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Coherence and Synchronization

• Topics:  synchronization primitives (Sections 5.4-5.5)
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Constructing Locks

• Applications have phases (consisting of many instructions)
  that must be executed atomically, without other parallel
  processes modifying the data

• A lock surrounding the data/code ensures that only one
  program can be in a critical section at a time

• The hardware must provide some basic primitives that
  allow us to construct locks with different properties

• Lock algorithms assume an underlying cache coherence
  mechanism – when a process updates a lock, other
  processes will eventually see the update



  

Race conditions

● Example:
● Disk driver maintains a list of outstanding requests
● Each process can add requests to the list



  

1 struct list {

2   int data;

3   struct list *next;

4 };

...

6 struct list *list = 0;

...

9 insert(int data)

10 {

11   struct list *l;

12

13   l = malloc(sizeof *l);

14   l->data = data;

15   l->next = list;

16   list = l;

17 }

List implementation 
(no locks)

● List
● One data element
● Pointer to the next element



  

1 struct list {

2   int data;

3   struct list *next;

4 };

...

6 struct list *list = 0;

...

9 insert(int data)

10 {

11   struct list *l;

12

13   l = malloc(sizeof *l);

14   l->data = data;

15   l->next = list;

16   list = l;

17 }

List implementation 
(no locks)

● Global head



  

1 struct list {

2   int data;

3   struct list *next;

4 };

...

6 struct list *list = 0;

...

9 insert(int data)

10 {

11   struct list *l;

12

13   l = malloc(sizeof *l);

14   l->data = data;

15   l->next = list;

16   list = l;

17 }

List implementation 
(no locks)

● Insertion
● Allocate new list element



  

1 struct list {

2   int data;

3   struct list *next;

4 };

...

6 struct list *list = 0;

...

9 insert(int data)

10 {

11   struct list *l;

12

13   l = malloc(sizeof *l);

14   l->data = data;

15   l->next = list;

16   list = l;

17 }

List implementation 
(no locks)

● Insertion
● Allocate new list element
● Save data into that element



  

1 struct list {

2   int data;

3   struct list *next;

4 };

...

6 struct list *list = 0;

...

9 insert(int data)

10 {

11   struct list *l;

12

13   l = malloc(sizeof *l);

14   l->data = data;

15   l->next = list;

16   list = l;

17 }

List implementation 
(no locks)

● Insertion
● Allocate new list element
● Save data into that element
● Insert into the list



  

Now what happens when two CPUs access the 
same list



  

Request queue (e.g. 
pending disk requests)

● Linked list, list is pointer 
to the first element
 



  

CPU1 allocates new 
request



  

CPU2 allocates new 
request

b



  

CPUs 1 and 2 update 
next pointer



  

CPU1 updates head 
pointer



  

CPU2 updates head 
pointer



  

State after the race
(red element is lost)



  

Mutual exclusion

● Only one CPU can update list at a time



  

1 struct list {

2   int data;

3   struct list *next;

4 };

6 struct list *list = 0;

  struct lock listlock;

9 insert(int data)

10 {

11   struct list *l;

13   l = malloc(sizeof *l);

     acquire(&listlock);

14   l->data = data;

15   l->next = list;

16   list = l;

     release(&listlock);

17 }

List implementation 
with locks

● Critical section



  

● How can we implement acquire()?



  

21 void

22 acquire(struct spinlock *lk)

23 {

24   for(;;) {

25     if(!lk->locked) {

26       lk->locked = 1;

27       break;

28     }

29   }

30 }

Spinlock

● Spin until lock is 0
● Set it to 1



  

21 void

22 acquire(struct spinlock *lk)

23 {

24   for(;;) {

25     if(!lk->locked) {

26       lk->locked = 1;

27       break;

28     }

29   }

30 }

Still incorrect

● Two CPUs can reach 
line #25 at the same 
time
● See not locked, and
● Acquire the lock

● Lines #25 and #26 need 
to be atomic
● I.e. indivisible
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Synchronization

• The simplest hardware primitive that greatly facilitates
  synchronization implementations (locks, barriers, etc.)
  is an atomic read-modify-write

