list *next;

4 };

...

6 struct list *list = 0;

...

9 insert(int data)

10 {

11 struct list *l;

12

13 l = malloc(sizeof *l);

14 l->data = data;

15 l->next = list;

16 list = l;

17 }

List implementation
(no locks)

● Insertion
● Allocate new list element
● Save data into that element
● Insert into the list

Now what happens when two CPUs access the
same list

Request queue (e.g.
pending disk requests)

● Linked list, list is pointer
to the first element

CPU1 allocates new
request

CPU2 allocates new
request

b

CPUs 1 and 2 update
next pointer

CPU1 updates head
pointer

CPU2 updates head
pointer

State after the race
(red element is lost)

Mutual exclusion

● Only one CPU can update list at a time

1 struct list {

2 int data;

3 struct list *next;

4 };

6 struct list *list = 0;

 struct lock listlock;

9 insert(int data)

10 {

11 struct list *l;

13 l = malloc(sizeof *l);

 acquire(&listlock);

14 l->data = data;

15 l->next = list;

16 list = l;

 release(&listlock);

17 }

List implementation
with locks

● Critical section

● How can we implement acquire()?

21 void

22 acquire(struct spinlock *lk)

23 {

24 for(;;) {

25 if(!lk->locked) {

26 lk->locked = 1;

27 break;

28 }

29 }

30 }

Spinlock

● Spin until lock is 0
● Set it to 1

21 void

22 acquire(struct spinlock *lk)

23 {

24 for(;;) {

25 if(!lk->locked) {

26 lk->locked = 1;

27 break;

28 }

29 }

30 }

Still incorrect

● Two CPUs can reach
line #25 at the same
time
● See not locked, and
● Acquire the lock

● Lines #25 and #26 need
to be atomic
● I.e. indivisible

23

Synchronization

• The simplest hardware primitive that greatly facilitates
 synchronization implementations (locks, barriers, etc.)
 is an atomic read-modify-write

• Atomic exchange: swap contents of register and memory

• Special case of atomic exchange: test & set: transfer
 memory location into register and write 1 into memory

• acquire: t&s register, location
 bnz register, acquire
 CS
 release: st location, #0

24

Caching Locks

• Spin lock: to acquire a lock, a process may enter an infinite
 loop that keeps attempting a read-modify till it succeeds

• If the lock is in memory, there is heavy bus traffic  other
 processes make little forward progress

• Locks can be cached:
 cache coherence ensures that a lock update is seen
 by other processors
 the process that acquires the lock in exclusive state
 gets to update the lock first
 spin on a local copy – the external bus sees little traffic

25

SMP/UMA/Centralized Memory Multiprocessor

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

26

Coherence Traffic for a Lock

• If every process spins on an exchange, every exchange
 instruction will attempt a write  many invalidates and
 the locked value keeps changing ownership

• Hence, each process keeps reading the lock value – a read
 does not generate coherence traffic and every process
 spins on its locally cached copy

• When the lock owner releases the lock by writing a 0, other
 copies are invalidated, each spinning process generates a
 read miss, acquires a new copy, sees the 0, attempts an
 exchange (requires acquiring the block in exclusive state so
 the write can happen), first process to acquire the block in
 exclusive state acquires the lock, others keep spinning

27

Test-and-Test-and-Set

• lock: test register, location
 bnz register, lock
 t&s register, location
 bnz register, lock
 CS
 st location, #0

28

Load-Linked and Store Conditional

• LL-SC is an implementation of atomic read-modify-write
 with very high flexibility

• LL: read a value and update a table indicating you have
 read this address, then perform any amount of computation

• SC: attempt to store a result into the same memory location,
 the store will succeed only if the table indicates that no
 other process attempted a store since the local LL (success
 only if the operation was “effectively” atomic)

• SC implementations do not generate bus traffic if the
 SC fails – hence, more efficient than test&test&set

29

Spin Lock with Low Coherence Traffic

lockit: LL R2, 0(R1) ; load linked, generates no coherence traffic
 BNEZ R2, lockit ; not available, keep spinning
 DADDUI R2, R0, #1 ; put value 1 in R2
 SC R2, 0(R1) ; store-conditional succeeds if no one
 ; updated the lock since the last LL
 BEQZ R2, lockit ; confirm that SC succeeded, else keep trying

• If there are i processes waiting for the lock, how many
 bus transactions happen?

