| ecture 14: Virtualization

Anton Burtsev
November, 2021

Traditional operating system

Virtual machines

Kernel

Kernel

A bit of history

* Virtual machines were popular in 60s-70s

* Share resources of mainframe computers
[Goldberg 1974]

* Run multiple single-user operating systems
* |Interest Is lost by 80s-90s

* Development of multi-user OS
* Rapid drop in hardware cost

* Hardware support for virtualizaiton was lost

What Is the
problem?

* Hardware Is not
designed to be
multiplexed

Disk
Driver

| oss of Isolation

_4

t

J
12
[5]

Disk
Driver

Virtual machine

Efficient duplicate
of a real machine

* Compatiblility
e Performance
e |solation

ooooooo
=] =]
(=] =]
(=] =]
(=] =]
=] =]
=] =]
=1 =]

Trap and emulate

Emulate

DDDDDDD

What needs to be emulated?

CPU and memory

* Register state
* Memory state

Memory management unit
* Page tables, segments
Platform

* Interrupt controller, timer, buses
BIOS

Peripheral devices

* Disk, network interface, serial line

X86 IS not virtualizable

 Some Instructions (sensitive) read or update the
state of virtual machine and don't trap (non-

privileged)

* 17 sensitive, non-privileged instructions [Robin et al
2000]

X86 Is not virtualizable (I1)

Group Instructions

Access to interrupt flag pushf, popf, iret
Visibility into segment descriptors lar, verr, verw, 1sl
Segment manipulation instructions | pop <seg>, push <seg>, mov <seg>
Read-only access to privileged state | sgdt, sldt, sidt, smsw
Interrupt and gate instructions

fcall, longjump, retfar, str, int <n>

 Examples

* popf doesn't update interrupt flag (IF)
- Impossible to detect when guest disables interrupts

* push Y%cs can read code segment selector (%cs)
and learn its CPL

- Guest gets confused

Solution space

e Parse the instruction stream and detect all sensitive
Instructions dynamically

* Interpretation (BOCHS, JSLinux)
* Binary translation (VMWare, QEMU)

* Change the operating system
* Paravirtualization (Xen, L4, Denali, Hyper-V)
* Make all sensitive instructions privileged!

* Hardware supported virtualization (Xen, KVM, VMWare)
~ Intel VT-x, AMD SVM

Basic blocks of a
virtual machine monitor:
QEMU example

Interpreted execution:
BOCHS, JSLinux

v

HANDLE ASYNCHRONOUS
EXTERNAL EVENTS

PREFETCH

Instruction
cache
lookup

What does it mean to
run guest?

e Bochs internal

emulation loop

FETCH AND DECODE
INSTRUCTION

INSTRUMENT INSTRUCTION
(when needed)

e Similar to non-
pipelined CPU like

RESOLVE MEMORY REFERENCES
(ADDRESS GENERATION UNIT)

'

ACCESS MEMORY AND
EXECUTE

l

COMMIT

8086

* How many cycles per
Instruction?

Binary translation:
VMWare/QEMU

int isPrime(int a) {
for (int 1 = 2; i < a; i++) {

if (a % 1 == 0) return O0;
}
return 1;
}
isPrime: mov necx, fedi ; fecx = Yedi (a)
mov sesi, 32 i =2
cmp nesl, fecx @ ds i > a?
jge prime ; jump 1if yes
nexti: mov Yaax, Jecx : Bat Jeax = a
cdg ; sign-extend
idiv Jesi - W Al |
test %edx, Jledx ; is remainder zero?
J= notPrime ; jump if yes
inc Jesi ;o oi++
cmp %esi. Jecx ; is 1 >= a?
jl nexti ; jump 1if no
prime: mov heax. 91 : return value in %eax
ret
notPrime: xor %eax, Jleax ; Yeax = 0

ret

isPrime: mov %ecx, %edi %hecx = Yedi (a)
mov Yesi, 32 i=2
cmp %esi, Yecx is i >= a?
jge prime jump if yes
nexti: mov %eax, Yecx set J%eax = a
cdq sign-extend
idiv Yesi a 'k i
test %edx, Yedx is remainder zero?
jz notPrime jump if yes
inc fesi i++
cmp hesi, Jecx ; is i >= a?
jl nexti jump if no
prime: mov Yeax. $1 return value in Jeax
ret
notPrime: xor %eax, Yeax Jeax = 0
ret
isPrime’ : mov %ecx, jedi : IDENT
mov %esi, $2
cmp %esi, %ecx
jge [takenAddr] ; JCC
jmp [fallthrAddr]

