

CS5460/6460: Operating Systems

Lecture 20: Program linking and
loading

Anton Burtsev
March, 2014

Linking and loading

● Linking
● Combining multiple code modules into a single

executable
● E.g., use standard libraries in your own code

● Loading
● Process of getting an executable running on the

machine

● Input: object files (code modules)
● Each object file contains

● A set of segments
– Code
– Data

● A symbol table
– Imported & exported symbols

● Output: executable file, library, etc.

Why linking?

● Modularity
● Program can be written as a collection of modules
● Can build libraries of common functions

● Efficiency
● Code compilation

– Change one source file, recompile it, and re-link the executable
● Space efficiency

– Share common code across executables
– On disk and in memory
–

Two path process

● Path 1: scan input files
● Identify boundaries of each segment
● Collect all defined and undefined symbol information
● Determine sizes and locations of each segment

● Path 2
● Adjust memory addresses in code and data to reflect

relocated segment addresses

Example● Save a into b, e.g., b = a

 mov a,%eax
 mov %eax,b
● Generated code

● a is defined in the same file at 0x1234, b is imported
● Each instruction is 1 byte opcode + 4 bytes address

 A1 34 12 00 00 mov a,%eax
 A3 00 00 00 00 mov %eax,b
● Assume that a is relocated by 0x10000 bytes, and b is

found at 0x9a12

 A1 34 12 01 00 mov a,%eax
 A3 12 9A 00 00 mov %eax,b

More realistic
example● Source file m.c

 extern void a(char *);
 int main(int ac, char **av)
 {
 static char string[] = "Hello, world!\n";
 a(string);
 }
● Source file a.c

 #include <unistd.h>
 #include <string.h>
 void a(char *s)
 {
 write(1, s, strlen(s));
 }

More realistic
example Sections:

 Idx Name Size VMA LMA File off Algn
 0 .text 00000010 00000000 00000000 00000020 2**3
 1 .data 00000010 00000010 00000010 00000030 2**3
 Disassembly of section .text:
 00000000 <_main>:
 0: 55 pushl %ebp
 1: 89 e5 movl %esp,%ebp
 3: 68 10 00 00 00 pushl $0x10
 4: 32 .data
 8: e8 f3 ff ff ff call 0
 9: DISP32 _a
 d: c9 leave
 e: c3 ret
 ...

More realistic
example Sections:

 Idx Name Size VMA LMA File off Algn
 0 .text 00000010 00000000 00000000 00000020 2**3
 1 .data 00000010 00000010 00000010 00000030 2**3
 Disassembly of section .text:
 00000000 <_main>:
 0: 55 pushl %ebp
 1: 89 e5 movl %esp,%ebp
 3: 68 10 00 00 00 pushl $0x10
 4: 32 .data
 8: e8 f3 ff ff ff call 0
 9: DISP32 _a
 d: c9 leave
 e: c3 ret
 ...

● Two sections:
● Text (0x10 – 16 bytes)
● Data

More realistic
example Sections:

 Idx Name Size VMA LMA File off Algn
 0 .text 00000010 00000000 00000000 00000020 2**3
 1 .data 00000010 00000010 00000010 00000030 2**3
 Disassembly of section .text:
 00000000 <_main>:
 0: 55 pushl %ebp
 1: 89 e5 movl %esp,%ebp
 3: 68 10 00 00 00 pushl $0x10
 4: 32 .data
 8: e8 f3 ff ff ff call 0
 9: DISP32 _a
 d: c9 leave
 e: c3 ret
 ...

● Code starts at 0x0

More realistic
example Sections:

 Idx Name Size VMA LMA File off Algn
 0 .text 00000010 00000000 00000000 00000020 2**3
 1 .data 00000010 00000010 00000010 00000030 2**3
 Disassembly of section .text:
 00000000 <_main>:
 0: 55 pushl %ebp
 1: 89 e5 movl %esp,%ebp
 3: 68 10 00 00 00 pushl $0x10
 4: 32 .data
 8: e8 f3 ff ff ff call 0
 9: DISP32 _a
 d: c9 leave
 e: c3 ret
 ...

● First relocation entry
● Marks pushl 0x10
● 0x10 is beginning of the data

section

More realistic
example Sections:

 Idx Name Size VMA LMA File off Algn
 0 .text 00000010 00000000 00000000 00000020 2**3
 1 .data 00000010 00000010 00000010 00000030 2**3
 Disassembly of section .text:
 00000000 <_main>:
 0: 55 pushl %ebp
 1: 89 e5 movl %esp,%ebp
 3: 68 10 00 00 00 pushl $0x10
 4: 32 .data
 8: e8 f3 ff ff ff call 0
 9: DISP32 _a
 d: c9 leave
 e: c3 ret
 ...