• Atomic exchange: swap contents of register and memory

• Special case of atomic exchange: test & set: transfer
  memory location into register and write 1 into memory

• acquire:     t&s    register, location
                  bnz   register, acquire
                  CS
  release:   st      location, #0
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Caching Locks

• Spin lock: to acquire a lock, a process may enter an infinite
  loop that keeps attempting a read-modify till it succeeds

• If the lock is in memory, there is heavy bus traffic  other
  processes make little forward progress

• Locks can be cached:
 cache coherence ensures that a lock update is seen
    by other processors
 the process that acquires the lock in exclusive state
    gets to update the lock first
 spin on a local copy – the external bus sees little traffic
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SMP/UMA/Centralized Memory Multiprocessor

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System
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Coherence Traffic for a Lock

• If every process spins on an exchange, every exchange
  instruction will attempt a write  many invalidates and
  the locked value keeps changing ownership

• Hence, each process keeps reading the lock value – a read
  does not generate coherence traffic and every process
  spins on its locally cached copy

• When the lock owner releases the lock by writing a 0, other
  copies are invalidated, each spinning process generates a
  read miss, acquires a new copy, sees the 0, attempts an
  exchange (requires acquiring the block in exclusive state so
  the write can happen), first process to acquire the block in
  exclusive state acquires the lock, others keep spinning



27

Test-and-Test-and-Set

• lock:    test   register, location
              bnz   register, lock
              t&s    register, location
              bnz   register, lock
              CS
              st      location, #0
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Load-Linked and Store Conditional

• LL-SC is an implementation of atomic read-modify-write
  with very high flexibility

• LL: read a value and update a table indicating you have
  read this address, then perform any amount of computation

• SC: attempt to store a result into the same memory location,
  the store will succeed only if the table indicates that no
  other process attempted a store since the local LL (success
  only if the operation was “effectively” atomic)

• SC implementations do not generate bus traffic if the
  SC fails – hence, more efficient than test&test&set
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Spin Lock with Low Coherence Traffic

lockit:    LL         R2, 0(R1)    ; load linked, generates no coherence traffic
             BNEZ    R2, lockit     ; not available, keep spinning
             DADDUI R2, R0, #1 ; put value 1 in R2
             SC         R2, 0(R1)   ; store-conditional succeeds if no one
                                              ; updated the lock since the last LL
             BEQZ    R2, lockit    ; confirm that SC succeeded, else keep trying

• If there are i processes waiting for the lock, how many
  bus transactions happen?
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Spin Lock with Low Coherence Traffic

lockit:    LL         R2, 0(R1)    ; load linked, generates no coherence traffic
             BNEZ    R2, lockit     ; not available, keep spinning
             DADDUI R2, R0, #1 ; put value 1 in R2
             SC         R2, 0(R1)   ; store-conditional succeeds if no one
                                              ; updated the lock since the last LL
             BEQZ    R2, lockit    ; confirm that SC succeeded, else keep trying

• If there are i processes waiting for the lock, how many
  bus transactions happen?
    1 write by the releaser  +  i read-miss requests  +
    i  responses  +  1 write by acquirer  +  0 (i-1 failed SCs)  +
    i-1 read-miss requests + i-1 responses
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Further Reducing Bandwidth Needs

• Ticket lock: every arriving process atomically picks up a
  ticket and increments the ticket counter (with an LL-SC),
  the process then keeps checking the now-serving
  variable to see if its turn has arrived, after finishing its
  turn it increments the now-serving variable

•



  

struct spinlock_t {

  int current_ticket ;

  int next_ticket ;

}

void spin_lock ( spinlock_t *lock)

{

  int t = atomic_fetch_and_inc (&lock -> next_ticket );

  while (t != lock -> current_ticket )

  ; /* spin */

}

void spin_unlock ( spinlock_t *lock)

{

  lock -> current_ticket ++;

}

Ticket lock in Linux



  

What is really wrong with locks?

