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Race conditions

● Disk driver maintains a list of outstanding 
requests

● Each process can add requests to the list



  

1 struct list {

2   int data;

3   struct list *next;

4 };

...

6 struct list *list = 0;

...

9 insert(int data)

10 {

11   struct list *l;

12

13   l = malloc(sizeof *l);

14   l->data = data;

15   l->next = list;

16   list = l;

17 }

List implementation 
no locks



  

Request queue (e.g. 
incoming network packets)

● Linked list, list is pointer 
to the first element
 



  

CPU1 allocates new 
request



  

CPU2 allocates new 
request



  

CPUs 1 and 2 update 
next pointer



  

CPU1 updates head 
pointer



  

CPU2 updates head 
pointer



  

State after the race



  

1 struct list {

2   int data;

3   struct list *next;

4 };

6 struct list *list = 0;

  struct lock listlock;

9 insert(int data)

10 {

11   struct list *l;

13   l = malloc(sizeof *l);

     acquire(&listlock);

14   l->data = data;

15   l->next = list;

16   list = l;

     release(&listlock);

17 }

List implementation 
with locks



  

21 void

22 acquire(struct spinlock *lk)

23 {

24   for(;;) {

25     if(!lk->locked) {

26       lk->locked = 1;

27       break;

28     }

29   }

30 }

Spinlock



  

21 void

22 acquire(struct spinlock *lk)

23 {

24   for(;;) {

25     if(!lk->locked) {

26       lk->locked = 1;

27       break;

28     }

29   }

30 }

Still incorrect

● Two CPUs can reach 
line #25 at the same 
time
● See not locked, and
● Acquire the lock

● Lines #25 and #26 need 
to be atomic
● I.e. indivisible



  

Compare and swap: xchg

● We switch between processes now



  

1473 void

1474 acquire(struct spinlock *lk)

1475 {

...

1480   // The xchg is atomic.

1481   // It also serializes, so that reads after acquire are not

1482   // reordered before it.

1483   while(xchg(&lk− >locked, 1) != 0)

1484   ;

1485 

...

1489 }

Correct 
implementation



  

0568 static inline uint

0569 xchg(volatile uint *addr, uint newval)

0570 {

0571   uint result;

0572 

0573   // The + in "+m" denotes a read− modify− write  

          operand.

0574   asm volatile("lock; xchgl %0, %1" :

0575                "+m" (*addr), "=a" (result) :

0576                "1" (newval) :

0577                "cc");

0578   return result;

0579 }

Compare and swap



  

Deadlocks



  

Lock ordering

● Locks need to be acquired in the same order



  

Locks and interrupts



  

Locks and interrupts

● Never hold a lock with interrupts enabled



  

1473 void

1474 acquire(struct spinlock *lk)

1475 {

1476   pushcli(); // disable interrupts to avoid deadlock.

...

1480   // The xchg is atomic.

1481   // It also serializes, so that reads after acquire 
are not

1482   // reordered before it.

1483   while(xchg(&lk− >locked, 1) != 0)

1484   ;

...

1489 }

Disabling interrupts



  

Simple disable/enable is not enough

● If two locks are acquired
● Interrupts should be re-enabled only after the 

second lock is released

● Pushcli() uses a counter



  

1554 void

1555 pushcli(void)

1556 {

1557   int eflags;

1558 

1559   eflags = readeflags();

1560   cli();

1561   if(cpu− >ncli++ == 0)

1562     cpu− >intena = eflags & FL_IF;

1563 }

pushcli()



  

1565 void

1566 popcli(void)

1567 {

…

1570   if(− − cpu− >ncli < 0)

1571     panic("popcli");

1572   if(cpu− >ncli == 0 && cpu− >intena)

1573     sti();

1574 }

popcli()



  

Problems with locks



  

Problems with locks

● Deadlock
● Locks break modularity of interfaces, easy to get 

wrong

● Priority inversion
● Low-priority task holds a lock required by a higher 

priority task
● Priority inheritance can be a solution, but can also 

result in errors (see What really happened on Mars)



  

Problems with locks

● Convoying
● Several tasks need the locks in roughly the same 

order
● One slow task acquires the lock first
● Everyone slows to the speed of this slow task

● Signal safety
● Similar to interrupts, but for user processes
● Can't be disabled, thus can't use locks
●



  

Problems with locks

● Kill safety
● What if a task is killed or crashed while holding a 

lock? 

● Preemption safety
● What happens if a task is preempted while holding 

a lock?



  

Optimistic concurrency



  

Optimistic concurrency: main idea

● Instead of acquiring a lock try updating a data 
structure
● When done, try committing changes
● If there is a conflict, retry

● Similar to database transactions



  

Example: lock-free stack(), aka 
FIFO queue

class Node {

  Node * next;

  int data;

}; 

// ‘ head of list’

Node * head;



  

Lock-free push()

void push(int t) {
  Node* node = new Node(t);
  do {
    node->next = head;
  } while (!cas(&head, node, node->next));
}



  

Lock-free pop()

bool pop(int& t) {
  Node* current = head;
  while(current) {
    if(cas(&head, current->next, current)) {
      t = current->data; 
      return true;
    }
    current = head;
  }
  return false;
}



  

The ABA problem

● The value of a variable is changed from A to B and then 
back to A

● In our example the variable is a pointer to a stack 
element

● What if the head gets deallocated with free(), and 
allocated again? 
● There is a good chance that head will have the same pointer 

value
– Memory allocators often choose recently deallocated values

● But really this is a different stack element



  

ABA example

Thread 1: pop()
read A from head
store A.next `somewhere`

cas with A succeeds

Thread 2:

pop() 
Pops A, discards it
First element becomes B
pop(): pops B
push():
Memory manager recycles  
A to hold a new variable



  

ABA workaround

● Keep an `update counter' along with a pointer
● Needs a double word CAS

● Don't recycle memory too soon



  

Nontrivial lock-free data structures

● For example, a linked list
● Much more complex

– Operations on two pointers
● Insert

– What if predecessor is removed?



  

Thank you!
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