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– What this interface should look like? 

● In UNIX everything is a ...
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Devices in UNIX

● In Unix devices expose file-like interface
● They are files in the file system

– /dev/sda, /dev/dsp
● Applications can read and write into them

– dd if=/dev/sda of=/my-disk-image bs=1M
– cat thesis.txt > /dev/lp



  

Classes of devices

● Character
● Accessed as a stream of bytes

– Text console, serial ports
– /dev/console, /dev/tty1

● Block
● I/O performed in units of blocks

– Hard disks, CD drives, USB sticks
– /dev/sda



  

Classes of devices

● But what about network devices? Graphic 
cards? 
● No easy file mapping

– Although it doesn't mean you can't come up with one if it 
fits your needs

● Device as a file paradigm doesn't work
– Well they expose different interfaces
– Network cards are accessible through sockets



  

Detour into hardware



  

Device drivers and hardware

● Device driver doesn't strictly need to talk to 
hardware
● /dev/random – stream of random numbers
● /dev/mem – reads physical memory
● /dev/null – input goes nowhere



  

Bus subsystem

● Buses are the mechanism that enable the flow 
of data across CPU, memory, and devices



  



  

Buses

● PCI (Peripheral Component Interconnect) – 
main system bus on most architectures

● USB (Universal Serial Bus) – external bus, 
hotplug capability, devices are connected in a 
tree

● SCSI (Small Computer System Interface) – 
high-throughput bus used mainly for disks



  

Interacting with peripherals 

● I/O ports
● Device is identified by the port number
● 2^16 ports (64K ports)
● in, out instructions to read and write data from a 

port
– Connect straight to a peripheral 



  

Interacting with peripherals 

● I/O memory mapping
● Modern CPUs allow mapping port addresses to 

memory locations
● Then it's just possible read/write memory

– GPU devices
– System buses like PCI



  

Interacting with peripherals 

● Interrupts
● CPU provides several interrupt lines
● One line can be shared across several devices

● Polling
● Periodic check of the device state for whether more 

data is available



  

Back to the Linux kernel



  

Linux exports devices as files

● Lets assume you have a modem attached to 
the serial port
● echo "ATZ" > /dev/ttyS0

– Sends initialization string to the modem

● To read your hard drive
● cat /dev/sda



  

Device files (/dev/xyz)



  

Major and minor numbers

● Each device file has two numbers
● Identify device driver for this device
● Major number: device driver
● Minor number: device number

wolfgang@meitner> ls -l /dev/sd{a,b} /dev/ttyS{0,1}

brw-r----- 1 root disk 8, 0 2008-02-21 21:06 /dev/sda

brw-r----- 1 root disk 8, 16 2008-02-21 21:06 /dev/sdb

crw-rw---- 1 root uucp 4, 64 2007-09-21 21:12 ttyS0

crw-rw---- 1 root uucp 4, 65 2007-09-21 21:12 ttyS1



  

/dev

● Back in the days /dev/ was static
● Now there are 20K device numbers are allocated
● Most are not used on your system

● Today, /dev/ is a temporary file system
● All device names are generated on the fly
● By udevd daemon



  

udevd

● Udevd listens for hotplug messages from the 
kernel
● Creates new device nodes



  

Implementing device drivers



  

Kernel modules

● Linux allows extending itself with kernel 
modules
● Most device drivers are implemented as kernel 

modules
● Loadable at run-time on demand, when device is 

detected



  

Hello world module
#include <linux/init.h>
#include <linux/module.h>
MODULE_LICENSE("Dual BSD/GPL");
static int hello_init(void)
{
    printk(KERN_ALERT "Hello, world\n");
    return 0;
}
static void hello_exit(void)
{
    printk(KERN_ALERT "Goodbye, cruel world\n");
}
module_init(hello_init);
module_exit(hello_exit);



  

File operations

● Remember devices are exported as special 
files
● Each device needs to implement a file interface

