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File systems



  

The role of file systems

● Sharing
● Sharing of data across users and applications

● Persistence
● Data is available after reboot



  

Crash recovery

● File systems must support crash recovery
● A power loss may interrupt a sequence of updates
● Leave file system in inconsistent state

– E.g. a block both marked free and used



  

Speed

● Access to a block device is several orders of 
magnitude slower
● Memory: 200 cycles
● Disk: 20 000 000 cycles

● A file system must maintain a cache of disk 
blocks in memory



  

FS/Block Layer Stack



  

File system layout on disk

● Block #0: Boot code
● Block #1: Metadata about the file system

● Size (number of blocks)
● Number of data blocks
● Number of inodes
● Number of blocks in log



  

File system layout on disk

● Block #2 (inode area)
● Bit map area: track which blocks are in use
● Data area: actual file data
● Log area: maintaining consistency in case of a 

power outage or system crash



  

Representing files on disk

What is the max 
file size?



  

Logging layer

● Consistency
● File system operations involve multiple writes to 

disk
● During the crash, subset of writes might leave the 

file system in an inconsistent state
● E.g. file delete can crash leaving:

– Directory entry pointing to a free inode
– Allocated but unlinked inode



  

Logging

● Writes don't directly go to disk
● Instead they are logged in a journal
● Once all writes are logged, the system writes a 

special commit record
– Indicating that log contains a complete operation

● At this point file system copies writes to the on-
disk data structures
● After copy completes, log record is erased



  

Recovery

● After reboot, copy the log
● For operations marked as complete

– Copy blocks to disk
● For operations partially complete

– Discard all writes
– Information might be lost (output consistency, e.g. can 

launch the rocket twice)



  

Memory management



  

Buddy memory allocator

● Each zone has a buddy allocator



  

Buddy allocator



  

Slab allocator

● Buddy allocator is ok for large allocations
● E.g. 1 page or more

● But what about small allocations? 
● Buddy uses the whole page for a 4 bytes allocation

– Wasteful
● Buddy is still slow for short-lived objects



  

Slab

● A 2 page slab with 
6 objects



  

Keeping track of free objects

● kmem_bufctl array 
is effectively a 
linked list

● First free object: 3
● Next free object: 1



  

A cache is formed out of slabs



  

Kmalloc(): variable size objects

● A table of caches
● Size: 32, 64, 128, etc.



  

Linking and loading



  



  

● Input: object files (code modules)
● Each object file contains

● A set of segments
– Code
– Data

● A symbol table
– Imported & exported symbols

● Output: executable file, library, etc.



  



  

Multiple object files



  

Merging 
segments



  

Relocation, why?

● Each program gets its own private space, why relocate? 
● Linkers combine multiple libraries into a single executable
● Each library assumes private address space

– E.g., starts at 0x0

● Is it possible to go away with segments?
● Each library gets a private segment (starts at 0x0)
● All cross-library references are patched to use segment numbers

● Possible! 
● But slow.
● Segment lookups are slow



  

Relocation

● Each relocatable object file contains a relocation table
● List of places in each segment that need to be relocated
● Example:

– Pointer in the text segment points to offset 200 in the data segment
– Input file: text starts at 0, data starts at 2000, stored pointer has value 2200
– Output file: Data segment starts at 15000

● Linker adds relocated base of the data segment 13000 (DR)

– Output file: will have pointer value of 15200
● All jumps are relative on x86

– No need to relocate
– Unless its a cross-segment jump, e.g. text segment to data segment



  

Types of object files

● Relocatable object files (.o)
● Static libraries (.a)
● Shared libraries (.so)
● Executable files 

● We looked at A.OUT, but Unix has a general 
format capable to hold any of these files



  

ELF 



  

ELF (continued) 



  

Creating a static library



  

Searching libraries

● First linker path needs resolve symbol names 
into function locations

● To improve the search library formats add a 
directory
● Map names to member positions



  

Shared libraries



  

Motivation

● 1000 programs in a typical UNIX system
● 1000 copies of printf

● How big is printf actually?



  

Motivation

● 1000 programs in a typical UNIX system
● 1000 copies of printf

● Printf is a large function
● Handles conversion of multiple types to strings
● 5-10K

● This means 5-10MB of disk is wasted on printf
● Runtime memory costs are 

● 10K x number of running programs



  

Position independent code

● Motivation
● Share code of a library across all processes

– E.g. libc is linked by all processes in the system
● Code section should remain identical

– To be shared read-only
● What if library is loaded at different addresses?

– Remember it needs to be relocated



  

Position independent code (PIC)

● Main idea: 
● Generate code in such a way that it can work no 

matter where it is located in the address space
● Share code across all address spaces



  

What needs to be changed?

● Can stay untouched
● Local jumps and calls are relative
● Stack data is relative to the stack

● Needs to be modified
● Global variables
● Imported functions



  

Example

000010a4 <_main>:
    10a4: 55             pushl %ebp
    10a5: 89 e5          movl %esp,%ebp
    10a7: 68 10 00 00 00 pushl $0x10
      10a8: 32 .data
    10ac: e8 03 00 00 00 call 10b4 <_a>
  ...
000010b4 <_a>:
    10bc: e8 37 00 00 00 call 10f8 <_strlen>
     ...
    10c3: 6a 01 pushl $0x1
    10c5: e8 a2 00 00 00 call 116c <_write>
    ...

