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Recap: known mappings

● Virtual to physical mapping
● Page tables



  

Recap: known mappings

● Virtual to memory regions mapping
● struct mm_struct (memory map)



  

Two kinds of memory regions

● Anonymous
● Not backed or associated with any data source

– Heap, BSS, stack
● Often shared across multiple processes

– E.g., after fork()

● Mapped
● Backed by a file



  



  

Missing part: reverse mapping

● Connection between a page and all address 
spaces it is mapped into

● Motivation: ability to reclaim the page
● Unmap it from memory
● Save to the swap file
● Keep track of a number of references (accesses to 

a page) in every address space
● Find idle pages, and page them out



  

Reverse mapping

● Trivial solution:
● For every page descriptor (struct page) 

– Keep a list of all address spaces in which it is mapped
● High bookkeeping overhead

– To many pages



  

Reverse mapping

● Insight: pages are always grouped in regions
● Parts of memory mapped file
● Regions of shared memory

● Instead of individual pages
● Keep reverse mapping of those regions
● Remember what these are? 



  

Reverse mapping

● Insight: pages are always grouped in regions
● Parts of memory mapped file
● Regions of shared memory

● Instead of individual pages
● Keep reverse mapping of those regions
● Remember what these are?



  

Two kinds of regions

● Anonymous
● Mapped

● Backed by a file

● Reverse mapping is implemented differently for 
them



  

How do we know which page we 
deal with?

● A field in the struct page indicates type of the 
pointer
● struct page.mapping
● NULL than page belongs to the swap cache
● Not NULL and 

– Lowest bit 1 – page is anonymous
– Lowest bit 0 – page is mapped



  

A programming trick

● struct page.mapping can point to either
● struct anon_vma
● struct address_space

● Both structs are _always_ 4 bytes aligned
● Lower 4 bits are always 0
● These bits can carry some information, e.g., 

anonymous vs mapped 



  

Reverse mapping of anonymous 
pages



  



  

Reverse mapping of mapped pages

● Priority search tree
● struct page.mapping points to struct address_space



  

Page Cache



  

Buffering and caching

● Modern kernels rely on sophisticated buffering 
and caching mechanisms to boost I/O 
performance
● Perform multiple file operations on a memory-

cached copy of data
● Cache data for subsequent accesses
● Tolerate bursts of write I/O

● Caching is transparent to applications



  

User read and write requests

● All user requests go through the cache
● User read request

● Check if read destination is in the cache
● If not, new page is added to the cache
● The data is read from disk
● Kept in the cache until evicted

● User write request
● Check if the page is in the cache
● A new entry is added and filled with data to be written on disk
● Actual I/O transfer to disk doesn't start immediately

– Disk update is delayed for several seconds – waiting for subsequent 
updates



  

Heart of buffer cache: address 
space

● The owner of a page in the page cache is a file
● struct address_space pointer is embedded in struct 

inode.i_mapping object
● Each inode points to a set of pages caching its data



  

How to locate a page in buffer cache

● E.g., trying to perform a user read, how to 
check that the page is already in memory?



  

Radix tree

● Files can be large
● Given a position in a file, we want to quickly find 

whether a corresponding page is in memory
● Linear scan can take too long
● Radix tree is a good option



  

Page cache



  

Organization of the 
radix tree



  

Variable height

● 1 – max index (64)          – max file size 256 KB
● 2 – max index (4095)      – max file size 16MB
● 3 – max index (262 143) – max file size 1GB
● 4 –        …                       – max file size 64GB
● 5 –        …                       – max file size 4TB
● 6  –        …                      – max file size 16TB



  

Radix tree lookup

● Height 1:
● 6 bits of index encode one of 64 pages

● Height 2:
● 12 bits of index are meaningful
● Top 6 bits choose the node on the second level
● Lower 6 bits choose the page



  

Buffer Cache



  

Buffer cache

● Historically block devices performed I/O in blocks
● The kernel had a separate buffer cache for I/O blocks
● Today I/O blocks are kept in the page cache

● Buffer cache is a cache of objects which are not 
handled in pages, but in blocks
● Different block devices can have different block sizes
● Cached blocks are kept in the page cache



  

Block buffers and buffer heads



  

Searching blocks in the page cache

● Input: block number
● Idea: convert from block numbers to pages

● Remember you can lookup pages in the page 
cache

● Each page contains n blocks
● Conversion is trivial
● The page number is block number / n
● struct page.private keeps a pointer to buffer head



  

Cache synchronization



  

pdflush

● Set of background kernel threads which find 
dirty pages and flush them to disk
● Invoked periodically
● Number of threads changes dynamically

– Adapts to current cache pressure



  

pdflush

● Each thread starts with a task to find X number 
of dirty pages and flush them to disk
● Radix tree keeps a dirty flag for each subtree that 

has  at least one dirty page inside
– Helps to reduce unneeded radix tree scanning



  

Swapping and page reclamation



  

What pages can be swapped to 
disk? 



  

Swappable pages

● Anonymous pages
● No backing store, need to be swapped

● Private mappings of file section (PRIVATE flag)
● I guess these are data sections of a file (can be wrong)

● Heap pages
● Malloc'ed on top of brk() or mmap(ANONYMOUS)

● Shared memory pages
● Shared across multiple processes for interprocess 

communication



  

What to swap?

● Kernel needs to detect the working set of a 
program
● Pages which are frequently accessed
● Maintain some sort of a LRU list



  

Naive LRU implementation

● For example, a FIFO queue of pages
● A new page is added to the front
● If the queue is full, the page from the back is swapped 

out

● It's ok, at least a page has a window of time to 
remain in memory
● But of course no information about how many times 

the page was accessed



  

Second chance LRU

● Same FIFO queue of pages
● A new page is added to the front
● If the queue is full, the page from the back becomes 

a victim
● If the accessed bit is set it survives – gets re-added 

to the front
● If not, it is swapped out



  

Swap area

● Dedicated partition or a fixed-size file
● Each divided in slots (size of a page frame)
● Essentially an array on disk

● Kernel uses a bitmap to track free/used slots
● When the page is swapped out its PTE is 

updated to keep its position in the swap area
● So later it can be retrieved from the swap area 

during the page fault



  

Conclusion

● We know how the kernel manages
● Process memory
● Memory mapped files
● Page and buffer caches
● Swap



  

Thank you!
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