
  

CS5460/6460: Operating Systems

Lecture 24: Device drivers

Anton Burtsev
April, 2014



  



  

Device drivers

● Conceptually
● Implement interface to hardware 
● Expose some high-level interface to the kernel or 

applications
– What this interface should look like? 

● In UNIX everything is a ...



  

Device drivers

● Conceptually
● Implement interface to hardware 
● Expose some high-level interface to the kernel or 

applications
– What this interface should look like? 

● In UNIX everything is a file



  

Devices in UNIX

● In Unix devices expose file-like interface
● They are files in the file system

– /dev/sda, /dev/dsp
● Applications can read and write into them

– dd if=/dev/sda of=/my-disk-image bs=1M
– cat thesis.txt > /dev/lp



  

Classes of devices

● Character
● Accessed as a stream of bytes

– Text console, serial ports
– /dev/console, /dev/tty1

● Block
● I/O performed in units of blocks

– Hard disks, CD drives, USB sticks
– /dev/sda



  

Classes of devices

● But what about network devices? Graphic 
cards? 
● No easy file mapping

– Although it doesn't mean you can't come up with one if it 
fits your needs

● Device as a file paradigm doesn't work
– Well they expose different interfaces
– Network cards are accessible through sockets



  

Detour into hardware



  

Device drivers and hardware

● Device driver doesn't strictly need to talk to 
hardware
● /dev/random – stream of random numbers
● /dev/mem – reads physical memory
● /dev/null – input goes nowhere



  

Bus subsystem

● Buses are the mechanism that enable the flow 
of data across CPU, memory, and devices



  



  

Buses

● PCI (Peripheral Component Interconnect) – 
main system bus on most architectures

● USB (Universal Serial Bus) – external bus, 
hotplug capability, devices are connected in a 
tree

● SCSI (Small Computer System Interface) – 
high-throughput bus used mainly for disks



  

Interacting with peripherals 

● I/O ports
● Device is identified by the port number
● 2^16 ports (64K ports)
● in, out instructions to read and write data from a 

port
– Connect straight to a peripheral 



  

Interacting with peripherals 

● I/O memory mapping
● Modern CPUs allow mapping port addresses to 

memory locations
● Then it's just possible read/write memory

– GPU devices
– System buses like PCI



  

Interacting with peripherals 

● Interrupts
● CPU provides several interrupt lines
● One line can be shared across several devices

● Polling
● Periodic check of the device state for whether more 

data is available



  

Back to the Linux kernel



  

Linux exports devices as files

● Lets assume you have a modem attached to 
the serial port
● echo "ATZ" > /dev/ttyS0

– Sends initialization string to the modem

● To read your hard drive
● cat /dev/sda



  

Device files (/dev/xyz)



  

Major and minor numbers

● Each device file has two numbers
● Identify device driver for this device
● Major number: device driver
● Minor number: device number

wolfgang@meitner> ls -l /dev/sd{a,b} /dev/ttyS{0,1}

brw-r----- 1 root disk 8, 0 2008-02-21 21:06 /dev/sda

brw-r----- 1 root disk 8, 16 2008-02-21 21:06 /dev/sdb

crw-rw---- 1 root uucp 4, 64 2007-09-21 21:12 ttyS0

crw-rw---- 1 root uucp 4, 65 2007-09-21 21:12 ttyS1



  

/dev

● Back in the days /dev/ was static
● Now there are 20K device numbers are allocated
● Most are not used on your system

● Today, /dev/ is a temporary file system
● All device names are generated on the fly
● By udevd daemon



  

udevd

● Udevd listens for hotplug messages from the 
kernel
● Creates new device nodes



  

Implementing device drivers



  

Kernel modules

● Linux allows extending itself with kernel 
modules
● Most device drivers are implemented as kernel 

modules
● Loadable at run-time on demand, when device is 

detected



  

Hello world module
#include <linux/init.h>
#include <linux/module.h>
MODULE_LICENSE("Dual BSD/GPL");
static int hello_init(void)
{
    printk(KERN_ALERT "Hello, world\n");
    return 0;
}
static void hello_exit(void)
{
    printk(KERN_ALERT "Goodbye, cruel world\n");
}
module_init(hello_init);
module_exit(hello_exit);



