
A Replay-based Approach to Performance Analysis
Anton Burtsev Eric Eide John Regehr

University of Utah, School of Computing

{aburtsev, eeide, regehr}@cs.utah.edu

The performance analysis of complex software systems is
a difficult task. Designed to deliver the highest performance,
modern systems utilize multiple forms of parallelism and a
number of engineering optimizations. The performance of
such systems is largely determined by the availability of
data, latency of communication, delay-free synchronization,
and efficiency of scheduling algorithms.

There is an inherent problem in the structure of perfor-
mance analysis as it exists today. The strict requirement of
low run-time overhead forces analysis tools to collect only
the smallest subset of the system’s state. The entire analysis
is performed offline. Lacking complete state of the system,
the analysis has no means to reason about collected data with
respect to execution history and run-time state of the system.
Analysis tools are mostly aimed at conducting lightweight
performance measurements and provide no means for ex-
plaining, solving, and predicting performance.

Our work argues for a new approach to performance anal-
ysis. Two properties are essential for evolving existing ap-
proaches to performance analysis. First, analysis algorithms
should have an access to the complete execution history and
run-time state of a system. Second, the complexity of anal-
ysis algorithms should not be restricted by the requirements
of a low run-time overhead.

Our goal is to turn performance, a dynamic property of
a particular execution, into a static property that can be an-
alyzed separately from an actual instance of a running sys-
tem. We rely on the old idea of decoupling analysis from
execution (Balzer, AFIPS’69). Recent advances in virtu-
alization enable the application of this idea to complex,
production-quality systems by demonstrating full-system
execution recording with an overhead of only several per-
cent (Xu et al., MoBS’07).

Analysis framework. We present a new analysis frame-
work aimed to provide general support for replay-based per-
formance analysis. We view it as a low-level mechanism that
exports the behavior of a system to a higher level, at which
analysis is formulated in a platform-independent manner.
Several mechanisms implement this idea.

Execution recording. Full-system virtualization has been
demonstrated as an efficient platform for recording the ex-
ecution of systems. We are extending Xen, a full-featured,
open-source virtualization platform, with deterministicre-
play capabilities. Xen offers an excellent virtualizationper-
formance and is widely deployed as a virtualization platform
in commercial cloud datacenters and large-scale academic
research facilities.

Performance model. We will recreate performance prop-
erties of an original run by re-executing the system on the

Students: Burtsev. No demo is planned.

same hardware as during the original run. In contrast to repli-
cating a complex hardware state of the CPU in a simulator,
replay on real hardware has the potential to provide us with
a simpler replay architecture, better replay performance,and
higher realism of the performance model.

Our system will provide a uniform interface to the perfor-
mance of a system during replay via the virtual performance
counters. Virtual counters virtualize the hardware perfor-
mance counters exposed as a low-level interface by mod-
ern CPUs. Virtual counters account for the impact of replay
mechanisms on the performance of a system, and report per-
formance as it would be observed during the original run.

Analysis interface. We make a key observation that any
performance analysis infers general properties of a system
by observing changes in its state. A range of dynamic anal-
yses require tracking the state of a system on every instruc-
tion. Such fine-grain intervention with the system requires
implementation of complex binary translation mechanisms
that merge analysis and system code for efficient execution.

Fortunately, a number of performance analyses can be
specified in a coarser manner and require an invocation only
when a specific a specific point in execution is reached.
We leverage this observation to avoid the complexity of
integrating binary translation mechanisms into our system.
Instead, we rely on binary rewriting to trigger invocation of
the analysis code at any place of the system’s execution path.

Vision for novel analysis techniques. Several unique
properties of our approach enable new ways of analyzing
the performance of complex systems. The determinism of
analyses and the availability of the global run-time state of
the system and its execution history provide support for anal-
ysis of transient performance anomalies, evaluating effects
of multiple interleaving bottlenecks, and correlating theper-
formance behavior of a system with its functional properties.

The availability of explicit control flow and the possibil-
ity of computing request-processing paths enable automatic
identification of critical execution paths and performance
bottlenecks. By examining the run-time state of a system,
it is possible to collect a variety of traditional performance
measurements, e.g., disk I/O throughput, network through-
put, and so on. Different performance metrics can be col-
lected over multiple replay runs. The determinism of replay
ensures consistency of these metrics.

The possibility of replaying a system multiple times pro-
vides a way to measure performance of basic instruction
blocks. This fine-grain performance profile can be used as
an input to static approaches to performance analyses, which
execute the system in an abstract space (Wilhelm et al., ACM
TECS’08).


