

CS5460/6460: Operating Systems

Lecture 12: Synchronization and
scalability

Anton Burtsev
February, 2014

Recap from last time

● Main synchronization paradigm
● Critical sections
● Implemented as spinlocks

● Optimistic concurrency is possible
● Lock-free synchronization
● Algorithms are hard

What is really wrong with locks?

What is really wrong with locks?

● Scalability

struct spinlock_t {

 int current_ticket ;

 int next_ticket ;

}

void spin_lock (spinlock_t *lock)

{

 int t = atomic_fetch_and_inc (&lock -> next_ticket);

 while (t != lock -> current_ticket)

 ; /* spin */

}

void spin_unlock (spinlock_t *lock)

{

 lock -> current_ticket ++;

}

Ticket lock in Linux

48-core AMD server

Exim collapse

Oprofile results

Exim collapse

● sys_open eventually calls:

Exim collapse

● sys_open eventually calls:

● spin_lock and spin_unlock use many more cycles than the
critical section

Spin lock implementation

Spin lock implementationAllocate a ticket

Spin lock implementationAllocate a ticket

Spin lock implementationAllocate a ticket

Spin lock implementationAllocate a ticket

120-420 cycles

Spin lock implementationUpdate the ticket value

Spin lock implementationBunch of cores are
spinning

Spin lock implementation

Broadcast message
(invalidate the value)

Spin lock implementation

Cores don't have the
value of current_ticket

Spin lock implementation

Re-read the value

Spin lock implementation

500-4000 cycles

Atomic synchronization primitives
do not scale well

Atomic increment on 64 cores

Solution: per-core mount tables

● Observation: mount table is rarely modified

Solution: per-core mount tables

● Observation: mount table is rarely modified

Solution: per-core mount tables

● Observation: mount table is rarely modified

● Fast path: local hash lookup

Solution: per-core mount tables

● Observation: mount table is rarely modified

● Slow path: lookup global mount table, then
update local, per-core copy

RCU: Read Copy Update

Read copy update

● Goal: remove “cat” from the
list
● There might be some readers

of “cat”

● Idea: control the pointer
dereference
● Make it atomic

Read copy update (2)

● Remove “cat”
● Update the “boa” pointer
● All subsequent reader will get

“gnu” as boa->next

Read copy update (2)

● Wait for all readers to finish
● synchronize_rcu()

Read copy update (3)

● Readers finished
● Safe to deallocate “cat”

Read copy update (4)

● New state of the list

How can we build this?

● Disable preemption while using the RCU data
● rcu_lock(), rcu_unlock()

● Wait for all RCU readers to finish
● Schedule something on each CPU
● If you managed to run on a CPU

– A thread on that CPUwas preempted
– Thus exited the RCU lock/unlock section

void rcu_read_lock()
{
 preempt_disable[cpu_id()]++;
}
void rcu_read_unlock()
{
 preempt_disable[cpu_id()]--;
}
void synchronize_rcu(void)
{
 for_each_cpu(int cpu)
 run_on(cpu);
}

RCU
implementation

What does it mean to run on a
CPU?

● In xv6 scheduler() function goes through a list of all
processes
● If we keep a mask of allowable CPUs for each process
● On each CPU the scheduler() function will pick

processes with a proper mask

● run_on(cpu)
● sets the mask for the current process
● Invokes scheduler()

– Calls yield(), which in turn calls swtch()

In practice...

● Linux just waits for all CPUs to pass through a
context switch
● Instead of scheduling the updater on each CPU

struct vfsmount *lookup_mnt(struct path
*path)
{
 struct vfsmount *local_mnts;
 struct vfsmount *mnt;

 rcu_read_lock();
 local_mnts = rcu_dereference(mnts);
 mnt = lookup_mnt(local_mnts, path);
 rcu_read_unlock();

 return mnt;
}

RCU example:
lookup_mnt()

Why do we need
rcu_dereference()?

struct vfsmount *lookup_mnt(struct path
*path)
{
 ...
 rcu_read_lock();
 local_mnts = rcu_dereference(mnts);
 mnt = lookup_mnt(local_mnts, path);
 rcu_read_unlock();
 ...
}

Memory barriers

#define __rcu_assign_pointer(p, v, space) \
 do { \
 smp_wmb(); \
 (p) = (typeof(*v) __force space *)(v); \
 } while (0)

syscall_t *table;
spinlock_t table_lock;

int invoke_syscall(int number, void *args...)
{
 syscall_t *local_table;
 int r = -1;

 rcu_read_lock();
 local_table = rcu_deference(table);
 if (local_table != NULL)
 r = local_table[number](args);
 rcu_read_unlock();

 return r;
}

Example: dynamic
system call table

void retract_table()
{
 syscall_t *local_table;

 spin_lock(&table_lock);
 local_table = table;
 rcu_assign_pointer(&table, NULL);
 spin_unlock(&table_lock);

 synchronize_rcu();
 kfree(local_table);
}

Table update (well,
removal)

Recap: read copy update

Conclusion

● What RCU is good for?

Conclusion

● What RCU is good for?
● Read-heavy workload
● Updates are rare

– synchronize_rcu is slow
● System call example:

– You acquire a lock every time you execute a system call
– But really the table might never change

● What if you need fast updates?

Conclusion

● What RCU is good for?
● Read-heavy workload
● Updates are rare

– synchronize_rcu is slow
● System call example:

– You acquire a lock every time you execute a system call
– But really the table might never change

● What if you need fast updates?
● Fine-grained, scalable spinlocks [next time]
● Lock-free synchronization
● Transactional memory [next time]

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