isPrime’: *mov hecx, %hedi : IDENT

mov %esi, $2

cmp hesi, %ecx

jge [takenAddr] ; JCC

+ fall-thru into next CCF

nerti*s *MOV Yeax, lecx : IDENT

cdq

idiv Yesi

test Yedx, %edx

J= notPrime’ ; JCC
: fall-thru into next CCF

*inc hesi ; IDENT

cmp Yesi ., Jacx

Ji nexti’ s JCG

jmp [fallthrAddr3]
notPrime’: *Xxor heax, %eax : IDENT

pop %4rit : RET

mov 4gs:0xff39eb8(Y%rip), %rcx ; spill Yrcx
movzx jecx, %4rilib
jmp %gs:0xfc7dde0 (8*%rcx)

Interpreted execution revisited:
Bochs

HANDLE ASYHNCHRONOUS
EXTERMAL EVENTS

-

¥

PREFETCH

!

r

Instruction trace cache

* How to make this loop

FE

HIT

TCH AND DECODE
INSTRUCTION

faster?

COMMIT TRACE

Y

INSTRUMEMNT INSTRUCTION
{when needed)

F 3

F 3

-

RESOLVE MEMORY REFERENCES
{ADDRESS GENERATION UNIT)

L

ACCESS MEMORY AND
EXECUTE

I

COMMIT
ADVANCE TO NEXT INSTRUCTION

!

HANDLE ASYHNCHRONOUS
EXTERMAL EVENTS

d of the
trace?

HANDLE ASYHNCHRONOUS
EXTERMAL EVENTS

PREFETCH

Instruction trace cache

* 50% of time In the main loop

b
FETCH AND DECODE

INSTRUCTION

Store
trace

* Fetch, decode, dispatch

COMMIT TRACE

* Trace cache (Bochs v2.3.6)

INSTRUMENT INSTRUCTION .

{when needed)

-

RESOLVE MEMORY REFERENCES
{ADDRESS GENERATION UNIT)

ACCESS MEMORY AND
EXECUTE

I

COMMIT
ADVANCE TO NEXT INSTRUCTION

!

HANDLE ASYHNCHRONOUS
EXTERMAL EVENTS

YES d of the MO
trace?

 Hardware idea (Pentium 4)

* Trace of up to 16 instructions
(32K entries)

e 20% speedup

void BX CPU C::SUB_EdGd (bxInstruction c¢ *1)

{

Improve branch prediction

Bit32u op2 32, opl 32, diff 32;

op2 32 = BX READ 32BIT REG(i->nnn()):;

if (i->modCO()) { // reg/reg format

TP S —"Bx%X" ~ 32BIT REG(i->rm());
diff 32 = opl 32 — _op2 32

BX WRITE 32BIT REGZ (i->rm(), diff 32);

else { // mem/reg format
read RMW virtual dword(i->seg(),
RMAddr (1), &opl 32);

r

Writg_RMW_virEual_dwora(diff_32);

SET LAZY FLAGS SUB32 (opl 32, op2 32,
diff 32);

e 20 cycles
penalty on
Core 2 Duo

Improve branch prediction

* Split handlers to avoid conditional logic
* Decide the handler at decode time (15% speedup)

Resolve memory references
without misprediction

* Bochs v2.3.5 has 30 possible branch targets for
the effective address computation

* Effective Addr = (Base + Index*Scale + Displacement)
mod (27AddrSize)

* €.0. Effective Addr = Base, Effective Addr = Displacement
* 100% chance of misprediction
* Two technigues to improve prediction:

* Reduce the number of targets: leave only 2 forms
* Replicate indirect branch point

* 40% speedup

Time to boot Windows

1000 MHz 2533 MHz 2666 MHz
Pentium [II Pentium 4 Core 2 Duo
Bochs 882 595 180
235
Bochs 609 533 157
2.3.6
Bochs 457 236 81
2.3.7

