

CS5460/6460: Operating Systems

Lecture 22: Virtual process memory

Anton Burtsev
April, 2014

Virtual process memory

● Each process has a private 4GB address space
● All addressable memory (32bits)

– Well, 3GBs out of 4GBs on Linux
● Isolated from other processes

● But only a small portion of 3GBs is actually
used by an application

Process memory

● Only a small portion of 3GBs is actually used by
an application

● Memory of different kinds (which?)

Process memory

● Only a small portion of 3GBs is actually used by an
application

● Memory of different kind
● Code, data, heap, stack
● Shared libraries
● Memory mapped files
● Shared memory regions
● Copy-on-write regions after the fork
● Paged out infrequently used pages

● The kernel needs data structures to manage these
holes

Process memory

● Kernel doesn't trust the user
● Needs data structures to manage different memory
● Each address space update is verified

<mm_types.h>
struct mm_struct {
 ...
 unsigned long (*get_unmapped_area) (struct file *filp,
 unsigned long addr, unsigned long len,
 unsigned long pgoff, unsigned long flags);
 ...
 unsigned long mmap_base; /* base of mmap area */
 unsigned long task_size; /* size of task vm space */
 ...
 unsigned long start_code, end_code, start_data, end_data;
 unsigned long start_brk, brk, start_stack;
 unsigned long arg_start, arg_end, env_start, env_end;
 ...
}

● Start and end for code and data
● Size doesn't change once ELF

is mapped

<mm_types.h>
struct mm_struct {
 ...
 unsigned long (*get_unmapped_area) (struct file *filp,
 unsigned long addr, unsigned long len,
 unsigned long pgoff, unsigned long flags);
 ...
 unsigned long mmap_base; /* base of mmap area */
 unsigned long task_size; /* size of task vm space */
 ...
 unsigned long start_code, end_code, start_data, end_data;
 unsigned long start_brk, brk, start_stack;
 unsigned long arg_start, arg_end, env_start, env_end;
 ...
}

● Start of the heap
● Brk – end of the heap

<mm_types.h>
struct mm_struct {
 ...
 unsigned long (*get_unmapped_area) (struct file *filp,
 unsigned long addr, unsigned long len,
 unsigned long pgoff, unsigned long flags);
 ...
 unsigned long mmap_base; /* base of mmap area */
 unsigned long task_size; /* size of task vm space */
 ...
 unsigned long start_code, end_code, start_data, end_data;
 unsigned long start_brk, brk, start_stack;
 unsigned long arg_start, arg_end, env_start, env_end;
 ...
}

● Start and end of the program
 arguments

● Start and end of the environment
● Both mapped at the topmost area
 of the stack

<mm_types.h>
struct mm_struct {
 ...
 unsigned long (*get_unmapped_area) (struct file *filp,
 unsigned long addr, unsigned long len,
 unsigned long pgoff, unsigned long flags);
 ...
 unsigned long mmap_base; /* base of mmap area */
 unsigned long task_size; /* size of task vm space */
 ...
 unsigned long start_code, end_code, start_data, end_data;
 unsigned long start_brk, brk, start_stack;
 unsigned long arg_start, arg_end, env_start, env_end;
 ...
}

● Start point for the memory
 mappings in the address space

<mm_types.h>
struct mm_struct {
 ...
 unsigned long (*get_unmapped_area) (struct file *filp,
 unsigned long addr, unsigned long len,
 unsigned long pgoff, unsigned long flags);
 ...
 unsigned long mmap_base; /* base of mmap area */
 unsigned long task_size; /* size of task vm space */
 ...
 unsigned long start_code, end_code, start_data, end_data;
 unsigned long start_brk, brk, start_stack;
 unsigned long arg_start, arg_end, env_start, env_end;
 ...
}

● Get suitable location for the next
 mapping in the mmap area

Address space layout

● Text start is defined by ELF
● Starts at 0x08048000
● Why 128MB gap?

Address space layout

● TASK_UNMAPPED_SIZE is 1GB
● There is a problem
● Heap is limited to 1GB on 32bit address

space

Alternative address space layout

● Fix the stack size
● Doesn't need to be big

Memory mapping

● In a typical system total size of all virtual address
spaces of all processes is much larger than available
physical memory
● Only some parts of the virtual address space are backed

by physical pages
● Kernel keeps information about pages associated with

parts of virtual address space

● Can you think of a system/setup when this is not
true?

Example: editing of a large file

● Only small part of a file is
actually mapped into
memory
● File gets mapped into

memory on demand, when
accessed

Demand paging

● Allocation and filling pages with data on
demand

Demand paging

● A process tries to access a part of the address space
which cannot be resolved through page tables

● Processor triggers a page fault
● The kernel runs through the process address space

data structures
● Find appropriate backing store

● Kernel allocates and fills the physical page with data
from the backing store

● The page is mapped into the address space of a
process by updating the page tables

Map of the process virtual memory

<mm_types.h>
struct mm_struct {
 struct vm_area_struct * mmap; /* list of VMAs */
 struct rb_root mm_rb;
 struct vm_area_struct * mmap_cache; /* last find_vma result */
...
}
● Each memory area of process virtual address space is described as
struct vm_area_struct {
 struct mm_struct * vm_mm; /* The address space we belong to. */
 unsigned long vm_start; /* Our start address within vm_mm. */
 unsigned long vm_end; /* The first byte after our end address
 within vm_mm. */

Map of the process virtual memory

● All areas are kept as
● Linked list
● Red-black tree

Page fault
● These data structures are sufficient to find a

region for the page which is missed in memory

More information

● More information is needed however for
● Finding which file backs up each memory area
● Finding all virtual address spaces in which each

page is mapped
– This is used for swapping out
– Taking a page (not frequently used) and unmapping it

from all address spaces

Additional data structures

● Pages represent either
● Anonymous pages

– Not backed up by files, e.g. heap
● Region in a file or a block device

– Each process has a private file pointer (struct file)

– Files point to inodes (struct inode)

Additional data structures

Additional data structures
(definitions)

<fs.h>
struct address_space {
 struct inode *host; /* owner: inode, block_device */
 ...
 struct prio_tree_root i_mmap; /* tree of private and shared
 mappings */
 struct list_head i_mmap_nonlinear; /*list VM_NONLINEAR mappings */
 ...
}

struct file {
 ...
 struct address_space *f_mapping;
 ...
}

struct inode {
...
struct address_space *i_mapping;
...
}

Pagefault

● For the current process
● Represented with the task_struct
● Walk the mm->mmap_rb to locate a vm_area_struct

for the faulting virtual address

Pagefault (2)

● Each vm_area_struct has a pointer to a
vm_file backing this area

Pagefault (3)

● Each address_space has a set of function calls
to read data from a backing device

Conclusion

● Virtual to physical mapping
● Page tables

● Virtual to file mapping
● struct address_space

● Page to address spaces mapping
● Reverse mapping
● Next time!

Thank you!

Reverse mapping

● Connection between a page and all address
spaces it is mapped into
● Used for swapping

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

