

CS5460/6460: Operating Systems

Lecture 4: Hardware interface

Anton Burtsev
January, 2014

Registers

General registers

● EAX — Accumulator for operands and results data
● EBX — Pointer to data in the DS segment
● ECX — Counter for string and loop operations
● EDX — I/O pointer
● ESI — Pointer to data in the segment pointed to by the DS

register; source pointer for string operations
● EDI — Pointer to data (or destination) in the segment pointed to

by the ES register; destination pointer for string operations
● ESP — Stack pointer (in the SS segment)
● EBP — Pointer to data on the stack (in the SS segment)

Address translation

Segmentation

Logical address

● Segment selector (16 bit) + offset (32 bit)

Segment descriptors
● Base address

● 0 – 4 GB

● Limit (size)
● 0 – 4 GB

● Access rights
● Executable, readable, writable
● Privilege level (0 - 3)

Segment descriptors

Segment registers

● Hold 16 bit segment selectors
● Pointers into a special table
● Global or local descriptor table

● Segments are associated with one of three
types of storage
● Code
● Data
● Stack

Code segment

● Code
● CS register
● EIP is an offset inside the segment stored in CS

● Can only be changed with
● procedure calls,
● interrupt handling, or
● task switching

Data segment

● Data
● DS, ES, FS, GS
● 4 possible data segments can be used at the same

time

Stack segment

● Stack
● SS

● Can be loaded explicitly
● OS can set up multiple stacks
● Of course, only one is accessible at a time

Flat model

● Hide segmentation
mechanism

● But allows access to
nonexistent memory

Protected flat

Multi-Segment

Stack

Stack

● SS
● Specifies stack segment

● ESP
● Contains the address of the data that would be

removed from the stack

● PUSH/POP
● Insert/remove data on the stack
● Subtract/add 4 to ESP

Example: PUSH

Example: POP

Setting up stack

● Create a stack descriptor
● Base, limit, access rights

● Load stack selector into SS register
● MOV, POP, or LSS

● Load the stack pointer into ESP
● MOV, POP, or LSS

Call/return

● Stack is used to implement function invocations
● CALL

● Makes an unconditional jump to a subprogram and
pushes the address of the next instruction on the
stack

● RET
● Pops off an address and jumps to that address

Stack bottom pointer

● Initially parameter is
● [ESP + 4]

● Later as the function
pushes things on the
stack it changes, e.g.
● [ESP + 8]

● Use dedicated
register EBP

Prologue/epilogue

subprogram_label:
 push ebp ; save original EBP value on stack
 mov ebp, esp ; new EBP = ESP
; subprogram code
 pop ebp ; restore original EBP value
 ret

● Example invocation

 push dword 1 ; pass 1 as parameter
 call fun
 add esp, 4 ; remove parameter from stack

Calling conventions

● Goal: reentrant programs
● Conventions differ from compiler, optimizations, etc.

● Call/return are used for function invocations
● Parameters passed on the stack

● Pushed onto the stack before the CALL instruction

Local variables

● Stored right after the saved EBP value in the stack
● Allocated by subtracting the number of bytes required

from ESP
subprogram_label:
 push ebp ; save original EBP value on stack
 mov ebp, esp ; new EBP = ESP
 sub esp, LOCAL_BYTES ; = # bytes needed by locals
; subprogram code
 mov esp, ebp ; deallocate locals
 pop ebp ; restore original EBP value
 ret

Parameter passing

● Registers
● On the stack
● Through memory

● Pass a pointer to the parameter list in one of the
registers

Saving state

● Processor doesn't save registers
● General purpose, segment, flags

● Calling convention is needed
● Agreement on what gets saved by a callee and

caller

Interrupts

INT X

● Transfers control to the handler number X in a
special table
● Interrupt descriptor table

● IDT can be anywhere in the linear address
space
● Located with the IDTR register

Interrupt descriptor

Interrupt descriptor

Interrupt descriptor

1.check that CPL <= DPL in the descriptor (but only if
INT instruction).

2.save ESP and SS in a CPU-internal register (but
only if target segment selector's PL < CPL).

3.load SS and ESP from TSS ("")

4.push user SS ("")

5.push user ESP ("")

6.push user EFLAGS

7.push user CS

8.push user EIP

9.clear some EFLAGS bits

10.set CS and EIP from IDT descriptor's segment
selector and offset

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