30

Spin Lock with Low Coherence Traffic

lockit: LL R2, 0(R1) ; load linked, generates no coherence traffic
 BNEZ R2, lockit ; not available, keep spinning
 DADDUI R2, R0, #1 ; put value 1 in R2
 SC R2, 0(R1) ; store-conditional succeeds if no one
 ; updated the lock since the last LL
 BEQZ R2, lockit ; confirm that SC succeeded, else keep trying

• If there are i processes waiting for the lock, how many
 bus transactions happen?
 1 write by the releaser + i read-miss requests +
 i responses + 1 write by acquirer + 0 (i-1 failed SCs) +
 i-1 read-miss requests + i-1 responses

31

Further Reducing Bandwidth Needs

• Ticket lock: every arriving process atomically picks up a
 ticket and increments the ticket counter (with an LL-SC),
 the process then keeps checking the now-serving
 variable to see if its turn has arrived, after finishing its
 turn it increments the now-serving variable

•

struct spinlock_t {

 int current_ticket ;

 int next_ticket ;

}

void spin_lock (spinlock_t *lock)

{

 int t = atomic_fetch_and_inc (&lock -> next_ticket);

 while (t != lock -> current_ticket)

 ; /* spin */

}

void spin_unlock (spinlock_t *lock)

{

 lock -> current_ticket ++;

}

Ticket lock in Linux

What is really wrong with locks?

● Scalability

48-core AMD server

Exim collapse

Oprofile results

Exim collapse

● sys_open eventually calls:

Exim collapse

● sys_open eventually calls:

● spin_lock and spin_unlock use many more cycles than the
critical section

struct spinlock_t {

 int current_ticket ;

 int next_ticket ;

}

void spin_lock (spinlock_t *lock)

{

 int t = atomic_fetch_and_inc (&lock -> next_ticket);

 while (t != lock -> current_ticket)

 ; /* spin */

}

void spin_unlock (spinlock_t *lock)

{

 lock -> current_ticket ++;

}

Ticket lock in Linux

Spin lock implementation

Spin lock implementationAllocate a ticket

Spin lock implementationAllocate a ticket

Spin lock implementationAllocate a ticket

Spin lock implementationAllocate a ticket

120-420 cycles

Spin lock implementationUpdate the ticket value

Spin lock implementation
Bunch of cores are

spinning

Spin lock implementation

Broadcast message
(invalidate the value)

Spin lock implementation

Cores don't have the
value of current_ticket

Spin lock implementation

Re-read the value

Spin lock implementation

(120-420) * N/2 cycles

● In most architectures, the cache-coherence reads
are serialized (either by a shared bus or at the
cache line’s home or directory node)

● Thus completing them all takes time proportional
to the number of cores.

● The core that is next in line for the lock can expect
to receive its copy of the cache line midway
through this process.
● N/2

Atomic synchronization primitives
do not scale well

Atomic increment on 64 cores

What can we do about it?

Is it possible to build scalable spinlocks?

struct qnode {

 volatile void *next;

 volatile char locked;

};

typedef struct {

 struct qnode *v;

} mcslock_t;

arch_mcs_lock(mcslock_t *l, volatile struct qnode *mynode) {

 struct qnode *predecessor;

 mynode->next = NULL;

 predecessor = (struct qnode *)xchg((long *)&l->v, (long)mynode);

 if (predecessor) {

 mynode->locked = 1;

 barrier();

 predecessor->next = mynode;

 while (mynode->locked) ;

 }

}

MCS lock
(Mellor-Crummey and

M. L. Scott)

MCS lock

arch_mcs_lock(mcslock_t *l, volatile struct qnode *mynode) {

 struct qnode *predecessor;

 mynode->next = NULL;

 predecessor = (struct qnode *)xchg((long *)&l->v, (long)mynode);

 if (predecessor) {

 mynode->locked = 1;

 barrier();

 predecessor->next = mynode;

 while (mynode->locked) ;

 }

}

arch_mcs_unlock(mcslock_t *l, volatile struct qnode *mynode) {

 if (!mynode->next) {

 if (cmpxchg((long *)&l->v, (long)mynode, 0) == (long)mynode)

 return;

 while (!mynode->next) ;

 }

 ((struct qnode *)mynode->next)->locked = 0;

}

unlock

Why does this scale?

Ticket spinlock

● Remember O(N) re-fetch messages after
invalidation broadcast

arch_mcs_lock(mcslock_t *l, volatile struct qnode *mynode) {

 struct qnode *predecessor;

 mynode->next = NULL;

 predecessor = (struct qnode *)xchg((long *)&l->v, (long)mynode);

 if (predecessor) {

 mynode->locked = 1;

 barrier();

 predecessor->next = mynode;

 while (mynode->locked) ;

 }

}

arch_mcs_unlock(mcslock_t *l, volatile struct qnode *mynode) {

 if (!mynode->next) {

 if (cmpxchg((long *)&l->v, (long)mynode, 0) == (long)mynode)

 return;

 while (!mynode->next) ;

 }

 ((struct qnode *)mynode->next)->locked = 0;

}

One re-fetch message
after invalidation

struct qnode {

 volatile void *next;

 volatile char locked;

 char __pad[0] __attribute__((aligned(64)));

};

typedef struct {

 struct qnode *v __attribute__((aligned(64)));

} mcslock_t;

Cache line isolation

Exim: MCS vs ticket lock

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

