

CS5460/6460: Operating Systems

Lecture 27: Recap

Anton Burtsev
April, 2014

File systems

The role of file systems

● Sharing
● Sharing of data across users and applications

● Persistence
● Data is available after reboot

Crash recovery

● File systems must support crash recovery
● A power loss may interrupt a sequence of updates
● Leave file system in inconsistent state

– E.g. a block both marked free and used

Speed

● Access to a block device is several orders of
magnitude slower
● Memory: 200 cycles
● Disk: 20 000 000 cycles

● A file system must maintain a cache of disk
blocks in memory

FS/Block Layer Stack

File system layout on disk

● Block #0: Boot code
● Block #1: Metadata about the file system

● Size (number of blocks)
● Number of data blocks
● Number of inodes
● Number of blocks in log

File system layout on disk

● Block #2 (inode area)
● Bit map area: track which blocks are in use
● Data area: actual file data
● Log area: maintaining consistency in case of a

power outage or system crash

Representing files on disk

What is the max
file size?

Logging layer

● Consistency
● File system operations involve multiple writes to

disk
● During the crash, subset of writes might leave the

file system in an inconsistent state
● E.g. file delete can crash leaving:

– Directory entry pointing to a free inode
– Allocated but unlinked inode

Logging

● Writes don't directly go to disk
● Instead they are logged in a journal
● Once all writes are logged, the system writes a

special commit record
– Indicating that log contains a complete operation

● At this point file system copies writes to the on-
disk data structures
● After copy completes, log record is erased

Recovery

● After reboot, copy the log
● For operations marked as complete

– Copy blocks to disk
● For operations partially complete

– Discard all writes
– Information might be lost (output consistency, e.g. can

launch the rocket twice)

Memory management

Buddy memory allocator

● Each zone has a buddy allocator

Buddy allocator

Slab allocator

● Buddy allocator is ok for large allocations
● E.g. 1 page or more

● But what about small allocations?
● Buddy uses the whole page for a 4 bytes allocation

– Wasteful
● Buddy is still slow for short-lived objects

Slab

● A 2 page slab with
6 objects

Keeping track of free objects

● kmem_bufctl array
is effectively a
linked list

● First free object: 3
● Next free object: 1

A cache is formed out of slabs

Kmalloc(): variable size objects

● A table of caches
● Size: 32, 64, 128, etc.

Linking and loading

● Input: object files (code modules)
● Each object file contains

● A set of segments
– Code
– Data

● A symbol table
– Imported & exported symbols

● Output: executable file, library, etc.

Multiple object files

Merging
segments

Relocation, why?

● Each program gets its own private space, why relocate?
● Linkers combine multiple libraries into a single executable
● Each library assumes private address space

– E.g., starts at 0x0

● Is it possible to go away with segments?
● Each library gets a private segment (starts at 0x0)
● All cross-library references are patched to use segment numbers

● Possible!
● But slow.
● Segment lookups are slow

Relocation

● Each relocatable object file contains a relocation table
● List of places in each segment that need to be relocated
● Example:

– Pointer in the text segment points to offset 200 in the data segment
– Input file: text starts at 0, data starts at 2000, stored pointer has value 2200
– Output file: Data segment starts at 15000

● Linker adds relocated base of the data segment 13000 (DR)

– Output file: will have pointer value of 15200
● All jumps are relative on x86

– No need to relocate
– Unless its a cross-segment jump, e.g. text segment to data segment

Types of object files

● Relocatable object files (.o)
● Static libraries (.a)
● Shared libraries (.so)
● Executable files

● We looked at A.OUT, but Unix has a general
format capable to hold any of these files

ELF

ELF (continued)

Creating a static library

Searching libraries

● First linker path needs resolve symbol names
into function locations

● To improve the search library formats add a
directory
● Map names to member positions

Shared libraries

Motivation

● 1000 programs in a typical UNIX system
● 1000 copies of printf

● How big is printf actually?

Motivation

● 1000 programs in a typical UNIX system
● 1000 copies of printf

● Printf is a large function
● Handles conversion of multiple types to strings
● 5-10K

● This means 5-10MB of disk is wasted on printf
● Runtime memory costs are

● 10K x number of running programs

Position independent code

● Motivation
● Share code of a library across all processes

– E.g. libc is linked by all processes in the system
● Code section should remain identical

– To be shared read-only
● What if library is loaded at different addresses?

– Remember it needs to be relocated

Position independent code (PIC)

● Main idea:
● Generate code in such a way that it can work no

matter where it is located in the address space
● Share code across all address spaces

What needs to be changed?

● Can stay untouched
● Local jumps and calls are relative
● Stack data is relative to the stack

● Needs to be modified
● Global variables
● Imported functions

Example

000010a4 <_main>:
 10a4: 55 pushl %ebp
 10a5: 89 e5 movl %esp,%ebp
 10a7: 68 10 00 00 00 pushl $0x10
 10a8: 32 .data
 10ac: e8 03 00 00 00 call 10b4 <_a>
 ...
000010b4 <_a>:
 10bc: e8 37 00 00 00 call 10f8 <_strlen>
 ...
 10c3: 6a 01 pushl $0x1
 10c5: e8 a2 00 00 00 call 116c <_write>
 ...

