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Linking and loading

● Linking
● Combining multiple code modules into a single 

executable
● E.g., use standard libraries in your own code

● Loading
● Process of getting an executable running on the 

machine



  



  

● Input: object files (code modules)
● Each object file contains

● A set of segments
– Code
– Data

● A symbol table
– Imported & exported symbols

● Output: executable file, library, etc.



  



  

Why linking?

● Modularity
● Program can be written as a collection of modules
● Can build libraries of common functions

● Efficiency
● Code compilation

– Change one source file, recompile it, and re-link the executable
● Space efficiency

– Share common code across executables
– On disk and in memory
–



  

Two path process

● Path 1: scan input files
● Identify boundaries of each segment
● Collect all defined and undefined symbol information
● Determine sizes and locations of each segment

● Path 2
● Adjust memory addresses in code and data to reflect 

relocated segment addresses



  

Example● Save a into b, e.g., b = a

  mov a,%eax
  mov %eax,b
● Generated code

● a is defined in the same file at 0x1234, b is imported
● Each instruction is 1 byte opcode + 4 bytes address

  A1 34 12 00 00 mov a,%eax
  A3 00 00 00 00 mov %eax,b
● Assume that a is relocated by 0x10000 bytes, and b is 

found  at 0x9a12

  A1 34 12 01 00 mov a,%eax
  A3 12 9A 00 00 mov %eax,b



  

More realistic 
example● Source file m.c

  extern void a(char *);
  int main(int ac, char **av)
  {
    static char string[] = "Hello, world!\n";
    a(string);
  }
● Source file a.c

  #include <unistd.h>
  #include <string.h>
  void a(char *s)
  {
    write(1, s, strlen(s));
  }



  

More realistic 
example  Sections:

   Idx Name Size     VMA      LMA      File off Algn
    0 .text 00000010 00000000 00000000 00000020 2**3
    1 .data 00000010 00000010 00000010 00000030 2**3
  Disassembly of section .text:
  00000000 <_main>:
    0: 55             pushl %ebp
    1: 89 e5          movl %esp,%ebp
    3: 68 10 00 00 00 pushl $0x10
      4: 32 .data
    8: e8 f3 ff ff ff call 0
      9: DISP32 _a
    d: c9             leave
    e: c3             ret
    ...



  

More realistic 
example  Sections:

   Idx Name Size     VMA      LMA      File off Algn
    0 .text 00000010 00000000 00000000 00000020 2**3
    1 .data 00000010 00000010 00000010 00000030 2**3
  Disassembly of section .text:
  00000000 <_main>:
    0: 55             pushl %ebp
    1: 89 e5          movl %esp,%ebp
    3: 68 10 00 00 00 pushl $0x10
      4: 32 .data
    8: e8 f3 ff ff ff call 0
      9: DISP32 _a
    d: c9             leave
    e: c3             ret
    ...

● Two sections:
● Text (0x10 – 16 bytes)
● Data



  

More realistic 
example  Sections:

   Idx Name Size     VMA      LMA      File off Algn
    0 .text 00000010 00000000 00000000 00000020 2**3
    1 .data 00000010 00000010 00000010 00000030 2**3
  Disassembly of section .text:
  00000000 <_main>:
    0: 55             pushl %ebp
    1: 89 e5          movl %esp,%ebp
    3: 68 10 00 00 00 pushl $0x10
      4: 32 .data
    8: e8 f3 ff ff ff call 0
      9: DISP32 _a
    d: c9             leave
    e: c3             ret
    ...

● Code starts at 0x0



  

More realistic 
example  Sections:

   Idx Name Size     VMA      LMA      File off Algn
    0 .text 00000010 00000000 00000000 00000020 2**3
    1 .data 00000010 00000010 00000010 00000030 2**3
  Disassembly of section .text:
  00000000 <_main>:
    0: 55             pushl %ebp
    1: 89 e5          movl %esp,%ebp
    3: 68 10 00 00 00 pushl $0x10
      4: 32 .data
    8: e8 f3 ff ff ff call 0
      9: DISP32 _a
    d: c9             leave
    e: c3             ret
    ...

● First relocation entry
● Marks pushl 0x10
● 0x10 is beginning of the data 

section



  

More realistic 
example  Sections:

   Idx Name Size     VMA      LMA      File off Algn
    0 .text 00000010 00000000 00000000 00000020 2**3
    1 .data 00000010 00000010 00000010 00000030 2**3
  Disassembly of section .text:
  00000000 <_main>:
    0: 55             pushl %ebp
    1: 89 e5          movl %esp,%ebp
    3: 68 10 00 00 00 pushl $0x10
      4: 32 .data
    8: e8 f3 ff ff ff call 0
      9: DISP32 _a
    d: c9             leave
    e: c3             ret
    ...

● Second relocation entry
● Marks call
● 0x10 is beginning of the data 

section



  

More realistic 
example

Sections:
 Idx Name Size     VMA      LMA      File off Algn
  0 .text 0000001c 00000000 00000000 00000020 2**2
    CONTENTS, ALLOC, LOAD, RELOC, CODE
  1 .data 00000000 0000001c 0000001c 0000003c 2**2
    CONTENTS, ALLOC, LOAD, DATA
Disassembly of section .text:
  00000000 <_a>:
  0: 55               pushl %ebp
  1: 89 e5            movl %esp,%ebp
  3: 53               pushl %ebx
  4: 8b 5d 08         movl 0x8(%ebp),%ebx
  7: 53               pushl %ebx
  8: e8 f3 ff ff ff   call 0
    9: DISP32 _strlen
  d: 50               pushl %eax
  e: 53               pushl %ebx
  f: 6a 01            pushl $0x1
  11: e8 ea ff ff ff  call 0
    12: DISP32 _write
  16: 8d 65 fc        leal -4(%ebp),%esp
  19: 5b              popl %ebx
  1a: c9              leave
  1b: c3              ret