● Reference to a data section
● Code and data sections can be 

moved around



  

Example

000010a4 <_main>:
    10a4: 55             pushl %ebp
    10a5: 89 e5          movl %esp,%ebp
    10a7: 68 10 00 00 00 pushl $0x10
      10a8: 32 .data
    10ac: e8 03 00 00 00 call 10b4 <_a>
  ...
000010b4 <_a>:
    10bc: e8 37 00 00 00 call 10f8 <_strlen>
     ...
    10c3: 6a 01 pushl $0x1
    10c5: e8 a2 00 00 00 call 116c <_write>
    ...

●  Local function invocations 
  use relative addresses

● No need to relocate



  

Position independent code

● How would you build it?



  

Position independent code

● Main insight
● Code sections are followed by data sections
● The distance between code and data remains 

constant even if code is relocated
– Linker knows the distance
– Even if it combines multiple code sections together



  

Insight 1: Constant offset between 
text and data sections



  

Global offset table (GOT)

● Insight #2:
● Instead of referring to a 

variable by its absolute 
address

● Refer through GOT



  

Global offset table (GOT)

● GOT
● Table of addresses
● Each entry contains 

absolute address of a 
variable

● GOT is patched by the 
linker at relocation time



  

How to find position of the code in 
memory at run time?

● Is there an x86 instruction that does this? 
● i.e., give me my current code address



  

How to find position of the code in 
memory at run time?

● Simple trick

        call L2

    L2: popl %ebx
● Call next instruction

● Saves EIP on the stack 
● EIP holds current position of the code
● Use popl to fetch EIP into a register



  



  

PIC: Advantages and disadvantages

● Bad
● Code gets slower

– One register is wasted to keep GOT pointer
● x86 has 6 registers, loosing one of them is bad

– One more memory dereference
● GOT can be large (lots of global variables)
● Extra memory dereferences can have a high cost due to cache misses

– One more call to find GOT 

● Good
● Share memory of common libraries
● Address space randomization



  

Process virtual memory



  

Alternative address space layout

● Fix the stack size 
● Doesn't need to be big



  

Recap: known mappings

● Virtual to memory regions mapping
● struct mm_struct (memory map)



  

Two kinds of memory regions

● Anonymous
● Not backed or associated with any data source

– Heap, BSS, stack
● Often shared across multiple processes

– E.g., after fork()

● Mapped
● Backed by a file



  

Pagefault

● For the current process
● Represented with the task_struct
● Walk the mm->mmap_rb to locate a vm_area_struct 

for the faulting virtual address



  

Pagefault (2)

● Each vm_area_struct has a pointer to a 
vm_file backing this area



  

Page cache



  

Organization of the 
radix tree



  

Variable height

● 1 – max index (64)          – max file size 256 KB
● 2 – max index (4095)      – max file size 16MB
● 3 – max index (262 143) – max file size 1GB
● 4 –        …                       – max file size 64GB
● 5 –        …                       – max file size 4TB
● 6  –        …                      – max file size 16TB



  

Virtualization



  

Trap and emulate



  

x86 is not virtualizable

● Some instructions (sensitive) read or update 
the state of virtual machine and don't trap (non-
privileged)
● 17 sensitive, non-privileged instructions [Robin et al 

2000]



  

Solution space

● Parse the instruction stream and detect all sensitive 
instructions dynamically
● Interpretation (BOCHS, JSLinux)
● Binary translation (VMWare, QEMU)

● Change the operating system
● Paravirtualization (Xen, L4, Denali, Hyper-V)

● Make all sensitive instructions privileged!
● Hardware supported virtualization (Xen, KVM, VMWare)

– Intel VT-x, AMD SVM



  

Memory virtualization: brute force.

Hypervisor

HardwareTLB

Guest

PD

CR3

PT

Helper structures describe 
actual guest VM layout
  Maintained for each guest. On 
  VM-Exit hypervisor adjusts guest
  page  accordingly.

Write / read protected
page table area.
   Every access results in VM-Exit and
   passes control to hypervisor

CPU stores pointer on
guest page table directory



  

Memory virtualization: shadow 
page tables

HardwareTLB

Guest

PD

CR3

PT

Active page table hierarchy
  VMM maintains it for each VM
  that it supports

Guest page table hierarchy
   It's writable, but can be inconsistent with 
   active page table hierarchy stored by the
   hypervisor

PD PT

CPU stores pointer on active page table hierarchy.
  On Intel CPUs TLB is always refilled from active page table directory



  

Nested page tables

hPT gPT Host Physical

gPT

VMM Host Virtual

Guest Physical

Guest Virtual
gCR3

hCR3

0

0

0

PT

CR3 used by VMM

Translation can be cached in TLB

paged by CR3

paged by hCR3

paged by gCR3



Virtual devices in Xen

67



How to make the I/O fast?
● Take into account specifics of the device-

driver communication
● Bulk

– Large packets (512B – 4K)
● Session oriented 

– Connection is established once (during boot)
– No short IPCs, like function calls
– Costs of establishing an IPC channel are irrelevant

● Throughput oriented
– Devices have high delays anyway

● Asynchronous
– Again, no function calls, devices are already 

asynchronous



Shared rings and events



Shared rings



Shared rings



Shared rings



Shared rings



  

Thank you!
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