Transparent Checkpoint of Closed
Distributed Systems in

Emulab

Anton Burtsev, Prashanth Radhakrishnan,
Mike Hibler, and Jay Lepreau

University of Utah, School of Computing

Emulab

* Public testbed for network experlmentatlon

act Us [Search Documentation |

on~ Collaboration ~

‘aburtsev' Logged in.
Fri Mar 20 8:56am MDT

Settings | [visualization NS File etails Annotation

Name: bt-static-xen
Description: 'Experiment Template Instantiation 13901/3'

DataBase Password: dbd06aded4
Index: 38213 (744)

Run Bindings

Name Value
DURATION 300

 Complex networking experiments within minutes

Emulab — precise research tool

e Realism:

— Real dedicated hardware
e Machines and networks

— Real operating systems

— Freedom to configure any component of the software
stack

— Meaningful real-world results
e Control:
— Closed system
» Controlled external dependencies and side effects
— Control interface
— Repeatable, directed experimentation

Goal: more control over execution

e Stateful swap-out

— Demand for physical resources exceeds capacity
— Preemptive experiment scheduling

* Long-running

e Large-scale experiments
— No loss of experiment state

 Time-travel
— Replay experiments
* Deterministically or non-deterministically
— Debugging and analysis aid

Challenge

* Both controls should preserve fidelity of
experimentation
* Both rely on transparency of distributed checkpoint

Transparent checkpoint

* Traditionally, semantic transparency:

— Checkpointed execution is one of the possible correct
executions

 What if we want to preserve performance
correctness?

— Checkpointed execution is one of the correct executions
closest to a non-checkpointed run

* Preserve measurable parameters of the system
— CPU allocation
— Elapsed time
— Disk throughput
— Network delay and bandwidth

Traditional view

* Local case
— Transparency = smallest possible downtime
— Several milliseconds [Remus]
— Background work
— Harms realism

e Distributed case
— Lamport checkpoint
* Provides consistency
— Packet delays, timeouts, traffic bursts, replay buffer
overflows

Main insight

* Conceal checkpoint from the system under test
— But still stay on the real hardware as much as possible

* “Instantly” freeze the system

— Time and execution

— Ensure atomicity of checkpoint
* Single non-divisible action

* Conceal checkpoint by time virtualization

Contributions

Transparency of distributed checkpoint
Local atomicity
— Temporal firewall

Execution control mechanisms for Emulab
— Stateful swap-out
— Time-travel

Branching storage

Challenges and implementation

Checkpoint essentials

e State encapsulation
— Suspend execution
— Save running state of the
system

* Virtualization layer

Checkpoint essentials

e State encapsulation
— Suspend execution
— Save running state of the
system
* Virtualization layer
— Suspends the system
— Saves its state
— Saves in-flight state

— Disconnects/reconnects to
the hardware

First challenge: atomicity

Permanent encapsulation is

harmful
— Too slow
— Some state is shared

Encapsulated upon
checkpoint

Externally to VM

— Full memory virtualization

— Needs declarative description
of shared state

Internally to VM
— Breaks atomicity

Atomicity in the local case

 Temporal firewall

— Selectively suspends
execution and time

— Provides atomicity inside
the firewall

e Execution control in the
Linux kernel
— Kernel threads

— Interrupts, exceptions,
IRQs
e Conceals checkpoint
— Time virtualization

Second challenge: synchronization

Lamport checkpoint

— No synchronization S%#!

— System is partially Timeout
suspended

Preserves consistency
— Logs in-flight packets

Once logged it’s
impossible to remove

Unsuspended nodes
— Time-outs

Synchronized checkpoint

Synchronize clocks
across the system

Schedule
checkpoint

Checkpoint all
nodes at once

Almost no in-flight
packets

Bandwidth-delay product

Large number of in-
flight packets

Slow links dominate
the log

Faster links wait for

the entire log to
complete

Per-path replay?
— Unavailable at Layer 2

— Accurate replay
engine on every node

Checkpoint the network core

e Leverage Emulab delay

nodes
— Emulab links are no-delay
— Link emulation done by)
delay nodes \\d
W Fi
Avoid replay of in-flight W\

packets i

Capture all in-flight packets
In core
— Checkpoint delay nodes

Efficient branching storage

To be practical stateful
swap-out has to be fast
Mostly read-only FS

— Shared across nodes and
experiments l

e e

Rw |

Deltas accumulate
across swap-outs]

—
Based on LVM _

— Many optimizations

Evaluation

Evaluation plan

* Transparency of the checkpoint

* Measurable metrics
— Time virtualization
— CPU allocation
— Network parameters

=20 ms

usleep(10 ms)
gettimeofday()

} while ()

sleep + overhead

-
O
o
Q0]
N
©
>
)
i
>
()
£
T

(Sw) suiis

CPU allocation

Checkpoint adds 27 ms error

stress_cpu()

150 | 235 gettimeofday()
260 |f } while()

100 |
250 |1

xmlist — 130 ms
50 |

240 [4111 1417
OE:E:...:!EE'...IZ...:EEE..;EE.E

Network transparency: iperf

'M Throughput drop is
w ‘ §|J|' due to background
" activity
- 1Gbps, 0 delay network,
- iperf between two VMs

- tcpdump inside one of VMs
- averaging over 0.5 ms

@)
()
2
S~
m
=
D
-
>
o
e
(@)
>
@)
—
e
I_

i
No TCP window change

No packet drops

14 145
1 i |

10 15 20 25
Time (sec)

Network transparency: BitTorrent

Checkpoint every 5 sec
(20 checkpoints)

el

Checkpoint preserves
Time (sec) average throughput

[$)
Q
n
~
m
=3
—
=}
Q
<
)]
=3
o
—
<
—

Conclusions

* Transparent distributed checkpoint

— Precise research tool
— Fidelity of distributed system analysis

e Temporal firewall

— General mechanism to change perception of time for the
system

— Conceal various external events

e Future work is time-travel

Thank you

aburtsev@flux.utah.edu

Branching storage

VMs VBA

Logical Disk Hit Second-level branch

Current Miss R’Wl

First-level branch D D D D

gooooboogn

Hash '
Aggregated Miss

Base volume

Golden Golden image

VBA == PBA >
Linear addressing

Copy-on-write as a redo log
Linear addressing
Free block elimination

Read before write elimination

Branching storage

I Base
I 'BFahCh'—OI‘ig """"""""""""""""""""""""""""
] Branch

g
o
=
-
>
Qo
<
[o)]
>
o
—
e
|_

Character—Writes Block-\Writes Block—Rewrites Character—Reads Block—Reads

