CS5460/6460: Operating Systems

Lecture 4: Hardware interface

Anton Burtsev January, 2014

Registers

General-Purpose Registers

31	16	15 8	3 7	0	16-bit	32-bit
		АН	AL		AX	EAX
		ВН	BL		ВХ	EBX
		CH	CL		CX	ECX
		DH	DL		DX	EDX
		BP				EBP
		SI				ESI
		DI				EDI
		SP				ESP

General registers

- EAX Accumulator for operands and results data
- EBX Pointer to data in the DS segment
- ECX Counter for string and loop operations
- EDX I/O pointer
- ESI Pointer to data in the segment pointed to by the DS register; source pointer for string operations
- EDI Pointer to data (or destination) in the segment pointed to by the ES register; destination pointer for string operations
- ESP Stack pointer (in the SS segment)
- EBP Pointer to data on the stack (in the SS segment)

Address translation

Segmentation

Logical address

Segment selector (16 bit) + offset (32 bit)

Segment descriptors

- Base address
 - 0 − 4 GB
- Limit (size)
 - 0 − 4 GB

- Access rights
 - Executable, readable, writable
 - Privilege level (0 3)

Segment descriptors


```
— 64-bit code segment (IA-32e mode only)
```

AVL — Available for use by system software

BASE — Segment base address

D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

DPL — Descriptor privilege level

G — Granularity

LIMIT — Segment Limit

P — Segment present

S — Descriptor type (0 = system; 1 = code or data)

TYPE — Segment type

Segment registers

- Hold 16 bit segment selectors
 - Pointers into a special table
 - Global or local descriptor table
- Segments are associated with one of three types of storage
 - Code
 - Data
 - Stack

Code segment

- Code
 - CS register
 - EIP is an offset inside the segment stored in CS
- Can only be changed with
 - procedure calls,
 - interrupt handling, or
 - task switching

Data segment

- Data
 - DS, ES, FS, GS
 - 4 possible data segments can be used at the same time

Stack segment

- Stack
 - SS
- Can be loaded explicitly
 - OS can set up multiple stacks
 - Of course, only one is accessible at a time

Flat model

 But allows access to nonexistent memory

Protected flat

Multi-Segment

Stack

Stack

- SS
 - Specifies stack segment
- ESP
 - Contains the address of the data that would be removed from the stack
- PUSH/POP
 - Insert/remove data on the stack
 - Subtract/add 4 to ESP

Example: PUSH

Example: POP

Setting up stack

- Create a stack descriptor
 - Base, limit, access rights
- Load stack selector into SS register
 - MOV, POP, or LSS
- Load the stack pointer into ESP
 - MOV, POP, or LSS

Call/return

- Stack is used to implement function invocations
- CALL
 - Makes an unconditional jump to a subprogram and pushes the address of the next instruction on the stack
- RET
 - Pops off an address and jumps to that address

Stack bottom pointer

Initially parameter is

• [ESP + 4]

Later as the function pushes things on the stack it changes, e.g.

- [ESP + 8]
- Use dedicated register EBP

Prologue/epilogue

Example invocation

```
push dword 1 ; pass 1 as parameter call fun add esp, 4 ; remove parameter from stack
```

Calling conventions

- Goal: reentrant programs
 - Conventions differ from compiler, optimizations, etc.
- Call/return are used for function invocations
- Parameters passed on the stack
 - Pushed onto the stack before the CALL instruction

Local variables

- Stored right after the saved EBP value in the stack
- Allocated by subtracting the number of bytes required from ESP

Parameter passing

- Registers
- On the stack
- Through memory
 - Pass a pointer to the parameter list in one of the registers

Saving state

- Processor doesn't save registers
 - General purpose, segment, flags
- Calling convention is needed
 - Agreement on what gets saved by a callee and caller

Interrupts

INT X

- Transfers control to the handler number X in a special table
 - Interrupt descriptor table
- IDT can be anywhere in the linear address space
 - Located with the IDTR register

IDTR Register

Interrupt descriptor

Interrupt descriptor

Interrupt descriptor

Stack Usage with No Privilege-Level Change

Interrupted Procedure's and Handler's Stack

Stack Usage with Privilege-Level Change

- 1.check that CPL <= DPL in the descriptor (but only if INT instruction).
- 2.save ESP and SS in a CPU-internal register (but only if target segment selector's PL < CPL).
- 3.load SS and ESP from TSS ("")
- 4.push user SS ("")
- 5.push user ESP ("")
- 6.push user EFLAGS
- 7.push user CS
- 8.push user EIP
- 9.clear some EFLAGS bits
- 10.set CS and EIP from IDT descriptor's segment selector and offset