Cycle costs

Bochs 2.3.5 Bochs 2.3.7 QEMU 0.9.0
Register move 43 15 6
(MOV, MOVSX)
Register arithmetic 64 25 6
(ADD, SBB)
Floating point 1054 351 27
multiply
Memory store of 99 59 5
constant
Pairs of memory 193 98 14
load and store
operations
Non-atomic read- 112 75 10
modify-write
Indirect call 190 109 197
through guest
EAX register
VirtualProtect 126952 63476 22593
system call
Page fault and 8886606 380857 156823
handler
Best case peak 62 177 444

guest execution
rate in MIPS

Paravirtualization:
Xen

Full virtualization

 Complete illusion of
physical hardware

* Trap all sensitive
Instructions

 Example: page table
update

Hypervisor

Full virtualization

 Complete illusion of
physical hardware

* Trap all sensitive
Instructions

 Example: page table
update

\ Hypervisor

Full virtualization

 Complete illusion of
physical hardware

* Trap all sensitive
Instructions

 Example: page table
update

Hypervisor

Performance problems

* Traps are slow
* Binary translation is faster

e FOor some events

Hypervisor

Paravirtualization

 No Illusion of hardware

* Instead: paravirtualized interface

* Explicit hypervisor calls to update sensitive state
- Page tables, interrupt flag

* But Guest OS needs porting
* Applications run natively in Ring 3

Paravirtualization

iiervisor

§
o
o

Hardware support for virtualization:
KVM

Basic idea

Guest instruction stream

e

/ VM Exit
e

New mode of operation:VMX root

* VMX root operation
* 4 privilege levels
* VMX non-root operation

* 4 privilege levels as well, but unable to invoke
VMX root instructions

* Guest runs until it performs exception causing it
to exit

 Rich set of exit events
e Guest state and exit reason are stored in VMCS

Virtual machine control structure
(VMCS)

e Guest State

e Loaded on entries
e Saved on exits

e Host State

e Saved on entries
e Loaded on exits

e Control fields

 Execution control, exits control, entries control

Guest state

* Register state

* Non-register state

* Activity state:

- active

- Inactive (HLT, Shutdown, wait for Startup IPI
Interprocessor interrupt))

* Interruptibility state

Host state

* Only register state
* ALU registers,
* also:

* Base page table address (CR3)
* Segment selectors

* Global descriptors table

* |nterrupt descriptors table

VM-execution controls

(asynchronous events control)

External interrupts (maskable or IRQs) cause
exits(yes/no)

If not, then they delivered through guest

IDT

Bit 31 Bit O

/

NMI cause exits (yes/no)
If not, then they are delivered normally through
guest IDT (descriptor 2)

Reserved

VM-execution controls

(synchronous events control, not all reasons are shown)

Activate I/O bitmaps
HLT

PAUSE

Bit 31 Bit O

e [N W

:

MONITOR
INVLPG

Unconditional I/O

Exception bitmap

(one for each of 32 1A-32 exceptions)

* |A-32 defines 32 exception vectors (interrupts
0-31)

* Each of them is configured to cause or not
VM-exit

Bit 31 Bit O

14 — page fault

KVM

Nested page tables

0
paged by gCR3
Guest Virtual
gCR3 —
paged_b hCR3\ \ < — Translation can be cached in TLB
\N\\ '
h%\ \ / VMM . Host Virtual
0 \ e — = paged by CR3
v
hPT] [gPT Host Physical P;I'

' CR3 used by VMM

VA

Vv

VA[47:39] §

VA[29:21] L,
4‘@"‘ (PD) ~ 1

2MB

Page table lookup

512GB
. ________

VA[38:30] L,

1GB & "[(PDP) []

I-- ----- -J

VA[20:12] y L,
‘———*é*’(PT)'1
|

4KB

A[11:0] |

———®-» PA

L4 PA
PML4

* 4-level page table

gL,

gL;

gL,

gPA

Nested page table lookup

gVA

gVA[20:12]

gCR3

1
avAL7:39] & GPA ('L, SPASPASPA SPA

Nested page table

]
1

= I @ e e 9

nCR3 nL, nL, nL,

1
gVA[11:0] | ¥ nL,
2 ()3

nL, Value G

a|qe} abed)sano

oLy [OPA
5 I
1
|
gl; |
10 [
1
al, L
15 |]
1
|
alL,
20 [
I —
1
-l
> SPA

Efficient I/O

Where Is the bottleneck

* What is the bottleneck in case of
virtualization?
* CPU?

— CPU bound workloads execute natively on the real
CPU

— Sometimes JIT compilation (binary translation makes
them even faster [Dynamo]

* Everything what is inside VM is fast!

* What Is the most frequent operation
disturbing execution of VM?

* Device I/O!
* Disk, Network, Graphics

Virtual devices In Xen

Virtual devices In Xen

52

Virtual devices In Xen

53

Virtual devices In Xen

I

54

Virtual devices In Xen

95

How to make the |I/O fast?

