

CS5460/6460: Operating Systems

Lecture 23: Buffer cache

Anton Burtsev
April, 2014

Recap: known mappings

● Virtual to physical mapping
● Page tables

Recap: known mappings

● Virtual to memory regions mapping
● struct mm_struct (memory map)

Two kinds of memory regions

● Anonymous
● Not backed or associated with any data source

– Heap, BSS, stack
● Often shared across multiple processes

– E.g., after fork()

● Mapped
● Backed by a file

Missing part: reverse mapping

● Connection between a page and all address
spaces it is mapped into

● Motivation: ability to reclaim the page
● Unmap it from memory
● Save to the swap file
● Keep track of a number of references (accesses to

a page) in every address space
● Find idle pages, and page them out

Reverse mapping

● Trivial solution:
● For every page descriptor (struct page)

– Keep a list of all address spaces in which it is mapped
● High bookkeeping overhead

– To many pages

Reverse mapping

● Insight: pages are always grouped in regions
● Parts of memory mapped file
● Regions of shared memory

● Instead of individual pages
● Keep reverse mapping of those regions
● Remember what these are?

Reverse mapping

● Insight: pages are always grouped in regions
● Parts of memory mapped file
● Regions of shared memory

● Instead of individual pages
● Keep reverse mapping of those regions
● Remember what these are?

Two kinds of regions

● Anonymous
● Mapped

● Backed by a file

● Reverse mapping is implemented differently for
them

How do we know which page we
deal with?

● A field in the struct page indicates type of the
pointer
● struct page.mapping
● NULL than page belongs to the swap cache
● Not NULL and

– Lowest bit 1 – page is anonymous
– Lowest bit 0 – page is mapped

A programming trick

● struct page.mapping can point to either
● struct anon_vma
● struct address_space

● Both structs are _always_ 4 bytes aligned
● Lower 4 bits are always 0
● These bits can carry some information, e.g.,

anonymous vs mapped

Reverse mapping of anonymous
pages

Reverse mapping of mapped pages

● Priority search tree
● struct page.mapping points to struct address_space

Page Cache

Buffering and caching

● Modern kernels rely on sophisticated buffering
and caching mechanisms to boost I/O
performance
● Perform multiple file operations on a memory-

cached copy of data
● Cache data for subsequent accesses
● Tolerate bursts of write I/O

● Caching is transparent to applications

User read and write requests

● All user requests go through the cache
● User read request

● Check if read destination is in the cache
● If not, new page is added to the cache
● The data is read from disk
● Kept in the cache until evicted

● User write request
● Check if the page is in the cache
● A new entry is added and filled with data to be written on disk
● Actual I/O transfer to disk doesn't start immediately

– Disk update is delayed for several seconds – waiting for subsequent
updates

Heart of buffer cache: address
space

● The owner of a page in the page cache is a file
● struct address_space pointer is embedded in struct

inode.i_mapping object
● Each inode points to a set of pages caching its data

How to locate a page in buffer cache

● E.g., trying to perform a user read, how to
check that the page is already in memory?

Radix tree

● Files can be large
● Given a position in a file, we want to quickly find

whether a corresponding page is in memory
● Linear scan can take too long
● Radix tree is a good option

Page cache

Organization of the
radix tree

Variable height

● 1 – max index (64) – max file size 256 KB
● 2 – max index (4095) – max file size 16MB
● 3 – max index (262 143) – max file size 1GB
● 4 – … – max file size 64GB
● 5 – … – max file size 4TB
● 6 – … – max file size 16TB

Radix tree lookup

● Height 1:
● 6 bits of index encode one of 64 pages

● Height 2:
● 12 bits of index are meaningful
● Top 6 bits choose the node on the second level
● Lower 6 bits choose the page

Buffer Cache

Buffer cache

● Historically block devices performed I/O in blocks
● The kernel had a separate buffer cache for I/O blocks
● Today I/O blocks are kept in the page cache

● Buffer cache is a cache of objects which are not
handled in pages, but in blocks
● Different block devices can have different block sizes
● Cached blocks are kept in the page cache

Block buffers and buffer heads

Searching blocks in the page cache

● Input: block number
● Idea: convert from block numbers to pages

● Remember you can lookup pages in the page
cache

● Each page contains n blocks
● Conversion is trivial
● The page number is block number / n
● struct page.private keeps a pointer to buffer head

Cache synchronization

pdflush

● Set of background kernel threads which find
dirty pages and flush them to disk
● Invoked periodically
● Number of threads changes dynamically

– Adapts to current cache pressure

pdflush

● Each thread starts with a task to find X number
of dirty pages and flush them to disk
● Radix tree keeps a dirty flag for each subtree that

has at least one dirty page inside
– Helps to reduce unneeded radix tree scanning

Swapping and page reclamation

What pages can be swapped to
disk?

Swappable pages

● Anonymous pages
● No backing store, need to be swapped

● Private mappings of file section (PRIVATE flag)
● I guess these are data sections of a file (can be wrong)

● Heap pages
● Malloc'ed on top of brk() or mmap(ANONYMOUS)

● Shared memory pages
● Shared across multiple processes for interprocess

communication

What to swap?

● Kernel needs to detect the working set of a
program
● Pages which are frequently accessed
● Maintain some sort of a LRU list

Naive LRU implementation

● For example, a FIFO queue of pages
● A new page is added to the front
● If the queue is full, the page from the back is swapped

out

● It's ok, at least a page has a window of time to
remain in memory
● But of course no information about how many times

the page was accessed

Second chance LRU

● Same FIFO queue of pages
● A new page is added to the front
● If the queue is full, the page from the back becomes

a victim
● If the accessed bit is set it survives – gets re-added

to the front
● If not, it is swapped out

Swap area

● Dedicated partition or a fixed-size file
● Each divided in slots (size of a page frame)
● Essentially an array on disk

● Kernel uses a bitmap to track free/used slots
● When the page is swapped out its PTE is

updated to keep its position in the swap area
● So later it can be retrieved from the swap area

during the page fault

Conclusion

● We know how the kernel manages
● Process memory
● Memory mapped files
● Page and buffer caches
● Swap

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