● Second relocation entry
● Marks call
● 0x10 is beginning of the data

section

More realistic
example

Sections:
 Idx Name Size VMA LMA File off Algn
 0 .text 0000001c 00000000 00000000 00000020 2**2
 CONTENTS, ALLOC, LOAD, RELOC, CODE
 1 .data 00000000 0000001c 0000001c 0000003c 2**2
 CONTENTS, ALLOC, LOAD, DATA
Disassembly of section .text:
 00000000 <_a>:
 0: 55 pushl %ebp
 1: 89 e5 movl %esp,%ebp
 3: 53 pushl %ebx
 4: 8b 5d 08 movl 0x8(%ebp),%ebx
 7: 53 pushl %ebx
 8: e8 f3 ff ff ff call 0
 9: DISP32 _strlen
 d: 50 pushl %eax
 e: 53 pushl %ebx
 f: 6a 01 pushl $0x1
 11: e8 ea ff ff ff call 0
 12: DISP32 _write
 16: 8d 65 fc leal -4(%ebp),%esp
 19: 5b popl %ebx
 1a: c9 leave
 1b: c3 ret

Producing an executable

● Combine corresponding segments from each
object file
● Combined text segment
● Combined data segment

● Pad each segment to 4KB to match the page
size

Linked executable

Sections:
 Idx Name Size VMA LMA File off Algn
 0 .text 00000fe0 00001020 00001020 00000020 2**3
 1 .data 00001000 00002000 00002000 00001000 2**3
 2 .bss 00000000 00003000 00003000 00000000 2**3
Disassembly of section .text:
00001020 <start-c>:
 ...
 1092: e8 0d 00 00 00 call 10a4 <_main>
 ...
000010a4 <_main>:

 10a7: 68 24 20 00 00 pushl $0x2024
 10ac: e8 03 00 00 00 call 10b4 <_a>
 ...
000010b4 <_a>:

 10bc: e8 37 00 00 00 call 10f8 <_strlen>
 ...
 10c3: 6a 01 pushl $0x1
 10c5: e8 a2 00 00 00 call 116c <_write>
 ...
000010f8 <_strlen>:
 ...
0000116c <_write>:
 ...

Tasks involved

● Program loading
● Copy a program from disk to memory so it is ready to run

– Allocation of memory
– Setting protection bits (e.g. read only)

● Relocation
● Assign load address to each object file
● Adjust the code

● Symbol resolution
● Resolve symbols imported from other object files

Object files

Object files

● Conceptually: five kinds of information
● Header: code size, name of the source file, creation date
● Object code: binary instruction and data generated by the

compiler
● Relocation information: list of places in the object code that

need to be patched
● Symbols: global symbols defined by this module

– Symbols to be imported from other modules
● Debugging information: source file and file number

information, local symbols, data structure description

Simplest object file: DOS .com

● Only binary code
● Loaded at 0x100 offset
● 0x00 – 0xFF is reserved for program prefix

– Command line arguments

● Set EIP to 0x100
● Set ESP to the top of the segment
● Run!

UNIX A.OUT

● Small header
● Text section

● Executable code

● Data section
● Initial values for static

data

● A.OUT header

 int a_magic; // magic number
 int a_text; // text segment size
 int a_data; // initialized data size
 int a_bss; // uninitialized data size
 int a_syms; // symbol table size
 int a_entry; // entry point
 int a_trsize; // text relocation size
 int a_drsize; // data relocation size

A.OUT loading

● Read the header to get segment sizes
● Check if there is a shareable code segment for this file

– If not, create one,
– Map into the address space,
– Read segment from a file into the address space

● Create a private data segment
– Large enough for data and BSS
– Read data segment, zero out the BSS segment

● Create and map stack segment
– Place arguments from the command line on the stack

● Jump to the entry point

A.OUT picture

Interaction with virtual memory

● Virtual memory unifies paging and file I/O
● Memory mapped files

– Memory pages are backed up by files
● Loading a segment is just mapping it into memory

● Linker must provide some support
● Sections are page aligned

Mapping a.out

Relocatable A.OUT

● Add relocation
information for each
section

Relocation entries
● Address relative to the

segment
● Length

● 1, 2, 4, 8 bytes

● Extern
● Local or extern symbol

● Index
● Segment number if local
● Index in the symbol table

Symbol table
● Name offset

● Offset into the string table
● UNIX supports symbols of

any length
– Null terminated strings

● Type
● Whether it is visible to

other modules

Weak vs strong symbols

● Virtually every program uses printf
● Printf can convert floating-point numbers to strings

– Printf uses fcvt()
● Does this mean that every program needs to link against floating-

point libraries?

● Weak symbols allow symbols to be undefined
● If program uses floating numbers, it links against the floating-point

libraries
– fcvt() is defined an everything is fine

● If program doesn't use floating-point libraries
– fcvt() remains NULL but is never called

Storage allocation

Multiple object files

Merging
segments

Initializers and finalizers

● C++ needs a segment for invoking constructors for static
variables
● List of pointers to startup routines

– Startup code in every module is put into an anonymous startup routine
– Put into a segment called .init

● Problem
● Order matters
● Ideally you should track dependencies

– This is not done
● Simple hack

– System libraries go first (.init), then user (.ctor)
–

Relocation

Why relocate?

● Each program gets its own private space, why relocate?
● Linkers combine multiple libraries into a single executable
● Each library assumes private address space

– E.g., starts at 0x0

● Is it possible to go away with segments?
● Each library gets a private segment (starts at 0x0)
● All cross-library references are patched to use segment numbers

● Possible!
● But slow.
● Segment lookups are slow

Relocation

● Each relocatable object file contains a relocation table
● List of places in each segment that need to be relocated
● Example:

– Pointer in the text segment points to offset 200 in the data segment
– Input file: text starts at 0, data starts at 2000, stored pointer has value 2200
– Output file: Data segment starts at 15000

● Linker adds relocated base of the data segment 13000 (DR)

– Output file: will have pointer value of 15200
● All jumps are relative on x86

– No need to relocate
– Unless its a cross-segment jump, e.g. text segment to data segment

Conclusion

● Program loading
● Storage allocation

● Relocation
● Assign load address to each object file
● Patch the code

● Symbol resolution
● Resolve symbols imported from other object files

Next time

● Static and shared libraries
● Dynamic linking and loading
● Position independent code
● OS management of user space

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