* Take Into account specifics of the device-
driver communication

* Bulk
— Large packets (512B — 4K)

* Session oriented

— Connection Is established once (during boot)

— No short IPCs, like function calls

— Costs of establishing an IPC channel are irrelevant
* Throughput oriented

— Devices have high delays anyway

* Asynchronous

— Again, no function calls, devices are already
asynchronous

Shared rings and events

Shared page with
a ring buffer

FrontEnd

Shared rings

—™ Shared: <
req_prod = =~ g
, ~ = [~ rsp_prod)
/ /
/ , /
- I /
Receiver: f .. Sender:
e 1| HEENE i i
nr_ents = 256 I ass . Unconsumed requests nr ents = 256
— *shared I‘ *shared

I

\ . Unconsumed responses

.]
/
7’

N\
~

Shared rings

> Shared: <
req_prod = =~ g
s = [~ rs rod
, PLP)
/ /
/ , ’
: / /
Receiver: | (\ Sender:
rsp_prod pvt i ~— req_prod_pvt
inaswedtanN | | | | [W[W rsp_cons
nr_ents = 256 I ass . Unconsumed requests nr ents = 256
— *shared I‘ *shared

I

\ . Unconsumed responses

.]
/
7’

N\
~

Shared rings

™ Shared: -
. B
p P)
/ ¥/
7/

7\

Receiver:

rsp_prod pvt

req_cons

nr_ents = 256
— *shared

o 7Y
EEEEEED

255 . Unconsumed requests

I

Unconsumed responses

N\
~

,‘..--.

N

Add requests:
req prod<--req prod pvt

Sender:

— req_prod pvt

rsp_cons

nr ents = 256

*shared

__——_ ™| Shared: <

Shared rings

Check requests:
req _cons != req prod

[7
E /
Receiver: f
rsp_prod pvt f
req_cons I
nr_ents = 25

— *shared

\

/\-‘V
0 1 i
255 . Unconsumed requests

254 .
>

req_prod = =~
~ rsp_prod 1
/1
77
\

y

Unconsumed responses

~

,‘..--.

N

Add requests:
req prod<--req prod pvt

Sender:
— req_prod pvt
rsp_cons

nr ents = 256
*shared

Where Is a performance bottleneck
here?

Shared: <
req prod = ~|_ __
Check requests: = I~ rsp_prod) Add requests:
req_cons != req_prod //' req prod<--req prod pvt
II e ‘/ [3§
. /
Receiver: . ’\'*(\ Sender:
rsp_prod pvt

0 1 -
el I - . . - i req prod pvt

rsp cons
nr_ents = 25 I s . Unconsumed requests nr_e—nts = 256
— *shared 254 . *shared
\
\
\
|

). Unconsumed responses

\

N\
~

,‘.....

Eliminate cache thrashing

Check requests:

req cons = req prod

req_cons + 1l '= NIL

| /

L [
Receiver: f

rsp_prod pvt f

req_cons I
nr_ents = 25
— *shared
\

\

\

|

\

0 1
[)) -

255 . Unconsumed requests

2M.III
>

—™ Shared: -

— e N Add requests:
\ —req prod<--req prod pvt—
I req prod pvt + 1 = NIL

WO\

Unconsumed responses

Sender:
— req_prod pvt
rsp_cons
nr ents = 256
*shared

-/ N I I I

~

/
7’

GPUs

* Sending frames from the framebuffer
* No hardware acceleration
* Too slow

* OpenGL/DirectX level virtualization
* Send high-level OpenGL commands over rings

* OpenGL operations will be executed on the real
GPU

Devices supporting virtualization

|

References

* A Comparison of Software and Hardware
Technigues for x86 Virtualization. Keith Adams, Ole
Agesen, ASPLOS'06

* Bringing Virtualization to the x86 Architecture with
the Original VMware Workstation. Edouard Bugnion,
Scott Devine, Mendel Rosenblum, Jeremy
Sugerman, Edward Y. Wang, ACM TCS'12.

* Virtualization Without Direct Execution or Jitting:
Designing a Portable Virtual Machine Infrastructure.
Darek Mihocka, Stanislav Shwartsman, ISCA-35.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Virtual devices in Xen
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	How to make the I/O fast?
	Shared rings and events
	Shared rings
	Slide 59
	Slide 60
	Slide 61
	Where is a performance bug here?
	Eliminate cache thrashing
	GPUs
	Devices supporting virtualization
	Slide 66