  

File operations

● Remember devices are exported as special 
files
● Each device needs to implement a file interface

● Each inode and file has a pointer to an interface
● Set of functions which are used for opening, 

reading, writing, etc. 
● Same with device files

– Each device file has a pointer to a set of functions



  

File operationsstruct file_operations {
       struct module *owner;
       loff_t (*llseek) (struct file *, loff_t, int);
       ssize_t (*read) (struct file *, char *, size_t, loff_t *);
       ssize_t (*write) (struct file *, const char *, size_t, loff_t *);
       int (*readdir) (struct file *, void *, filldir_t);
       unsigned int (*poll) (struct file *, struct poll_table_struct *);
       int (*ioctl) (struct inode *, struct file *, unsigned, unsigned long);
       int (*mmap) (struct file *, struct vm_area_struct *);
       int (*open) (struct inode *, struct file *);
       int (*flush) (struct file *);
       int (*release) (struct inode *, struct file *);
       int (*fsync) (struct file *, struct dentry *, int datasync);
       int (*fasync) (int, struct file *, int);
       int (*lock) (struct file *, int, struct file_lock *);
       ssize_t (*readv) (struct file *, struct iovec *, unsigned, loff_t *);
       ssize_t (*writev) (struct file *, struct iovec *, unsigned, loff_t *);
    };



  

File operations

● You don't need to implement all file operations
● Some can remain NULL
● Kernel will come up with some default behavior

      static struct file_operations simple_driver_fops = 
      {
          .owner   = THIS_MODULE,
          .read    = device_file_read,
      };



  

Register with the kernel

● Register character device with the kernel
static int device_file_major_number = 0;
static const char device_name[] = "Simple-driver";
static int register_device(void)
{      
    result = register_chrdev( 0, device_name, &simple_driver_fops );
    if( result < 0 )
    {
        printk( KERN_WARNING "Simple-driver:  can\'t register 
                character device with errorcode = %i", result );
        return result;
    }

    device_file_major_number = result;
};



  

Read function

● ssize_t (*read) (struct file *, char *,  
size_t, loff_t *);
● First arg – pointer to the file struct

– Private information for us, e.g. state of this file
● Second arg – buffer in user space to read data into
● Third arg – number of bytes to read
● Fourth arg – position in a file from where to read



  

static const char    hw_string[] = "Hello world from kernel mode!\n\0";
static const ssize_t hw_size = sizeof(hw_string);

static ssize_t device_file_read(struct file *file_ptr, char __user *user_buffer, 
size_t count, loff_t *position) {

  /* If position is behind the end of a file we have nothing to read */
  if( *position >= hw_size )
      return 0;

  /* If a user tries to read more than we have, read only as many bytes as we 
have */
  if( *position + count > hw_size )
      count = hw_size - *position;

  if( copy_to_user(user_buffer, hw_string + *position, count) != 0 )
       return -EFAULT;

   /* Move reading position */
   *position += count;
   return count;
}



  

Build, compile...

● New device appears in /proc/devices

    Character devices:
    1 mem
    4 tty
    4 ttyS
      ... 
    250 Simple-driver
      ...
● Make a device file for our device

$> mknod /dev/simple-driver c  250 0
● Access device

    $> cat /dev/simple-driver
    Hello world from kernel mode!



  

Block devices



  



  

Elevator I/O schedulers

● Original name is after the way of how elevator 
moves
● Up or down, picking up passengers on the way

● Same with disk
● Disk arm moves inside or outside
● Requests are serviced only in the direction of the 

arm movement until it reaches the edge



  

Linux elevators

● Noop
● First come, first served

● Deadline 
● Assigns a deadline to each request
● Tries to reorder requests to minimize seek times for requests before deadline

● Anticipatory scheduler
● Tries to anticipate behavior of a process
● Assumes that reads are not independent, more reads will follow the initial read
● Delay seeks for some time anticipating reads to a nearby location

● CFQ (Completely Fair Queuing)
● Assign each thread a time slice in which it is allowed to submit requests to disk
● Each thread gets a fair share of I/O throughput



  

Conclusion



  

Thank you!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