● Each inode and file has a pointer to an interface
● Set of functions which are used for opening, 

reading, writing, etc. 
● Same with device files

– Each device file has a pointer to a set of functions



  

File operationsstruct file_operations {
       struct module *owner;
       loff_t (*llseek) (struct file *, loff_t, int);
       ssize_t (*read) (struct file *, char *, size_t, loff_t *);
       ssize_t (*write) (struct file *, const char *, size_t, loff_t *);
       int (*readdir) (struct file *, void *, filldir_t);
       unsigned int (*poll) (struct file *, struct poll_table_struct *);
       int (*ioctl) (struct inode *, struct file *, unsigned, unsigned long);
       int (*mmap) (struct file *, struct vm_area_struct *);
       int (*open) (struct inode *, struct file *);
       int (*flush) (struct file *);
       int (*release) (struct inode *, struct file *);
       int (*fsync) (struct file *, struct dentry *, int datasync);
       int (*fasync) (int, struct file *, int);
       int (*lock) (struct file *, int, struct file_lock *);
       ssize_t (*readv) (struct file *, struct iovec *, unsigned, loff_t *);
       ssize_t (*writev) (struct file *, struct iovec *, unsigned, loff_t *);
    };



  

File operations

● You don't need to implement all file operations
● Some can remain NULL
● Kernel will come up with some default behavior

      static struct file_operations simple_driver_fops = 
      {
          .owner   = THIS_MODULE,
          .read    = device_file_read,
      };



  

Register with the kernel

● Register character device with the kernel
static int device_file_major_number = 0;
static const char device_name[] = "Simple-driver";
static int register_device(void)
{      
    result = register_chrdev( 0, device_name, &simple_driver_fops );
    if( result < 0 )
    {
        printk( KERN_WARNING "Simple-driver:  can\'t register 
                character device with errorcode = %i", result );
        return result;
    }

    device_file_major_number = result;
};



  

Read function

● ssize_t (*read) (struct file *, char *,  
size_t, loff_t *);
● First arg – pointer to the file struct

– Private information for us, e.g. state of this file
● Second arg – buffer in user space to read data into
● Third arg – number of bytes to read
● Fourth arg – position in a file from where to read



  

static const char    hw_string[] = "Hello world from kernel mode!\n\0";
static const ssize_t hw_size = sizeof(hw_string);

static ssize_t device_file_read(struct file *file_ptr, char __user *user_buffer, 
size_t count, loff_t *position) {

  /* If position is behind the end of a file we have nothing to read */
  if( *position >= hw_size )
      return 0;

  /* If a user tries to read more than we have, read only as many bytes as we 
have */
  if( *position + count > hw_size )
      count = hw_size - *position;

  if( copy_to_user(user_buffer, hw_string + *position, count) != 0 )
       return -EFAULT;

   /* Move reading position */
   *position += count;
   return count;
}



  

Build, compile...

● New device appears in /proc/devices

    Character devices:
    1 mem
    4 tty
    4 ttyS
      ... 
    250 Simple-driver
      ...
● Make a device file for our device

$> mknod /dev/simple-driver c  250 0
● Access device

    $> cat /dev/simple-driver
    Hello world from kernel mode!



  

Block devices



  



  

Elevator I/O schedulers

● Original name is after the way of how elevator 
moves
● Up or down, picking up passengers on the way

● Same with disk
● Disk arm moves inside or outside
● Requests are serviced only in the direction of the 

arm movement until it reaches the edge



  

Linux elevators

● Noop
● First come, first served

● Deadline 
● Assigns a deadline to each request
● Tries to reorder requests to minimize seek times for requests before deadline

● Anticipatory scheduler
● Tries to anticipate behavior of a process
● Assumes that reads are not independent, more reads will follow the initial read
● Delay seeks for some time anticipating reads to a nearby location

● CFQ (Completely Fair Queuing)
● Assign each thread a time slice in which it is allowed to submit requests to disk
● Each thread gets a fair share of I/O throughput



  

Conclusion



  

Thank you!
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