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Virtual process memory

● Each process has a private 4GB address space
● All addressable memory (32bits)

– Well, 3GBs out of 4GBs on Linux
● Isolated from other processes

● But only a small portion of 3GBs is actually 
used by an application



  

Process memory

● Only a small portion of 3GBs is actually used by 
an application

● Memory of different kinds (which?)



  

Process memory

● Only a small portion of 3GBs is actually used by an 
application

● Memory of different kind
● Code, data, heap, stack
● Shared libraries
● Memory mapped files
● Shared memory regions
● Copy-on-write regions after the fork
● Paged out infrequently used pages

● The kernel needs data structures to manage these 
holes



  

Process memory

● Kernel doesn't trust the user
● Needs data structures to manage different memory
● Each address space update is verified



  

<mm_types.h>
struct mm_struct {
  ...
  unsigned long (*get_unmapped_area) (struct file *filp,
            unsigned long addr, unsigned long len,
            unsigned long pgoff, unsigned long flags);
  ...
  unsigned long mmap_base; /* base of mmap area */
  unsigned long task_size; /* size of task vm space */
  ...
  unsigned long start_code, end_code, start_data, end_data;
  unsigned long start_brk, brk, start_stack;
  unsigned long arg_start, arg_end, env_start, env_end;
  ...
}

● Start and end for code and data
● Size doesn't change once ELF

is mapped



  

<mm_types.h>
struct mm_struct {
  ...
  unsigned long (*get_unmapped_area) (struct file *filp,
            unsigned long addr, unsigned long len,
            unsigned long pgoff, unsigned long flags);
  ...
  unsigned long mmap_base; /* base of mmap area */
  unsigned long task_size; /* size of task vm space */
  ...
  unsigned long start_code, end_code, start_data, end_data;
  unsigned long start_brk, brk, start_stack;
  unsigned long arg_start, arg_end, env_start, env_end;
  ...
}

● Start of the heap
● Brk – end of the heap



  

<mm_types.h>
struct mm_struct {
  ...
  unsigned long (*get_unmapped_area) (struct file *filp,
            unsigned long addr, unsigned long len,
            unsigned long pgoff, unsigned long flags);
  ...
  unsigned long mmap_base; /* base of mmap area */
  unsigned long task_size; /* size of task vm space */
  ...
  unsigned long start_code, end_code, start_data, end_data;
  unsigned long start_brk, brk, start_stack;
  unsigned long arg_start, arg_end, env_start, env_end;
  ...
}

● Start and end of the program 
 arguments

● Start and end of the environment
● Both mapped at the topmost area
 of the stack



  

<mm_types.h>
struct mm_struct {
  ...
  unsigned long (*get_unmapped_area) (struct file *filp,
            unsigned long addr, unsigned long len,
            unsigned long pgoff, unsigned long flags);
  ...
  unsigned long mmap_base; /* base of mmap area */
  unsigned long task_size; /* size of task vm space */
  ...
  unsigned long start_code, end_code, start_data, end_data;
  unsigned long start_brk, brk, start_stack;
  unsigned long arg_start, arg_end, env_start, env_end;
  ...
}

● Start point for the memory 
 mappings in the address space



  

<mm_types.h>
struct mm_struct {
  ...
  unsigned long (*get_unmapped_area) (struct file *filp,
            unsigned long addr, unsigned long len,
            unsigned long pgoff, unsigned long flags);
  ...
  unsigned long mmap_base; /* base of mmap area */
  unsigned long task_size; /* size of task vm space */
  ...
  unsigned long start_code, end_code, start_data, end_data;
  unsigned long start_brk, brk, start_stack;
  unsigned long arg_start, arg_end, env_start, env_end;
  ...
}

● Get suitable location for the next
 mapping in the mmap area



  

Address space layout

● Text start is defined by ELF
● Starts at 0x08048000
● Why 128MB gap?



  

Address space layout

● TASK_UNMAPPED_SIZE is 1GB
● There is a problem
● Heap is limited to 1GB on 32bit address 

space



  

Alternative address space layout

● Fix the stack size 
● Doesn't need to be big



  

Memory mapping

● In a typical system total size of all virtual address 
spaces of all processes is much larger than available 
physical memory
● Only some parts of the virtual address space are backed 

by physical pages
● Kernel keeps information about pages associated with 

parts of virtual address space

● Can you think of a system/setup when this is not 
true?



  

Example: editing of a large file

● Only small part of a file is 
actually mapped into 
memory
● File gets mapped into 

memory on demand, when 
accessed



  

Demand paging

● Allocation and filling pages with data on 
demand



  

Demand paging

● A process tries to access a part of the address space 
which cannot be resolved through page tables

● Processor triggers a page fault
● The kernel runs through the process address space 

data structures
● Find appropriate backing store

● Kernel allocates and fills the physical page with data 
from the backing store

● The page is mapped into the address space of a 
process by updating the page tables



  

Map of the process virtual memory

<mm_types.h>
struct mm_struct {
  struct vm_area_struct * mmap; /* list of VMAs  */
  struct rb_root mm_rb;
  struct vm_area_struct * mmap_cache; /* last find_vma result */
...
}
● Each memory area of process virtual address space is described as
struct vm_area_struct {
  struct mm_struct * vm_mm; /* The address space we belong to. */
  unsigned long vm_start;   /* Our start address within vm_mm. */
  unsigned long vm_end;     /* The first byte after our end address
                                within vm_mm. */



  

Map of the process virtual memory

● All areas are kept as
● Linked list
● Red-black tree



  

Page fault
● These data structures are sufficient to find a 

region for the page which is missed in memory



  

More information

● More information is needed however for
● Finding which file backs up each memory area
● Finding all virtual address spaces in which each 

page is mapped
– This is used for swapping out
– Taking a page (not frequently used) and unmapping it 

from all address spaces



  

Additional data structures

● Pages represent either
● Anonymous pages  

– Not backed up by files, e.g. heap
● Region in a file or a block device 

– Each process has a private file pointer (struct file)

– Files point to inodes (struct inode)



  

Additional data structures



  

Additional data structures 
(definitions)

<fs.h>
struct address_space {
  struct inode *host;                 /* owner: inode, block_device */
  ...
  struct prio_tree_root i_mmap;       /* tree of private and shared                         
                                           mappings */
  struct list_head i_mmap_nonlinear;  /*list VM_NONLINEAR mappings */
  ...
}

struct file {
  ...
  struct address_space *f_mapping;
  ...
}

struct inode {
...
struct address_space *i_mapping;
...
}



  

Pagefault

● For the current process
● Represented with the task_struct
● Walk the mm->mmap_rb to locate a vm_area_struct 

for the faulting virtual address



  

Pagefault (2)

● Each vm_area_struct has a pointer to a 
vm_file backing this area



  

Pagefault (3)

● Each address_space has a set of function calls 
to read data from a backing device



  

Conclusion

● Virtual to physical mapping
● Page tables

● Virtual to file mapping
● struct address_space

● Page to address spaces mapping
● Reverse mapping 
● Next time!



  

Thank you!



  

Reverse mapping

● Connection between a page and all address 
spaces it is mapped into
● Used for swapping
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