

CS5460/6460: Operating Systems

Lecture 11: Locking

Anton Burtsev
February, 2014

Race conditions

● Disk driver maintains a list of outstanding
requests

● Each process can add requests to the list

1 struct list {

2 int data;

3 struct list *next;

4 };

...

6 struct list *list = 0;

...

9 insert(int data)

10 {

11 struct list *l;

12

13 l = malloc(sizeof *l);

14 l->data = data;

15 l->next = list;

16 list = l;

17 }

List implementation
no locks

Request queue (e.g.
incoming network packets)

● Linked list, list is pointer
to the first element

CPU1 allocates new
request

CPU2 allocates new
request

CPUs 1 and 2 update
next pointer

CPU1 updates head
pointer

CPU2 updates head
pointer

State after the race

1 struct list {

2 int data;

3 struct list *next;

4 };

6 struct list *list = 0;

 struct lock listlock;

9 insert(int data)

10 {

11 struct list *l;

13 l = malloc(sizeof *l);

 acquire(&listlock);

14 l->data = data;

15 l->next = list;

16 list = l;

 release(&listlock);

17 }

List implementation
with locks

21 void

22 acquire(struct spinlock *lk)

23 {

24 for(;;) {

25 if(!lk->locked) {

26 lk->locked = 1;

27 break;

28 }

29 }

30 }

Spinlock

21 void

22 acquire(struct spinlock *lk)

23 {

24 for(;;) {

25 if(!lk->locked) {

26 lk->locked = 1;

27 break;

28 }

29 }

30 }

Still incorrect

● Two CPUs can reach
line #25 at the same
time
● See not locked, and
● Acquire the lock

● Lines #25 and #26 need
to be atomic
● I.e. indivisible

Compare and swap: xchg

● We switch between processes now

1473 void

1474 acquire(struct spinlock *lk)

1475 {

...

1480 // The xchg is atomic.

1481 // It also serializes, so that reads after acquire are not

1482 // reordered before it.

1483 while(xchg(&lk− >locked, 1) != 0)

1484 ;

1485

...

1489 }

Correct
implementation

0568 static inline uint

0569 xchg(volatile uint *addr, uint newval)

0570 {

0571 uint result;

0572

0573 // The + in "+m" denotes a read− modify− write

 operand.

0574 asm volatile("lock; xchgl %0, %1" :

0575 "+m" (*addr), "=a" (result) :

0576 "1" (newval) :

0577 "cc");

0578 return result;

0579 }

Compare and swap

Deadlocks

Lock ordering

● Locks need to be acquired in the same order

Locks and interrupts

Locks and interrupts

● Never hold a lock with interrupts enabled

1473 void

1474 acquire(struct spinlock *lk)

1475 {

1476 pushcli(); // disable interrupts to avoid deadlock.

...

1480 // The xchg is atomic.

1481 // It also serializes, so that reads after acquire
are not

1482 // reordered before it.

1483 while(xchg(&lk− >locked, 1) != 0)

1484 ;

...

1489 }

Disabling interrupts

Simple disable/enable is not enough

● If two locks are acquired
● Interrupts should be re-enabled only after the

second lock is released

● Pushcli() uses a counter

1554 void

1555 pushcli(void)

1556 {

1557 int eflags;

1558

1559 eflags = readeflags();

1560 cli();

1561 if(cpu− >ncli++ == 0)

1562 cpu− >intena = eflags & FL_IF;

1563 }

pushcli()

1565 void

1566 popcli(void)

1567 {

…

1570 if(− − cpu− >ncli < 0)

1571 panic("popcli");

1572 if(cpu− >ncli == 0 && cpu− >intena)

1573 sti();

1574 }

popcli()

Problems with locks

Problems with locks

● Deadlock
● Locks break modularity of interfaces, easy to get

wrong

● Priority inversion
● Low-priority task holds a lock required by a higher

priority task
● Priority inheritance can be a solution, but can also

result in errors (see What really happened on Mars)

Problems with locks

● Convoying
● Several tasks need the locks in roughly the same

order
● One slow task acquires the lock first
● Everyone slows to the speed of this slow task

● Signal safety
● Similar to interrupts, but for user processes
● Can't be disabled, thus can't use locks
●

Problems with locks

● Kill safety
● What if a task is killed or crashed while holding a

lock?

● Preemption safety
● What happens if a task is preempted while holding

a lock?

Optimistic concurrency

Optimistic concurrency: main idea

● Instead of acquiring a lock try updating a data
structure
● When done, try committing changes
● If there is a conflict, retry

● Similar to database transactions

Example: lock-free stack(), aka
FIFO queue

class Node {

 Node * next;

 int data;

};

// ‘ head of list’

Node * head;

Lock-free push()

void push(int t) {
 Node* node = new Node(t);
 do {
 node->next = head;
 } while (!cas(&head, node, node->next));
}

Lock-free pop()

bool pop(int& t) {
 Node* current = head;
 while(current) {
 if(cas(&head, current->next, current)) {
 t = current->data;
 return true;
 }
 current = head;
 }
 return false;
}

The ABA problem

● The value of a variable is changed from A to B and then
back to A

● In our example the variable is a pointer to a stack
element

● What if the head gets deallocated with free(), and
allocated again?
● There is a good chance that head will have the same pointer

value
– Memory allocators often choose recently deallocated values

● But really this is a different stack element

ABA example

Thread 1: pop()
read A from head
store A.next `somewhere`

cas with A succeeds

Thread 2:

pop()
Pops A, discards it
First element becomes B
pop(): pops B
push():
Memory manager recycles
A to hold a new variable

ABA workaround

● Keep an `update counter' along with a pointer
● Needs a double word CAS

● Don't recycle memory too soon

Nontrivial lock-free data structures

● For example, a linked list
● Much more complex

– Operations on two pointers
● Insert

– What if predecessor is removed?

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