  

Producing an executable

● Combine corresponding segments from each 
object file
● Combined text segment
● Combined data segment

● Pad each segment to 4KB to match the page 
size



  
Linked executable

Sections:
 Idx Name Size     VMA      LMA      File off Algn
  0 .text 00000fe0 00001020 00001020 00000020 2**3
  1 .data 00001000 00002000 00002000 00001000 2**3
  2 .bss  00000000 00003000 00003000 00000000 2**3
Disassembly of section .text:
00001020 <start-c>:
  ...
  1092: e8 0d 00 00 00 call 10a4 <_main>
  ...
000010a4 <_main>:

  10a7: 68 24 20 00 00 pushl $0x2024
  10ac: e8 03 00 00 00 call 10b4 <_a>
  ...
000010b4 <_a>:

  10bc: e8 37 00 00 00 call 10f8 <_strlen>
  ...
  10c3: 6a 01 pushl $0x1
  10c5: e8 a2 00 00 00 call 116c <_write>
  ...
000010f8 <_strlen>:
  ...
0000116c <_write>:
  ...



  

Tasks involved

● Program loading
● Copy a program from disk to memory so it is ready to run

– Allocation of memory
– Setting protection bits (e.g. read only)

● Relocation
● Assign load address to each object file
● Adjust the code 

● Symbol resolution
● Resolve symbols imported from other object files



  

Object files



  

Object files

● Conceptually: five kinds of information
● Header: code size, name of the source file, creation date
● Object code: binary instruction and data generated by the 

compiler
● Relocation information: list of places in the object code that 

need to be patched
● Symbols: global symbols defined by this module

– Symbols to be imported from other modules
● Debugging information: source file and file number 

information, local symbols, data structure description



  

Simplest object file: DOS .com

● Only binary code
● Loaded at 0x100 offset
● 0x00 – 0xFF is reserved for program prefix

– Command line arguments

● Set EIP to 0x100
● Set ESP to the top of the segment
● Run!



  

UNIX A.OUT

● Small header
● Text section

● Executable code

● Data section
● Initial values for static 

data



  

● A.OUT header

  int a_magic;  // magic number
  int a_text;   // text segment size
  int a_data;   // initialized data size
  int a_bss;    // uninitialized data size
  int a_syms;   // symbol table size
  int a_entry;  // entry point
  int a_trsize; // text relocation size
  int a_drsize; // data relocation size



  

A.OUT loading

● Read the header to get segment sizes
● Check if there is a shareable code segment for this file

– If not, create one, 
– Map into the address space, 
– Read segment from a file into the address space

● Create a private data segment
– Large enough for data and BSS
– Read data segment, zero out the BSS segment

● Create and map stack segment
– Place arguments from the command line on the stack

● Jump to the entry point



  

A.OUT picture



  

Interaction with virtual memory

● Virtual memory unifies paging and file I/O
● Memory mapped files

– Memory pages are backed up by files
● Loading a segment is just mapping it into memory

● Linker must provide some support
● Sections are page aligned



  

Mapping a.out



  

Relocatable A.OUT

● Add relocation 
information for each 
section



  

Relocation entries
● Address relative to the 

segment
● Length

● 1, 2, 4, 8 bytes

● Extern
● Local or extern symbol

● Index
● Segment number if local
● Index in the symbol table



  

Symbol table
● Name offset

● Offset into the string table
● UNIX supports symbols of 

any length
– Null terminated strings

● Type
● Whether it is visible to 

other modules



  

Weak vs strong symbols

● Virtually every program uses printf
● Printf can convert floating-point numbers to strings

– Printf uses fcvt() 
● Does this mean that every program needs to link against floating-

point libraries?

● Weak symbols allow symbols to be undefined
● If program uses floating numbers, it links against the floating-point 

libraries
– fcvt() is defined an everything is fine

● If program doesn't use floating-point libraries
– fcvt() remains NULL but is never called



  

Storage allocation



  

Multiple object files



  

Merging 
segments



  

Initializers and finalizers

● C++ needs a segment for invoking constructors for static 
variables
● List of pointers to startup routines

– Startup code in every module is put into an anonymous startup routine
– Put into a segment called .init

● Problem
● Order matters
● Ideally you should track dependencies

– This is not done
● Simple hack

– System libraries go first (.init), then user (.ctor)
–



  

Relocation



  

Why relocate?

● Each program gets its own private space, why relocate? 
● Linkers combine multiple libraries into a single executable
● Each library assumes private address space

– E.g., starts at 0x0

● Is it possible to go away with segments?
● Each library gets a private segment (starts at 0x0)
● All cross-library references are patched to use segment numbers

● Possible! 
● But slow.
● Segment lookups are slow



  

Relocation

● Each relocatable object file contains a relocation table
● List of places in each segment that need to be relocated
● Example:

– Pointer in the text segment points to offset 200 in the data segment
– Input file: text starts at 0, data starts at 2000, stored pointer has value 2200
– Output file: Data segment starts at 15000

● Linker adds relocated base of the data segment 13000 (DR)

– Output file: will have pointer value of 15200
● All jumps are relative on x86

– No need to relocate
– Unless its a cross-segment jump, e.g. text segment to data segment



  

Conclusion

● Program loading
● Storage allocation

● Relocation
● Assign load address to each object file
● Patch the code 

● Symbol resolution
● Resolve symbols imported from other object files



  

Next time

● Static and shared libraries
● Dynamic linking and loading
● Position independent code
● OS management of user space



  

Thank you!
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