● Scalability



  

48-core AMD server



  

Exim collapse



  

Oprofile results



  

Exim collapse

● sys_open eventually calls:



  

Exim collapse

● sys_open eventually calls:

● spin_lock and spin_unlock use many more cycles than the 
critical section



  

struct spinlock_t {

  int current_ticket ;

  int next_ticket ;

}

void spin_lock ( spinlock_t *lock)

{

  int t = atomic_fetch_and_inc (&lock -> next_ticket );

  while (t != lock -> current_ticket )

  ; /* spin */

}

void spin_unlock ( spinlock_t *lock)

{

  lock -> current_ticket ++;

}

Ticket lock in Linux



  

Spin lock implementation



  

Spin lock implementationAllocate a ticket



  

Spin lock implementationAllocate a ticket



  

Spin lock implementationAllocate a ticket



  

Spin lock implementationAllocate a ticket

120-420  cycles



  

Spin lock implementationUpdate the ticket value



  

Spin lock implementation
Bunch of cores are 

spinning



  

Spin lock implementation

Broadcast message
(invalidate the value)



  

Spin lock implementation

Cores don't have the 
value of current_ticket



  

Spin lock implementation

Re-read the value



  

Spin lock implementation

(120-420) * N/2 cycles



  

● In most architectures, the cache-coherence reads 
are serialized (either by a shared bus or at the 
cache line’s home or directory node)

● Thus completing them all takes time proportional 
to the number of cores. 

● The core that is next in line for the lock can expect 
to receive its copy of the cache line midway 
through this process.
● N/2



  

Atomic synchronization primitives
do not scale well



  

Atomic increment on 64 cores



  

What can we do about it?



  

Is it possible to build scalable spinlocks? 



  

struct qnode {

        volatile void *next;

        volatile char locked;

};

typedef struct {

        struct qnode *v;

} mcslock_t;

arch_mcs_lock(mcslock_t *l, volatile struct qnode *mynode) {

        struct qnode *predecessor;

        mynode->next = NULL;

        predecessor = (struct qnode *)xchg((long *)&l->v, (long)mynode);

        if (predecessor) {

                mynode->locked = 1;

                barrier();

                predecessor->next = mynode;

                while (mynode->locked) ;

        }

}

MCS lock
(Mellor-Crummey and 

M. L. Scott)



  

MCS lock



  

arch_mcs_lock(mcslock_t *l, volatile struct qnode *mynode) {

        struct qnode *predecessor;

        mynode->next = NULL;

        predecessor = (struct qnode *)xchg((long *)&l->v, (long)mynode);

        if (predecessor) {

                mynode->locked = 1;

                barrier();

                predecessor->next = mynode;

                while (mynode->locked) ;

        }

}

arch_mcs_unlock(mcslock_t *l, volatile struct qnode *mynode) {

        if (!mynode->next) {

                if (cmpxchg((long *)&l->v, (long)mynode, 0) == (long)mynode)

                        return;

                while (!mynode->next) ;

        }

        ((struct qnode *)mynode->next)->locked = 0;

}

unlock



  

Why does this scale? 



  

Ticket spinlock

● Remember O(N) re-fetch messages after 
invalidation broadcast



  

arch_mcs_lock(mcslock_t *l, volatile struct qnode *mynode) {

        struct qnode *predecessor;

        mynode->next = NULL;

        predecessor = (struct qnode *)xchg((long *)&l->v, (long)mynode);

        if (predecessor) {

                mynode->locked = 1;

                barrier();

                predecessor->next = mynode;

                while (mynode->locked) ;

        }

}

arch_mcs_unlock(mcslock_t *l, volatile struct qnode *mynode) {

        if (!mynode->next) {

                if (cmpxchg((long *)&l->v, (long)mynode, 0) == (long)mynode)

                        return;

                while (!mynode->next) ;

        }

        ((struct qnode *)mynode->next)->locked = 0;

}

One re-fetch message 
after invalidation 



  

struct qnode {

        volatile void *next;

        volatile char locked;

        char __pad[0] __attribute__((aligned(64)));

};

typedef struct {

        struct qnode *v __attribute__((aligned(64)));

} mcslock_t;

Cache line isolation



  

Exim: MCS vs ticket lock



  

Thank you!
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