● Reference to a data section
● Code and data sections can be

moved around

Example

000010a4 <_main>:
 10a4: 55 pushl %ebp
 10a5: 89 e5 movl %esp,%ebp
 10a7: 68 10 00 00 00 pushl $0x10
 10a8: 32 .data
 10ac: e8 03 00 00 00 call 10b4 <_a>
 ...
000010b4 <_a>:
 10bc: e8 37 00 00 00 call 10f8 <_strlen>
 ...
 10c3: 6a 01 pushl $0x1
 10c5: e8 a2 00 00 00 call 116c <_write>
 ...

● Local function invocations
 use relative addresses

● No need to relocate

Position independent code

● How would you build it?

Position independent code

● Main insight
● Code sections are followed by data sections
● The distance between code and data remains

constant even if code is relocated
– Linker knows the distance
– Even if it combines multiple code sections together

Insight 1: Constant offset between
text and data sections

Global offset table (GOT)

● Insight #2:
● Instead of referring to a

variable by its absolute
address

● Refer through GOT

Global offset table (GOT)

● GOT
● Table of addresses
● Each entry contains

absolute address of a
variable

● GOT is patched by the
linker at relocation time

How to find position of the code in
memory at run time?

● Is there an x86 instruction that does this?
● i.e., give me my current code address

How to find position of the code in
memory at run time?

● Simple trick

 call L2

 L2: popl %ebx
● Call next instruction

● Saves EIP on the stack
● EIP holds current position of the code
● Use popl to fetch EIP into a register

PIC: Advantages and disadvantages

● Bad
● Code gets slower

– One register is wasted to keep GOT pointer
● x86 has 6 registers, loosing one of them is bad

– One more memory dereference
● GOT can be large (lots of global variables)
● Extra memory dereferences can have a high cost due to cache misses

– One more call to find GOT

● Good
● Share memory of common libraries
● Address space randomization

Process virtual memory

Alternative address space layout

● Fix the stack size
● Doesn't need to be big

Recap: known mappings

● Virtual to memory regions mapping
● struct mm_struct (memory map)

Two kinds of memory regions

● Anonymous
● Not backed or associated with any data source

– Heap, BSS, stack
● Often shared across multiple processes

– E.g., after fork()

● Mapped
● Backed by a file

Pagefault

● For the current process
● Represented with the task_struct
● Walk the mm->mmap_rb to locate a vm_area_struct

for the faulting virtual address

Pagefault (2)

● Each vm_area_struct has a pointer to a
vm_file backing this area

Page cache

Organization of the
radix tree

Variable height

● 1 – max index (64) – max file size 256 KB
● 2 – max index (4095) – max file size 16MB
● 3 – max index (262 143) – max file size 1GB
● 4 – … – max file size 64GB
● 5 – … – max file size 4TB
● 6 – … – max file size 16TB

Virtualization

Trap and emulate

x86 is not virtualizable

● Some instructions (sensitive) read or update
the state of virtual machine and don't trap (non-
privileged)
● 17 sensitive, non-privileged instructions [Robin et al

2000]

Solution space

● Parse the instruction stream and detect all sensitive
instructions dynamically
● Interpretation (BOCHS, JSLinux)
● Binary translation (VMWare, QEMU)

● Change the operating system
● Paravirtualization (Xen, L4, Denali, Hyper-V)

● Make all sensitive instructions privileged!
● Hardware supported virtualization (Xen, KVM, VMWare)

– Intel VT-x, AMD SVM

Memory virtualization: brute force.

Hypervisor

HardwareTLB

Guest

PD

CR3

PT

Helper structures describe
actual guest VM layout
 Maintained for each guest. On
 VM-Exit hypervisor adjusts guest
 page accordingly.

Write / read protected
page table area.
 Every access results in VM-Exit and
 passes control to hypervisor

CPU stores pointer on
guest page table directory

Memory virtualization: shadow
page tables

HardwareTLB

Guest

PD

CR3

PT

Active page table hierarchy
 VMM maintains it for each VM
 that it supports

Guest page table hierarchy
 It's writable, but can be inconsistent with
 active page table hierarchy stored by the
 hypervisor

PD PT

CPU stores pointer on active page table hierarchy.
 On Intel CPUs TLB is always refilled from active page table directory

Nested page tables

hPT gPT Host Physical

gPT

VMM Host Virtual

Guest Physical

Guest Virtual
gCR3

hCR3

0

0

0

PT

CR3 used by VMM

Translation can be cached in TLB

paged by CR3

paged by hCR3

paged by gCR3

Virtual devices in Xen

67

How to make the I/O fast?
● Take into account specifics of the device-

driver communication
● Bulk

– Large packets (512B – 4K)
● Session oriented

– Connection is established once (during boot)
– No short IPCs, like function calls
– Costs of establishing an IPC channel are irrelevant

● Throughput oriented
– Devices have high delays anyway

● Asynchronous
– Again, no function calls, devices are already

asynchronous

Shared rings and events

Shared rings

Shared rings

Shared rings

Shared rings

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	How to make the I/O fast?
	Shared rings and events
	Shared rings
	Slide 71
	Slide 72
	Slide 73
	Slide 74

